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We aimed to examine the associations of a genome-wide set of single nucleo-

tide polymorphisms (SNPs) and 254 copy number variations (CNVs) and/or

insertion/deletions (INDELs) with clinical outcomes in colorectal cancer

patients (n = 505). We also aimed to investigate whether their associations

changed (e.g., appeared, diminished) over time. Multivariable Cox propor-

tional hazards and piece-wise Cox regression models were used to examine

the associations. The Cancer Genome Atlas (TCGA) datasets were used for

replication purposes and to examine the gene expression differences between

tumor and nontumor tissue samples. A common SNP (WBP11-rs7314075)

was associated with disease-specific survival with P-value of 3.2 9 10�8.

Association of this region with disease-specific survival was also detected in

the TCGA patient cohort. Two expression quantitative trait loci (eQTLs)

were identified in this locus that were implicated in the regulation of ERP27

expression. Interestingly, expression levels of ERP27 and WBP11 were sig-

nificantly different between colorectal tumors and nontumor tissues. Three

SNPs predicted the risk of recurrent disease only after 5 years postdiagnosis.

Overall, our study identified novel variants, one of which also showed an

association in the TCGA dataset, but no CNVs/INDELs, that associated

with outcomes in colorectal cancer. Three SNPs were candidate predictors of

long-term recurrence/metastasis risk.

1. Introduction

A significant portion of colorectal cancer patients die

of this disease and develop local recurrences and

metastases over time [1,2]. Knowledge on the baseline

predictors of clinical outcomes is essential for effective

disease management. The disease stage is the most

well-known prognostic marker in colorectal cancer
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[3,4]. Other factors, including tumor location,

microsatellite instability status, and treatment, have

also been associated with patient outcomes [5–7].
However, patients who are categorized in the same

prognostic group may experience different outcomes,

indicating the need for additional prognostic markers

to distinguish between patients with different outcome

risk. Given that genetics plays a role in many human

phenotypes, it is intuitive to hypothesize that genetic

variants can be prognostic markers in colorectal can-

cer.

A number of studies have examined the associations

of genetic variations, such as SNPs, with clinical out-

comes in colorectal cancer. While these studies focused

mostly on candidate variant, gene, or pathway analy-

ses [8–20], a small number of genome-wide association

studies (GWASs) were also performed [21–26]. These

GWASs focused on often diverse outcome measures,

identified a limited set of variants and potential genes,

and their results largely remain to be confirmed by fur-

ther studies. SNPs are the most common genetic vari-

ables; however, human genome also contains copy

number variants (CNVs; ≥ 1 kb) and insertion/deletion

variants (INDELs; < 1 kb). While analysis of copy

number alterations in tumor genomes is widely per-

formed, there are not many studies that have checked

the potential associations of germline CNVs/INDELs

with survival outcomes in colorectal cancer [27–30]. As

a result, similar to SNP studies, only a handful genes

and CNVs/INDELs have been identified as candidate

prognostic markers in colorectal cancer.

Survival studies can identify prognostic markers that

can predict the hazard over the follow-up periods [31–
33]. Normally, such markers can distinguish between

patients with different outcome risk regardless of time.

In rare cases, however, it has been shown that some

markers have different levels or types of associations

during different time-periods of the follow-up (i.e.,

time-varying associations). Such markers, therefore,

can help distinguish between patients with high and

low outcome risk during certain time-periods. For

example, in our previous colorectal cancer study, prog-

nostic associations became stronger, weaker, appeared,

or diminished over time for a set of baseline clinical

variables [34]. Similarly, we and others identified two

somatic alterations [34,35] and three genetic polymor-

phisms [24,29] that were associated with early or late

risk of disease outcomes in colorectal cancer. Knowl-

edge on such markers is surprisingly limited. This may

be because that many cohorts do not have long

follow-up times that are essential for identifying

whether a variable has constant or time-varying associ-

ations with outcomes.

