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Purpose: This study aims to reveal the relationship between RNA N6-methyladenosine
(m6A) regulators and tumor immune microenvironment (TME) in breast cancer, and to
establish a risk model for predicting the occurrence and development of tumors.

Patients and methods: In the present study, we respectively downloaded the
transcriptome dataset of breast cancer from Gene Expression Omnibus (GEO)
database and The Cancer Genome Atlas (TCGA) database to analyze the mutation
characteristics of m6A regulators and their expression profile in different
clinicopathological groups. Then we used the weighted correlation network analysis
(WGCNA), the least absolute shrinkage and selection operator (LASSO), and cox
regression to construct a risk prediction model based on m6A-associated hub genes.
In addition, Immune infiltration analysis and gene set enrichment analysis (GSEA) was used
to evaluate the immune cell context and the enriched gene sets among the subgroups.

Results: Compared with adjacent normal tissue, differentially expressed 24 m6A regulators
were identified in breast cancer. According to the expression features ofm6A regulators above,
we established two subgroups of breast cancer, which were also surprisingly distinguished by
the feature of the immune microenvironment. The Model based on modification patterns of
m6A regulators could predict the patient’s T stage and evaluate their prognosis. Besides, the
low m6aRiskscore group presents an immune-activated phenotype as well as a lower tumor
mutation load, and its 5-years survival rate was 90.5%, while that of the high m6ariskscore
group was only 74.1%. Finally, the cohort confirmed that age (p < 0.001) and m6aRiskscore
(p < 0.001) are both risk factors for breast cancer in the multivariate regression.

Conclusion: The m6A regulators play an important role in the regulation of breast tumor
immune microenvironment and is helpful to provide guidance for clinical immunotherapy.
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HIGHLIGHT

1) The heterogeneity of breast cancer is revealed by the
classification based on m6A

2) The risks of breast cancer patients are significantly different
between subtypes identified by m6A regulators

3) Molecular subtypes of breast cancer that respond to
immunotherapy have been identified, providing impetus for
breast cancer immunotherapy

INTRODUCTION

As a highly heterogeneous with complex histological
characteristics and genetic features, breast cancer ranks first
cancer in women on a global scale, and immunotherapy is
currently a promising therapeutic strategy for advanced breast
cancer (Emens, 2018). Therefore, exploring the molecular
mechanism of breast cancer tumorigenesis and development is
crucial to advance clinical diagnosis.

As the most widely distributed internal modification form of
mRNA in eukaryotic cells, m6A modification participates in the
occurrence and development of human cancer. Increasing
researchers have come to demonstrate that dysfunction in m6A
modification could affect the phenotype of tumor cells in breast
cancer, colorectal cancer, and other cancers (Deng et al., 2019; Niu
et al., 2019; Yang et al., 2020). HeChuan et al. reported that YTHDF3
induces the translation of m6A-Enriched key brain metastatic genes
to promote BC brain metastasis (Chang et al., 2020). As previously
described, m6A modification is a dynamic and reversible process
(Yang et al., 2018). This modification in cells starts with
methyltransferases (“writers”). Its regulatory factors include
METTL3/14/16, WTAP, RBM15, RBM15B, ZC3H13, CBLL1,

and KIAA1429; reversing m6A modification is mediated by
demethylases (“erasers”), including the notorious obesity-
associated protein (FTO) and ALKBH5. The RNA information
modified by m6A regulators needs to be recognized by the RNA
binding protein (“readers”), composed of LRPPRC, HNRNPA2B1,
FMR1, IGF2BP1/2/3, HNRNPC, ELAVL1, YTHDC1/2, and
YTHDF1/2/3 so as to participate in downstream RNA translation
and degradation processes (Yang et al., 2018; He et al., 2019).

Recently, some studies have reported a special connection
between m6A regulators and the tumor microenvironment
(TME) (Tang et al., 2020; Zhang et al., 2020). Due to the
immune cell-tumor cell interactions, various biological
behaviors such as immune escape and immune tolerance
contribute to tumorigenesis. Han et al. have identified YTHDF1
as an immune suppressor in tumors (Han et al., 2019). Inhibiting
the expression of YTHDF1 in classical dendritic cells can enhance
the cross-presentation of tumor antigens and the cross-activation
of CD8+ T cells in vivo (Han et al., 2019). Whereas another m6A
regulator, METTLE3, can activate T cells by enhancing translation
of CD80, CD40, and TLR4 signaling adaptor Tirap in dendritic
cells. Li et al. have reported that METTL3-deficient T cells lose the
ability to produce specialized immune cells (Li et al., 2017). These
findings reveal the possible protective effect of m6A (Wang H.
et al., 2019). Hence it is speculated that m6A modification may
affect the occurrence and development of tumors by regulating the
characteristics of TME.