This literature information indicates that further stud-

ies on genome-wide sets of SNPs, CNVs/INDELs, and

colorectal cancer outcomes are necessary to improve the

current level of knowledge. In addition, there is a need

for studies that investigate time-varying associations, as

this type of analysis provides unique insight into progno-

sis. In this study, we examined large sets of common

genetic variants (~ 4.7 million SNPs and 254 CNVs/

INDELs) and their associations with disease-specific sur-

vival and recurrence/metastasis-free survival in a colorec-

tal cancer patient cohort (n = 505 and 495, respectively)

followed up to 19 years. Our objectives were to (a) inves-

tigate the associations of genetic variants with the out-

comes, (b) examine whether any of the variants had time-

varying associations, and (c) further explore our findings

using The Cancer Genome Atlas (TCGA) datasets for

replication purposes and gene expression analyses.

2. Methods

2.1. Ethics approval

This study complied with the Declaration of Helsinki

and was approved by the Human Research Ethics

Board (HREB) of Newfoundland and Labrador (refer-

ence numbers: 2009.106; 2015.294; 2016.252). As this

is a research study with a secondary use of data,

HREB waived the consent requirement.

2.2. Patient cohort and clinical and genetic data

Patients in the Newfoundland Colorectal Cancer Regis-

try (NFCCR) cohort were diagnosed between 1999 and

2003 and followed up to 19 years [34,36–38]. The

NFCCR patient cohort has been described in other pub-

lications [34,36,37]. A total of 750 patients were col-

lected over 5 years (1999–2003). The last follow-up date

was January 2018 [34]. Clinical data were obtained from

several resources, including medical charts, electronic

medical records, Provincial Tumor Registry-NL/Dr. H.

Bliss Murphy Cancer Centre, and Newfoundland and

Labrador Center for Health Information (NLCHI)

[34,37,38]. Microsatellite instability (MSI) status was

previously identified using tumor DNAs as explained in

Woods et al. [37]. DNA samples extracted from white

blood cells were available for 539 patients at the time of

genotyping. Out of 539, patients who passed the sample

quality control measures, satisfied the inclusion criteria

[21], and had the genetic data available (SNP or CNV/

INDEL genotype data) were included in the analyses.

All patients included were Caucasians and unrelated to

each other [21].
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Genetic data examined in this study include two

datasets [21,29]. The SNP dataset, which is available

for 505 patients (Table 1), includes 4 711 309 SNPs

that qualified for analysis (genotyped SNPs = 607 365;

imputed SNPs = 4 103 944). Genetic imputation was

done using SHAPEIT (v2.r837) [39] and IMPUTE2 (v2.3.2)

[40], using the 1000 Genomes Phase 3 data [41] as the

reference panel data. The initial SNP genotype data,

inclusion/exclusion and quality control (QC) metrics,

and imputation procedures are explained in detail as

follows: The initial SNP genotype data were obtained

using the Illumina� Omni1-Quad human SNP geno-

typing platform at an outsourced commercial facility

(Centrillion Biosciences, USA) [21]. Data included

811 162 SNPs that met the following criteria: (a) SNPs

that were successfully genotyped and with a missing

rate ≤ 5%; (b) SNPs that satisfied the Hardy–Wein-

berg equilibrium (HWE; P-value > 1 9 10�04); (c)

SNPs with minor allele counts > 2; (d) in cases when

multiple SNPs shared the same genomic position,

SNPs with the rs numbers were retained; and (e) SNPs

that were on the autosomal chromosomes. PLINK v1.07

[42] was used to extract these data from the original

Table 1. Baseline characteristics of the SNP and CNV/INDEL

analysis cohorts.

Variable

SNP analysis

cohort (n = 505)

CNV/INDEL

analysis cohort

(n = 495a)

Number % Number %

Age at diagnosis

Median (range) 61.43

(20.70–

75.01)

– 61.40

(20.70–

75.01)

–

Sex

Male 307 60.79 301 60.81

Female 198 39.21 194 39.19

Tumor location

Colon 334 66.14 328 66.26

Rectum 171 33.86 167 33.74

Stage

I 93 18.42 89 17.98

II 196 38.81 193 38.99

III 166 32.87 164 33.13

IV 50 9.90 49 9.90

Histology

Nonmucinous 448 88.71 438 88.48

Mucinous 57 11.29 57 11.52

Grade

Well/moderately

differentiated

464 91.88 457 92.32

Poorly differentiated 37 7.33 34 6.87

Unknown 4 0.79 4 0.81

MSI status

MSI-L/MSS 431 85.35 421 85.05

MSI-H 53 10.50 53 10.71

Unknown 21 4.16 21 4.24

Adjuvant chemotherapy treatment

No 224 44.36 217 43.84

Yes 277 54.85 274 55.35

Unknown 4 0.79 4 0.81

Adjuvant radiotherapy treatment

No 364 72.08 355 71.72

Yes 124 24.55 123 24.85

Unknown 17 3.37 17 3.43

Follow-up time

Median (range) 13.79

(0.38–

19.00)

– 13.80

(0.38–

19.00)

–

DSS status

Death from other causes

or alive

332 65.74 323 65.25

Death from colorectal

cancer

99 19.60 99 20.00

Unknown 74 14.65 73 14.75

Death from other causes

or alive (within 5 years)

407 80.59 398 80.40

Death from colorectal

cancer (within 5 years)

62 12.28 62 12.53

Unknown (within 5 years) 36 7.13 35 7.10

Table 1. (Continued).

Variable

SNP analysis

cohort (n = 505)

CNV/INDEL

analysis cohort

(n = 495a)

Number % Number %

RMFS statusb

Recurrence or metastasis

(�)

331 72.75 322 72.20

Recurrence or metastasis

(+)

124 27.25 124 27.80

Recurrence or metastasis

(�) (within 5 years)

348 76.48 339 76.01

Recurrence or metastasis

(+) (within 5 years)

105 23.08 105 23.54

Unknown (within 5 years)c 2 0.44 2 0.45

CNV, copy number variation; DSS, disease-specific survival; INDEL,

insertion/deletion; MSI, microsatellite instability; MSI-H, microsatel-

lite instability-high; MSI-L, microsatellite instability-low; MSS,

microsatellite stable; RMFS, recurrence/metastasis-free survival;

SNP, single nucleotide polymorphism.
a

Note that all 495 patients in the CNV/INDEL analysis cohort are

also in the SNP analysis cohort with 505 patients.
b

Stage I–III patients only, total n = 455 in the SNP analysis cohort

and total n = 446 in the CNV/INDEL analysis cohort.
c

‘Unknowns’ appear because two patients had unknown survival

time. Although they experienced recurrences/metastases, we do

not know whether they had these events within the first 5 years

postdiagnosis or after that.
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datafiles. These SNP data were then used in a genetic

imputation process using the software SHAPEIT

(v2.r837) [39] and IMPUTE2 (v2.3.2) [40] (for details, see

SNP imputation; Figs S1–S3). Quality control mea-

sures were applied to variants: info scores of imputed

SNPs > 0.7, maximum probability of the imputed

genotypes > 0.9, and for all SNPs in the dataset,

minor allele frequency (MAF) ≥ 10%, missing geno-

type data rates (for SNPs and individuals) ≤ 5%, and

Hardy–Weinberg equilibrium (HWE) P-value

> 1 9 10�08. All imputed SNPs included in the statisti-

cal analyses had an info score > 0.8. For simplicity, we

refer to the genetic variants in this dataset as ‘SNPs’,

even though the genotyping platform and imputation

results contain other variant types, such as INDELs.