More specifically, breast cancer, especially triple-negative
breast cancer (TNBC), which has a relatively low immune
response after immunotherapy, has always been considered as
“cold tumor” (Bianchini et al., 2016). But increasing studies have
observed various immune infiltrations in TME of BC (Gil Del
Alcazar et al., 2020). Therefore, the selection of appropriate
subtypes is crucial to the effectiveness of immunotherapy.

FIGURE 1 | The flow chart of the study design and analysis.
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In this work, we integrated the genomic information of breast
cancer samples in the TCGA database to evaluate the breast cancer
m6A modification patterns comprehensively and to explore the
features of immune cell infiltration under distinct m6Amodification
modes (Figure 1). We found that there are two different m6A
modification patterns in breast cancer patients, and significant
distinctions were presented in the immune infiltration
characteristics of the two types of patients. Therefore, we
established a risk scoring model based on m6A modification
patterns to predict the overall survival rate and provide guidance
for clinical treatment classification.

MATERIAL AND METHODS

Breast Cancer Data Sources
In this study, transcriptome dataset and corresponding of
1222 TCGA-BRCA (The Cancer Genome Atlas-Breast Cancer)
samples and GSE86374 cohort (containing 159 samples, GEO
databases) were included in the present study. We excluded the
patients without survival information from further analysis. The
clinical information of 893 patients was summarized in Table 1.

The data set in TCGA uses the R package TCGAbiolinks to
download all gene expression RNA sequencing data from Genomic
Data Commons (GDC, https://portal.gdc.cancer.gov/). Somatic
mutation data were obtained from the TCGA database. The data
were analyzed using R (version 4.0.2) and R Bioconductor packages.

Select m6A Regulator and Unsupervised
Analysis Using ConsensusClusterPlus
Methods
According to the published studies (Zhang et al., 2020), we
selected 24 m6A regulators for unsupervised cluster analysis.
These 24 m6A regulators include 9 writers (METTL3/14/16 and
WTAP, RBM15, RBM15B, ZC3H13, KIAA1429, and CBLL1), 2

erasers (FTO, ALKBH5), and 13 readers (YTHDF1/2/3,
YTHDC1/2, HNRNPA2B1, HNRNPC, LRPPRC, FMR1,
ELAVL1, and IGF2BP1/2/3). With the “limma” package
(http://www.bioconductor.org/packages/release/bioc/html/limma.
html), differentially expressed of the m6A regulators in BC
was unveiled between tumor tissues and normal tissues. The
number of clusters is determined by the algorithm of
unsupervised cluster analysis, performed with the R package
“ConsensuClusterPlus” (50 iterations, 80% resampling rate,
Pearson correlation) (https://www.bioconductor.org/packages/
release/bioc/html/ConsensusClusterPlus.html). We also performed
principal component analysis (PAC) on the clustering results using
the R package “PCA” to study gene expression patterns in breast
tumor clusters. The PPI network was built using the Retrieval of
Interacting Genes (STRING, http://string.embl.de/).

Gene Set Enrichment Analysis and Analysis
of Immune Cell Infiltration
Enrichment of functions and signaling pathways of different
clusters were evaluated in software GSEA 4.1.0. In order to
investigate the TME of breast cancer, we used the CIBERSORT
analysis tool to calculate the number and type of immune cells
infiltrated by each sample (Newman et al., 2015). The CIBERSORT
score can be found in The Cancer Immunome Atlas (TCIA, https
://tcia.at/, created by Pornpimol et al.). The level of immune cell
infiltration of each patient in TCGA-BRCA cohort has also been
collected from the Tumor immune estimation resources (TIMER)
platform (https://cistrome.shinyapps.io/timer/).

Hub Genes in the Module of Interest Based
on Weighted Correlation Network Analysis
“Limma” package was employed to extract all the differential genes
(DEGs) in the expression matrix of the GSE86374 cohort for

TABLE 1 | Clinicopathological features of patients included in this study annotated from TCGA database.

Level Overall High-m6aRiskscore Low-m6aRiskscore p-value

number Alive 893 435 458 0.002
fustat (%) 769 (86.1) 358 (82.3) 411 (89.7)

Dead 124 (13.9) 77 (17.7) 47 (10.3) 0.317
age (%) ≤65 663 (74.2) 330 (75.9) 333 (72.7)

>65 230 (25.8) 105 (24.1) 125 (27.3)
gender (%) FEMALE 882 (98.8) 430 (98.9) 452 (98.7) 1

MALE 11 (1.2) 5 (1.1) 6 (1.3)
stage (%) Stage I 159 (17.8) 87 (20.0) 72 (15.7) 0.122

Stage II 521 (58.3) 238 (54.7) 283 (61.8)
Stage III 196 (21.9) 103 (23.7) 93 (20.3)
Stage IV 17 (1.9) 7 (1.6) 10 (2.2)

T (%) T1 235 (26.3) 125 (28.7) 110 (24.0) 0.014
T2 529 (59.2) 235 (54.0) 294 (64.2)
T3 98 (11.0) 58 (13.3) 40 (8.7)
T4 31 (3.5) 17 (3.9) 14 (3.1)

M (%) M0 876 (98.1) 428 (98.4) 448 (97.8) 0.702
M1 17 (1.9) 7 (1.6) 10 (2.2)

N (%) N0 438 (49.0) 208 (47.8) 230 (50.2) 0.885
N1 299 (33.5) 151 (34.7) 148 (32.3)
N2 103 (11.5) 50 (11.5) 53 (11.6)
N3 53 (5.9) 26 (6.0) 27 (5.9)
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WGCNA. The R package “WGCNA” was used to find the modules
and hub genes related to the m6A subgroup (Langfelder and
Horvath, 2008). We convert the adjacency matrix into a
topological overlap matrix (TOM), and genes are divided into
different gene modules based on the TOM diversity measure.
Here, the soft threshold power is set to 9 (scale-free R2 � 0.85);
the cutting height is set to 20,000, and theminimummodule size is set
to 10 to identify key modules. The hub gene is defined as a gene with
module membership (MM) > 0.8 and gene significance (GS) >0.85.

Verify the Prognostic Value of the Hub Gene
In order to screen out genes with clinical predictive value in the
hub gene, the LASSO Cox regression algorithm was applied to the
hub gene in the GSE86374 cohort (Ramsay et al., 2018). 14 genes
were selected according to the minimum standard to construct the
risk profile, and the coefficient obtained from the LASSO algorithm
was used to calculate the risk score of each patient, as shown below:

m6aRiskscore � ∑
n

i�1
exp(i)*θ(i)

Where n is the number of prognostic genes, exp(i) is the
expression level of gene i, and α(i) is the regression coefficient
of gene i in the LASSO algorithm. According to the average risk
score, it will be divided into a high-m6aRiskscore group and a low-
m6aRiskscore group. We used the R package “survival” to evaluate
the difference in survival time between the two groups. Finally, the
“PROC” R package was used to quantify the area under the curve
(AUC) to measure the specificity and sensitivity of m6aRiskscore.

Statistical Analysis
We employed the Kaplan-Meiermethod to generate a survival curve
for prognostic analysis, and the log-rank test for comparison.
Spearman and Pearson’s correlation analysis was used to
calculate the correlation between m6aRiskscore and TME
infiltrating immune cells or between m6aRiskscore and the
expression of m6A regulators, respectively. Tumor mutation
burden (TMB) was calculated from the number of non-
synonymous alterations for each patient (Cancer Genome Atlas
Research Network, 2012). The t-test is used to investigate the
difference in risk distribution among clinical groups. The single
factor and multivariate regression are used to determine the factors
that affect prognosis in the TCGA-BRCA cohort, and we use the
“forestplot” R package to visualize the results. The waterfall function
of the “Maftools” package (https://bioconductor.org/packages/
release/bioc/html/maftools.html) was used to display the
mutation status of patients in the TCGA-BRCA cohort. TIDE
algorithm was used to predict potential immune checkpoint
blockade response (Jiang et al., 2018). All statistical results with
p < 0.05 were considered statistically significant.

RESULTS

Genetic Variation of 24 m6A Regulators and
its Clinicopathological Association
To find out m6A modification characteristics in breast cancer, we
explored the expression level of 24 regulators in different sample

tissues, including tumor status (normal and tumor) and
pathological stage (early stage covering Stage I and II, later
stage covering Stage III and IV). It appeared that IGF2BP1/3,
ELAVL1, HNRNPA2B1, HNRNPC, KIAA1429, RBM15,
LRPPRC, FMR1, YTHDF1/2 are highly expressed in the tumor
while FTO, METTL14/16, WTAP, YTHDC1 and ZC3H13 are
down-regulated (Figures 2A,B). And the five of them (FTO,
RBM15B, FMR1, IGF2BP3, and HNRNPA2B1) are also closely
related to their staging (Figure 2C). Survival analysis further
confirmed the relationship between m6A regulators and
prognosis. IGF2BP1, KIAA1429, and YTHDF3 are associated
with poor overall survival (OS), while high RBM15B and
HNRNPC indicate a better prognosis (Figures 3A–E).