In addition to the outcome measures examined, the

SNP dataset largely differs from the dataset that we

used in a previous genome-wide association study [21]

(due to the imputation that allowed us to obtain geno-

types of additional variants and the use of longer

follow-up data in this study).

The second genetic dataset consists of a set of

CNVs/INDELs (Table S1) [29]. The CNV/INDEL

dataset (n = 3486) was previously obtained by our

team [29] using a computational pipeline that included

PENNCNV [43] and QUANTISNP [44] software. These anal-

yses are described in detail in Werdyani et al. [29]. In

short, MAP file and signal intensity data obtained by

the Illumina� Human Omni1_Quad_v1 genome-wide

SNP genotyping array (Log R ratio (LRR) and B

allele frequency (BAF) measures) were used as input

files to computationally predict the CNV/INDEL pro-

files using QUANTISNP [44] and PENNCNV [43] algorithms.

These algorithms are designed to detect CNVs from

the whole-genome SNP genotyping platform data

based on a hidden Markov model (HMM) [43,44].

Prediction of the CNVs/INDELs by the QUANTISNP

algorithm was performed using the signal intensity files

of each patient using default parameters [44]. To detect

the CNVs/INDELs by the PENNCNV algorithm, popula-

tion frequency of B allele (PFB) and the GC-model file

for the Illumina� Human Omni1_Quad_v1 platform

were generated based on the hg19 genome coordinates

[43]. An adjustment of genomic waviness was imple-

mented [45–47], and calls were restricted to the autoso-

mal chromosomes [48,49]. Low-quality CNV/INDEL

calls were filtered out using the QC metrics provided

by QUANTISNP and PENNCNV [50–53]. We identified

CNVs/INDELs that were called by both algorithms

(the same copy number state (CN) and overlapped at

least 50% of their sequences) using a custom Perl pro-

gram [53,54]. Of note, 84.3% of such variants had

identical start and end positions. In other cases,

overlapping variations were merged together [52].

Since detection of CNVs/INDELs in highly repetitive

sequences results in high false-positive calls (e.g., cen-

tromere and telomere regions, immunoglobulin and

olfactory receptor (OR) gene regions [43,55,56]), vari-

ants that intersected at least one bp with these DNA

regions were excluded from further analyses. Finally,

to reduce the false-positive calls, variants that over-

lapped (at least 50% of their sequences) with previ-

ously experimentally validated CNVs [57–59] (included
in the Database of Genomic Variants (DGV) [60])

were identified. These CNVs/INDELs are considered

to be most likely true variations and constituted the

final list of CNVs/INDELs that were predicted with

high confidence. DNA analysis showed a high concor-

dance rate for homozygous deletions (CN state = 0).

For further details, please see Werdyani et al. [29].

These high-confidence CNV/INDEL data were avail-

able for 495 patients (Table 1). These 495 patients

were also included in the SNP dataset cohort described

above. 254 CNVs/INDELs (Table S1) that passed fil-

tering based on having copy number state of 0 (i.e.,

homozygous deletion) in 10–90% in the patient cohort

were analyzed. We had previously examined the asso-

ciations of 106 of these CNVs/INDELs in the patient

cohort with a different outcome measure defined based

on a shorter follow-up data [29].

2.3. SNP imputation

The 1000 Genomes Phase 3 data (downloaded from

the IMPUTE2 website: https://mathgen.stats.ox.ac.uk/

impute/1000GP_Phase3.html) were used as the refer-

ence panel data. These data include 2504 individuals

and more than 80 million variants [41]. These individ-

uals were individuals from different population groups,

including Europeans. The IMPUTE2 developers recom-

mend to use this inclusive reference panel because the

imputation is often more accurate by using this panel

than other smaller panels chosen by intuition (e.g., a

panel with only Europeans; http://mathgen.stats.ox.ac.

uk/impute/impute_v2.html). The IMPUTE2 program can

automatically choose a ‘custom’ reference panel for

each individual of interest from the inclusive reference

data, and this has been proved to work in variety of

populations, including the homogeneous isolates

(http://mathgen.stats.ox.ac.uk/impute/impute_v2.html).