In order to determine whether the above-mentioned m6A
regulators’ expression alteration is caused by mutations, we first
summarized the incidence of 24 m6A regulators’ copy number
variation and somatic mutations in breast cancer (Figure 4A).
But out of 986 samples, only 70 of them had mutations with a
7.1% mutation frequency (Figure 4B). It indicates that somatic
mutation may not be the main reason for the alteration of m6A
regulators. Consistent with this result, the study of co-mutation
reveals that only ELAVL1, IGF2BP2 and LRPPRC showed a
significant co-mutation relationship (Figure 4C). Their co-
mutation may be explained by chromosomal translocation. It
is known that ELAVL1 is located on chromosome 19p13.2,
LRPPRC on chromosome 2p21, and IGFBP2 on chromosome
3q27.2. Dowiak and Tirado have reported the chromosomal
aberrations of t(2;3) (p13-25;q25-29) in myeloma, which
provided us with hints for explaining co-mutations (Dowiak
and Tirado, 2017).

To further explore whether these 24 m6A regulators have any
meaningful interactions, we established a PPI network and
Spearman correlation analysis. It can be observed that apart
from LRPPRC, the other 23 m6A regulators possess a complex
network of interactions, and most of them are positively
correlated, especially the correlation between METL14 and
YTHDC1 reached 0.61 (Figure 2E). The PPI diagram points
out that there is a close connection between the 9 writers
(Figure 2D); compared to the strong connection between
the reader and the writer, the 13 readers have relatively few
connections among themselves (Figure 2D). Since the effect
of methylation on the stability of the transcript mainly
depends on which reader is dominant in the cellular
environment, this feature of reader may help cells to perform
specific functions.

Consensus Clustering of 24m6ARegulators
Identified Two Clusters of Patients With
Different TME Cell Infiltration
Characteristics
According to the expression of 24 m6A regulators, we used the
“ConsensusClusterPlus” R package to classify patients. We
observed that when k � 2, the interference between subgroups
is relatively smaller (clustering increasing from k � 2–9). And to
facilitate subsequent analysis, two subgroups were distinguished
(Figures 5A–C). Among them, cluster1 contains 99 patients and
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cluster2 contains 24 patients. PCA proved the difference between
the two subgroups (Figure 5D). Next, we conducted a GSEA
analysis to explore the biological behavior between these two
different subgroups (Supplementary Figures S1A–E). GSEA
analysis showed that Cluster1 exhibited active protein
transcription and post-translational modification processes,
including up-regulation of mRNA metabolic process (NES �
1.75, normalized p � 0.012), mRNA transport (NES � 1.69,
normalized p � 0.036), and N terminal protein amino acid
modification pathways (NES � 1.86, normalized p � 0.010).

Cluster2 is enriched in apoptosis-related pathways, including
regulation of mitochondrial membrane permeability in apoptotic
process (NES � −1.60, normalized p � 0.015) and autophagosome
membrane (NES � −1.62, normalized p � 0.030).

We further analyzed the differences in the infiltration of
immune cells between the two subgroups. The differences lie
mainly in plasma cells, CD8+ T cells, CD4+ T cells memory
resting, T cells regulatory (Tregs), NK cells, Monocytes,
Macrophages M1 (Figure 5E). The plasma cells and CD8+

T cells of Cluster1 were both significantly lower than those of

FIGURE 2 | The expression of 24 m6A regulators is associated with clinicopathological characteristics. * * *p < 0.001, * *p < 0.01, *p < 0.05. (A) The heatmap of 24
m6A regulators in different tumor tissues. (B) The violin plot of 24 m6A regulators in different tumor tissues. (C) The boxplot of 5 m6A regulators in the different
pathological stages. (D) The PPI network of the 24 m6A regulators constructed using STRING. (E) Spearman correlation analysis of 24 m6A regulators.
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Cluster2, but the activated Monocytes and NK cells were higher
than those of Cluster2 (Figure 5E). Meanwhile, the antigen-
processing machinery (APM) component HLA-II genes in
cluster2 present a higher expression level (Figure 5F). The
previous research referred to the subgroups with this
immune characteristic as immune activation phenotype
(characterized by immune activation and adaptive immune
cell infiltration) and immune rejection phenotype
(characterized by innate immune cell infiltration) (Zhang
et al., 2020). What is worth noting is that the number of
CD8 + cells, the major labor of tumor removal, account for
nearly 25% of the total number of cells in breast cancer
(Figure 5G), is lower in cluster1 (p � 0.002). Additionally,
some important immune activation-related genes such as
TNF, CD8A, and CXCL9 are present at a lower level in
cluster1, with a higher expression of immune checkpoint
PDCD1 (Supplementary Figures S2A–E). In summary, we can
speculate that the adaptive immune response of Cluster1 may be
less activated than Cluster2.