The data on variants in the reference panel with 2504

individuals were released in NCBI build 37 (hg19)

coordinates, which is the same version as our geno-

typed SNP data.

The methodology applied in this study includes two

major steps: phasing and imputation. Before phasing,
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genotyped SNPs were aligned to the positive DNA

strand (i.e., the same strand as in the reference data).

For unambiguous SNPs (i.e., SNPs with the allele

types A/G, A/C, T/G, or T/C), the strands were easy

to define because the alleles would be the complemen-

tary ones if the genotyped strands were opposite of the

reference strand. For example, a SNP with A/G alleles

would be on the negative strand if the alleles of the

same SNP in the reference data were T/C. As for the

ambiguous SNPs (i.e., SNPs with alleles of A/T or C/

G), similar to other studies [61,62] we made use of the

MAFs and reasoned that they would be similar

between our data and the data of Europeans in the

reference panel. Those ambiguous SNPs with MAFs

larger or equal to 40% were excluded because it is dif-

ficult to determine their strands based on the MAF.

The DNA strand of the ambiguous SNPs with MAFs

< 40% was estimated by comparing their allele types

to the data of Europeans in the reference data. If the

minor alleles between the genotype data and the data

of Europeans in the reference panel were the same,

these SNPs were assumed to be on the same DNA

strand. When the minor alleles were complementary to

each other, then the ambiguous SNPs in the study

data were assumed to be on the negative strand; these

SNPs were then flipped to the positive strand by using

PLINK (v1.07) [42]. Last, SNPs with different allele

types compared to the reference SNPs and those SNPs

existed in our data while not listed in the reference

panel were excluded. A total of 7244 SNPs were

excluded during this step. In the end, 803 918 SNPs

remained in the dataset for imputation.

The software SHAPEIT (v2.r837) [39] and IMPUTE2

(v2.3.2) [40] were used for phasing and imputation

steps, respectively. Genotype dataset was first sepa-

rated for each chromosome using PLINK (v1.07) [42],

and then, phasing was performed for each chromo-

some as recommended in the SHAPEIT tutorial (http://

mathgen.stats.ox.ac.uk/genetics_software/shapeit/shape

it.html). During this step, the default or recommended

parameters were used; --states parameter was set as its

default value (100) and the effective size of 11 418 was

used, which is the effective size recommended for

Europeans by the developers of SHAPEIT. The same

value of effective size has been used in the genetically

isolated Finland population for phasing [63]. SHAPEIT

has been reported to be able to phase populations with

a wide spectrum of relatedness, including isolated pop-

ulations [64].

The phased data for each chromosome were then

used as the input for imputation. To do so, first, data

from each chromosome were split into small segments

as suggested by the tutorial provided by the IMPUTE2

program’s official website (https://mathgen.stats.ox.ac.

uk/impute/impute_v2.html#ex2). Imputation requires a

number of genotyped SNPs/segments to construct the

possible haplotypes (https://mathgen.stats.ox.ac.uk/

impute/impute2_overview.html; https://genome.sph.

umich.edu/wiki/IMPUTE2:_1000_Genomes_Imputa

tion_Cookbook). As recommended (http://mathgen.sta

ts.ox.ac.uk/impute/impute_v2.html), in this study, each

chromosome was initially split into 5 Mb segments

starting from the telomeres at the p-arm of each chro-

mosome. Each segment should contain at least 200

SNPs for imputation, as suggested by other researchers

(https://genome.sph.umich.edu/wiki/IMPUTE2:_1000_

Genomes_Imputation_Cookbook). If this was not the

case, then such segments were merged with a nearby

(i.e., preceding) segment on the same chromosomal

arm. Note that telomere and centromere segments may

contain < 200 SNPs as genotyping these genomic

regions are problematic because of their repetitive

sequences [65]. As per the segments that overlap with

the centromeres, we made sure that the boundaries of

the segments on the p-arm were extended to the end

of each of the centromere. This also means that the

start position of the next segment on the q-arm was

right after the end of the centromere. If these latter

segments included < 200 SNPs, they were merged with

the successive segment on the q-arm. The p-arms of

chr 13, 14, 15, 21, and 22 did not have enough

genotyped SNPs (n = 4 for chr 21 and n = 0 for other

chrs)—so no imputation have been performed for these

chromosomal arms. In the end, 548 final chromosomal

segments from 22 chromosomes were generated. After

this step, –int parameter was used in IMPUTE2 to con-

duct the imputations within each specific chromosomal

segment (e.g., -int 5 000 001 10 000 000 defines a seg-

ment between 5 000 001 bp and 10 000 000 bp). As for

segments that were larger than 7 Mb (e.g., merged seg-

ments), an additional command -allow_large_regions

was used for imputation. The parameter –Ne was set as

20 000 because IMPUTE2 developers recommend this

number (https://mathgen.stats.ox.ac.uk/impute/impute_

v2.html#ex2). Other parameters were set at default

values. Also, to achieve high-quality imputation for

SNPs at ends of each segment, by default a buffer

region of 250 Kb was automatically assigned to ends of

the segments.

After imputation, a number of segment-specific out-

put files were generated for each chromosome. The

data in these files were then combined together to cre-

ate files (i.e., chromosome output files) that contain

the imputation data per each chromosome.

The data in the chromosome output file were then

converted to PLINK PED files using GTOOL (v0.7.5)
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(http://www.well.ox.ac.uk/~cfreeman/software/gwas/

gtool.html). In this process, post-QC measures were

also implemented. For example, SNPs with an info

score > 0.7 [62,66,67] and a maximum probability of

the imputed genotypes larger than 90% [68] were

included in the final PED files. Info score is an impor-

tant indicator used to estimate imputation certainty.

The closer this score is to 1.0, the higher the certainty

about the imputation (http://mathgen.stats.ox.ac.uk/

impute/impute_v2.html) [69]. The maximum probabil-

ity of the imputed genotypes of a given SNP defines

the most possible genotype of that SNP. For example,

a SNP with the allele type of A/G can have three pos-

sible genotypes AA, AG, and GG. After imputation,

each genotype in an individual is given a ‘probability’

value by IMPUTE2, say 0.05, 0.08, and 0.87. The maxi-

mum probability for the SNP genotype in this case is

0.87 (87%), which means the most likely genotype of

the individual is GG.

More than 38 million variants were imputed with an

info score > 0. The range of the concordance rate of

imputations was 94–99.9% with a median of 98.7%.

The concordance rate was estimated by comparing the

genotypes of the known variants to their imputed

genotypes and was done automatically by the IMPUTE2

program as part of its imputation process. In addition,

twenty-two ambiguous SNPs that were excluded prior

to phasing (one SNP per chromosome) were randomly

selected and the concordance between the real and

imputed genotypes was examined. The result of this

examination showed that only 37 discrepancies were

found among the 11 110 genotypes (22 SNPs * 505

individuals), which accounts for a concordance rate of

99.7%. Note that in the dataset, the genotyped vari-

ants would have an info score and probability of 1.0.

Thus, at the end the total number of variants (includ-

ing genotyped ones and imputed ones) satisfying the

info score and probability thresholds was 13 974 610.