WGCNA and a Risk Signature Established
Based on Hub Gene
In order to find the key genes that are most related to the m6A
regulators in breast cancer, we identified 8 modules for setting the

soft threshold power and cutting height (Figures 6A,B).
According to the module correlation heat map, it is found that
the brown module and the blue module have the highest
correlation (Figure 6B).

Then we applied limma analysis to extract all the differential
genes of the two subgroups. These 653 DEGs are respectively
intersected with the brown module and the blue module, and the
union of the two sets of results formed a hub gene set. Figure 6C
showed that the expression of the selected hub gene was
significantly correlated with m6A regulators, among which
BCL3, CCDC92, RPL27A, and RPL29 were positively
correlated with most m6A regulators. Aside by this, the
expression of the hub gene is also associated with some of the
immune infiltrating cells. Consistent with the previous
differences in immune cell infiltration in the m6A regulator
subgroup, most of the hub genes are related to CD4+ T cells
memory resting, CD8+ T cells, T cells regulatory (Tregs), and NK
cells activated (Figure 6D).

Considering the complexity and heterogeneity of m6A
individual modification, we constructed a scoring system to
quantify the risk of a single breast cancer patient by applying
the LASSO Cox regression algorithm and the minimum
absolute contraction (Figure 6E). The scoring system
divides patients into high-m6aRiskscore and low-
m6aRiskscore groups, 534 and 535 patients were included

FIGURE 3 | Five m6A regulators were associated with overall survival. (A–E) The overall survival curves of m6A regulators. p < 0.05 were considered statistical
significance.
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respectively. Firstly, Kruskal-Wallis test illustrated that
patients with lower m6aRiskscore present a higher 5-years
survival rate, and the 5-years survival rates of the high and
low m6aRiskscore groups were 74.1 and 90.5%, respectively
(Figure 6F). The ROC curve verifies the accuracy of the model

(AUC � 0.732) (Figure 6G). Then the GSEA analysis indicates
that the low-m6aRiskscore group was enriched in immune
response-related pathways such as complement and coagulation
cascades (NES � 1.95, normalized p � 0.004), intestinal immune
network for IgA production (NES � 1.73, normalized p � 0.025)

FIGURE 4 | M6A regulators present a low genetic variation rate. (A) The summary of 24 m6A regulators copy number variation and somatic mutations in breast
cancer. (B) The mutation frequency of 24 m6A regulators 986 samples. (C) Co-mutation among 24 m6A regulators.
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(Supplemetary Figures S3A–B); the high-m6aRiskscore group
was enriched with many malignant hallmarks of cancer,
including ubiquitin-mediated proteolysis (NES � −1.84,
normalized p � 0.004), mismatch repair (NES � −1.81,
normalized p � 0.004), glycosylphosphatidylinositol GPI
anchor biosynthesis (NES � −1.78, normalized p � 0.010) and

cell cycle (NES � −1.73, normalized p � 0.025) (Supplemetary
Figures S3C–F). The above results suggest that the
m6aRiskscore based on m6A regulators is closely related to
the malignancy and immunological competence of breast
cancer, and thus it can be an indicator of the prognosis and
treatment of breast cancer.

FIGURE5 |Consensus Clustering of 24m6A regulators identified two clusters of patients with different TME cell infiltration characteristics. (A) The tracking plot for k
� 2 to k � 9. (B) The heatmap for k � 2. (C) Relative change in area under CDF curve for k � 2–9. (D) Principal component analysis of the total RNA expression profile. (E)
Different immune cell content in tumor tissue. The green represents Cluster1 and the red represents Cluster2. (F)HLA gene expression in cluster1/2. (G)Relative Percent
of different immune cells in each sample.
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FIGURE 6 | Hub genes were significantly correlated with m6A regulators and immune infiltrating cells. (A) Clustering dendrograms of genes. (B) Module-trait
associations. (C) Spearman correlation analysis between hub gene and 24 m6A regulators. (D) Spearman correlation analysis between hub gene and infiltrating
immune cells. (E) The minimum mean value of the target parameter in the process of LASSO Cox regression. (F) The overall survival of the high and low
m6aRiskscore groups. (G) The ROC curve verifies the accuracy of the risk model.
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FIGURE 7 | Prognostic risk score indicated strong associations with pathological stage and tumor somatic mutation in breast cancer. *p < 0.05, **p < 0.01 and
***p < 0.001. (A)The heatmap of 24 m6A regulators in high-m6aRiskscore and low-m6aRiskscore breast cancer. (B) Univariate Cox regression analysis to estimate the
prognostic significance of clinicopathological factors and m6aRiskscore. (C) Multivariate Cox regression analysis to estimate the prognostic significance of
clinicopathological factors and m6aRiskscore. (D) Different immune cell content in tumor tissue. The green represents the low-m6aRiskscore group and the red
represents the high-m6aRiskscore group. (E) The expression level of HLA-related gene in the subgroups. (F) The expression level of immune-related gene in the
subgroups. (G) The expression level of m6A regulators in the subgroups.
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Prognostic Risk Score Indicated Strong
Associations With Pathological Stage and
Tumor Somatic Mutation in Breast Cancer
The heat map shows the expression level of the selected hub gene
and its relationship with clinical characteristics (Figure 7A). The
subgroups divided by m6aRiskscore are related to the T stage (p <
0.05), age (p < 0.01), and survival status (p < 0.001). Afterwards,
Univariate and multivariate Cox regression further explored
whether risk characteristics are an independent prognostic factor.
The results demonstrated that in single-factor analysis, age,
pathological stage, stage TNM, and m6aRiskscore are all risk
factors (Figure 7B), while in multivariate analysis, only age and
m6aRiskscore are still risk factors (p < 0.001) (Figure 7C), which
proves that m6aRiskscore can be independent of breast cancer
prognostic biomarkers.

To clarify the correlation between the m6aRiskscore and
the host anti-tumor immune response, we performed immune
infiltration analysis on the subgroup divided by m6aRiskscore
(Figure 7D). CD8+ T cells, Naïve B cells, and NK cells
activated were all lower in the high-m6aRiskscore group than
in the low-m6aRiskscore group. Besides, macrophages M2, M0,
and NK cells resting present higher expression than the low-
m6aRiskscore group. Similarly, in the correlation analysis of
immune cells using the TIMER database, it was found that

B cells (cor � -0.088), CD4+ T cells (cor � -0.146), CD8+

T cells (cor � -0.109), dendritic cells (cor � -0.127) and
neutrophils (cor � -0.126) were all negatively correlated with
m6aRiskscore (Figures 8A–F).

Consistent with the characteristics of immune infiltration, the
expression of almost all MHC molecules, including MHC1 and
MHC2, was lower in the high-m6aRiskscore group (Figure 7E).
Given that the antigen deficiency of MHC molecules is closely
related to tumor escape, this result indicates a weaker tumor
immunogenicity of the high-m6aRiskscore group. In terms of
immunoregulatory genes, the low-m6aRiskscore group showed
higher levels of immune-activating genes, such as TBX2, CD8A,
CXCL9, GZMA, GZMB, PRF1, and IFNG (Figure 7F). But it is
interesting that the immune checkpoints CD274 and PDCD1 in
the low-m6aRiskscore group are also lower (Figure 7F).
Moreover, expression levels of m6A regulators between the
two groups were also investigated. We surprisingly found that
most of the m6A regulators are higher in a high-risk group, which
is worthy of discussion (Figure 7G). To sum up, combined with
the immune infiltration landscapes like high M2 cells, low CD8+

cells, and low MHC molecules in the high-m6aRiskscore group,
we tend to believe that the high-m6aRiskscore group exhibits
immunosuppressive characteristics, which may be one of the
reasons for its poor prognosis (Figure 6F).

FIGURE 8 | Correlation between immune cells and m6aRiskscore was analyzed using the TIMER database. (A–F) Correlation analysis between immune cells and
m6aRiskscore in TCGA-BRCA cohort.
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FIGURE 9 |M6ariskscore predicts the response of immunotherapy. (A)Correlation analysis between TIDE value andm6aRiskscore in the TCGA-BRCA cohort. (B)
Boxplot of TIDE value between subgroups in the TCGA-BRCA cohort. (C) Rate of clinical response estimated by TIDE in high or low m6aRiskscore groups in the TCGA-
BRCA cohort. (D) Correlation analysis between TIDE value and m6aRiskscore in the GSE48391 cohort. (E) Boxplot of TIDE value between subgroups in the GSE48391
cohort. (F) Rate of clinical response estimated by TIDE in high or low m6aRiskscore groups in the GSE48391 cohort. (G) Rate of clinical response (response [R]/no
response [NR]) to anti-PD-L1 immunotherapy in high or lowm6aRiskscore groups in the IMvigor210 cohort. (H)Rate of clinical response (R/NR) to immunosuppressives
(methotrexate and cyclophosphamide) in high or low m6aRiskscore groups in the GSE42664 cohort. (I) m6aRiskscore in different molecular subtype of breast cancer.
(J) Survival analyses for patients stratified by both TMB and m6aRiskscore. (K) Boxplot of m6aRiskscore between Cluster1 and Cluster2.
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M6ariskscore Predicts the Response of
Immunotherapy
Due to the lack of breast cancer immunotherapy cohort, we use
Tumor Immune Dysfunction and Exclusion (TIDE) to predict
the response of patients with immune checkpoint blockade (ICB).
TIDE is an algorithm for predicting ICB response based on gene
expression profiles, and a low TIDE score indicates that it is more
likely to become a responder for immunotherapy (Jiang et al.,
2018). Recent studies have proven that TIDE scores demonstrate
higher prediction accuracy than PD-L1 expression levels and TMB
(Jiang et al., 2018; Wang S. et al., 2019; Keenan et al., 2019). In our
study, the TIDE score was negatively correlated with m6aRiskscore
in the TCGA-BRCA cohort and external datasets GSE48391
(Figures 9A,D). And the TIDE score of the high-m6aRiskscore
group is significantly lower than the low-m6aRiskscore group
(Figures 9B, E), which means that the high-m6aRiskscore
group is more likely to benefit from immunotherapy
(Figures 9C,F).

We further validated the effectiveness in other cancer cohorts
involving immunotherapy. Although a significant difference
was not observed statistically, all the high-m6aRiskscore
groups have a higher percentage to benefit from
immunotherapy. As shown in Figures 9G,H below, the
response rate of anti-PD-L1 therapy in the high-
m6aRiskscore group (26%) was higher than that in the low-
m6aRiskscore group (20%) in urothelial carcinoma (Figure 9G).
Similarly, the response rate of immunosuppressives in the high-
m6aRiskscore group (67%) was also higher than that in the low-
m6aRiskscore group (37%) in large granular lymphocyte
leukemia (Figure 9H). The lack of significant statistical
differences in our results may be due to different types of
cancer. Moreover, A study using TIDE to evaluate the
response of ICB in lung adenocarcinoma also showed that
high-risk groups with immunosuppressive phenotypes are
more likely to benefit from immunotherapy, which is
consistent with our conclusion (Wang et al., 2020b). These
data indicate that the m6aRiskscore may be related to the
response to immunotherapy.

Further, we examined the correlation between m6aRiskscore
and molecular subtypes. Figure 9I shows that high-m6aRiskscore
is related to Luminal B, HER2-enriched, and TNBC, while the
m6aRiskscore of Luminal A and Normal-like BC is relatively low.
Next, we calculated the tumor mutation burden (TMB) of each
patient. Patients with lower tumor neoantigen load and lower
m6aRiskscore have the highest 5-year survival rate (Figure 9J). In
the end, we compared the subgroups based on m6A regulators
and the subgroups based on m6ariskscore. The two ways of
classification showed consistency given that Cluster1 had
higher m6aRiskscore (Figure 9K), which is consistent with
previously identified immunosuppressive phenotypes.

DISCUSSION

In this context, we aimed to determine the prognostic value of m6a-
related mRNA in breast cancer and its role in the tumor

microenvironment. For this reason, we clustered the GEO
cohort into two subgroups. The two subgroups have significant
differences in malignant tumor markers, immune cell infiltration,
and expression of immune regulatory genes. Next, based on
the differential hub genes of the two subgroups, we develop a
new biomarker risk prediction model. The results based on
1069 TCGA-BRCA samples show that m6aRiskscore helps to
identify patients with high immunogenicity, and is significantly
related to the m6a modification characteristics, immune
microenvironment, molecular subtypes, and patient prognosis of
breast cancer.

At present, researchers are beginning to uncover the mystery of
m6a shaping the tumor immune microenvironment (Han et al.,
2019; Wang et al., 2020a), A review has comprehensively
summarized the involvement of m6A in innate and adaptive
immune cell regulation (Ma et al., 2021). In our research, we
discovered that KIAA1429 is highly expressed in tumor tissues
compared with adjacent tissues and higher KIAA1429 means worse
survival time. Following previous studies, KIAA1429 plays a role as
a carcinogen of breast cancer (Qian et al., 2019). Lan T also reported
that in hepatocellular carcinoma KIAA1429 controls the
differentiation of T helper 2 (Th2) by inducing separation of
RNA binding protein HuR, and so affects the expression of IL-4,
IL-5, and IL-13 (Lan et al., 2019). Therefore, KIAA1429 may play
a prominent role in tumor immune regulation. In addition, the
expression level of YTHDFs in tumor tissues is also significantly
different from normal tissues, and among them YTHDF3 is
negatively correlates with survival rate, which is consistent
with previous studies (Anita et al., 2020; Chang et al., 2020).
Han and Liu also pointed out that YTHDF1 can promote
the transcription of lysosomal cathepsin and therefore inhibit
the antigenic crossover of classical dendritic cells (Han et al.,
2019). Besides, m6A regulators such as METTL14 have been
reported to be involved in the regulation of T cell homeostasis
(Han et al., 2019). These m6A regulators, which play an
important role in the occurrence and development of breast
cancer, also showed generally a higher expression in the high-
m6aRiskscore group, prompting us to assume m6A regulators are
closely involved in the regulation of the breast cancer immune
microenvironment.

In April 2019, the FDA approved atezolizumab (anti-PD-L1)
for the first time in the treatment of TNBC. The limitation of
immunotherapy as a personalized therapy is that only a
few patients benefit from it (Gil Del Alcazar et al., 2020).
Therefore, it is necessary to provide a biomarker other than
molecular subtypes to better realize the potential of
immunotherapy in the treatment of breast cancer. In our
article, we further revealed two subgroups in breast cancer
patients based on 24 m6A regulators, and they present
distinct immune infiltration characteristics. Recent
bioinformatics studies have attempted to use m6A to classify
breast cancer subtypes with different immune landscapes (He
et al., 2021). However, no studies have screened m6A-related
mRNA panels to predict the risk of tumor recurrence and
survival outcomes. In our study, we confirmed that low-
m6aRiskscore group manifest an immune activation
phenotype, while high-m6aRiskscore group showed an
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immunosuppressive phenotype characterized by high M2
macrophages, low CD8+ T cells, High Treg cells and low
CSF1, and high CSFR1. The poorer prognosis and lower
immunogenicity further proved the characteristics of poor
immune infiltrations. Interestingly, the PD-1 related genes in
the high-m6aRiskscore group are lower than those in the low-
m6aRiskscore group. A bioinformatics study also reached the
same seemingly contradictory results. They found that the
content of Treg in the immune-activated subgroup was
strangely higher, but the article did not give much discussion
(He et al., 2021). We presume that this result suggests that the
immune escape of tumors under this classification system is
mainly caused by the down-regulation of neoantigen peptide
loading genes including MHC class I, rather than the inhibitory
effect of PD-L1 immune checkpoints.

According to previous studies, there are multiple mechanisms
in the progression of breast cancer to gradually suppress the
immune environment. The first is the role of immune
checkpoints such as PD-L1 and CTLA-4. PD-L1 and CTLA-4
can inhibit T cell activation until T cell exhaustion occurs.
(Zhao et al., 2019), CTLA-4 also mediates the inhibitory effect
of Tregs cells. (Zhang et al., 2021). Secondly, HER2 itself can
trigger an anti-tumor immune response in tumors amplified by
ERBB2. In some tumors, Th1 cells have impaired anti-HER2
ability and thus lead to immune escape (Datta et al., 2015).
Finally, it is the down-regulation of HLA-like neoantigen
peptide genes that are common in cancer cells. Most HLA
class I antigen-processing machinery defects ( >75%) are
caused by epigenetic mechanisms or signal transduction
disorders, so we can design reasonable strategies to correct
them knowing that this change is non-structural (Maggs et al.,
2021). At present, for breast cancer with different characteristics,
different types of immunotherapies have emerged, such as
immune checkpoint inhibitors, mRNA vaccines, chimeric
antigen receptor-modified T cells (CAR-T), and related nano-
positioning technologies. Many ongoing breast cancer clinical
trials are testing cancer vaccines, and the HER2-based targeted
DC vaccine has achieved some results (Adams et al., 2019;
Fennemann et al., 2019).

The comprehensive analysis also showed that m6aRiskscore
is an independent prognostic biomarker for breast cancer.
In terms of molecular typing, HER2-enriched and TNBC are
the targets of immunotherapy clinically, which all present a
higher m6aRiskscore. In addition, through the validation of
internal and external immunotherapy datasets, we found that
the m6ARiskscore of patients who responded to immunotherapy
was elevated, which verified its predictive value. Taken together,
these findings suggest that m6aRiskscore is significantly
correlated with dominant immune cell type, immunogenicity,
and molecular typing, helping to provide guidance for
immunotherapy.

It is undeniable that the limitation of our studies must be
mentioned. Further in vitro and in vivo experiments are needed to
probe into the mechanism of m6A modification. In order to
explore the applicability of our model, more independent BC
cohorts are demanded to verify the prognostic value of the
m6aRiskscore model.

CONCLUSION

In conclusion,m6aRiskscore comprehensively evaluates the individual
methylation modification patterns of breast cancer patients and their
corresponding TME characteristics thus providing us a more effective
guide for clinical practice. We also proved that m6aRiskscore could be
used to assess the clinicopathological characteristics of patients,
including tumor inflammation, clinical stage, molecular subtype,
and response to immunotherapy. Similarly, we could use
m6aRiskscore as an independent prognostic biomarker for
predicting patient survival. Our findings provide new ideas for
identifying different tumor immunophenotypes and facilitating
personalized cancer immunotherapy in the future.
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