The distribution of info scores for all imputed vari-

ants is shown in Fig. S1. Most variants had either very

low or very high info scores. Fig. S2 shows the rela-

tionship between the average info score and the MAF

of the variants. Among the ~ 38 million imputed vari-

ants, the majority of the variants were quite rare

(MAFs < 0.02), whereas ~ 6.3 million variants (~ 1/6)

were common (i.e., had MAF ≥ 0.05) (Fig. S2). The

info scores increased as the MAFs increased, as

expected [62], and were particularly low for the vari-

ants with MAFs < 0.02. The average info scores for

the rest of the variants (MAFs ≥ 0.02) were high

(> 0.8) (Fig. S2). As shown in Fig. S3, the majority of

the common SNPs (MAFs ≥ 0.05) had very high info

scores, which means these variants had high

imputation quality. To be more specific about this

point, 6 163 520 common and imputed variants had

an info score > 0.7, which accounts for 97.9% of all

variants with MAF ≥ 0.05. By comparing Figs S1 and

S3, we can say that almost all variants with low info

scores were variants with MAF < 0.05 (the bars repre-

senting the number of variants at the low info sections

of Fig. S1 almost disappeared in Fig. S3). In this

study, we limit our analyses to 4 711 309 SNPs that

satisfied the inclusion criteria (see Patient cohort and

clinical and genetic data).

2.4. Statistical analyses

2.4.1. Correlation among the variables

LD r2 values were calculated for genetic variants using

PLINK v1.07 [42]. Pair-wise Pearson correlation coeffi-

cient (r) values were calculated for baseline variables

(Table S2), which suggested that no collinearity

(r < 0.8) existed among these variables.

2.4.2. Outcome measures

The outcome measures are disease-specific survival

(DSS) and recurrence/metastasis-free survival (RMFS).

Endpoint events in these outcome measures are death

from colorectal cancer and local recurrence or distant

metastasis, respectively. DSS and RMFS times are cal-

culated as the times from the date of diagnosis till the

date of the occurrence/diagnosis of these events or the

date of last alive contact. DSS was examined for stage

I-IV patients, and RMFS was analyzed for stage I-III

patients only (Table 1).

2.4.3. Survival analysis

Univariate Cox models were fitted for 4 711 309 SNPs

for both outcome measures separately. The propor-

tional hazards (PH) assumption was tested under the

univariate Cox models using the cox.zph function of

the survival package [70] in R [71]. SNPs that satisfied

the PH assumption (P-value of the PH assumption test

≥ 0.05) were then checked for their Cox regression P-

values. Those with P-values < 5 9 10�06 were retained

for multivariate analysis (Figs S4 and S5). On the

other hand, SNPs that violated the PH assumption

(i.e., variants with possible time-varying associations)

were refitted in univariate piece-wise/change-point Cox

PH regression models [72,73] with a time point of

5 years as the cutoff time point. Five years was chosen

as the time point to help practically fit a large number
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of SNPs that violate the PH assumption while also

providing a clinically meaningful time point. PH

assumption was then checked for these SNPs before

and after the 5 years cutoff time point. Those that sat-

isfied the PH assumption at both time intervals and

had Cox regression P-values < 5 9 10�06 before and/

or after 5 years postdiagnosis were selected for multi-

variate analysis (Table S3). Select Manhattan, regio-

nal, and QQ plots are depicted in Figs S4–S9. The

genomic regions/loci with independent association sig-

nals are defined as � 500 kb of the identified variants

with the smallest P-values (i.e., index variant), while

also considering the LD information (other identified

variants in these regions should have r2 ≥ 0.8 with the

index variants).

Covariates used to adjust the associations of SNPs

in multivariate models were identified through the pro-

cess of baseline model construction. In short, baseline

models were constructed using the backward selection

method (considering the clinical variables shown in

Table 1) as described in Yu et al. [34], followed by

force entering the adjuvant chemotherapy and adju-

vant radiotherapy statuses. During the process of base-

line model construction, covariates that violated the

PH assumption were assigned proper cutoff time

points, which ensured that they satisfied the PH

assumption within the time intervals defined by these

cutoff time points. The method to identify the cutoff

time points for variables that violate the PH assump-

tion in Yu et al. [34] was used. In short, the proper

cutoff time point for a given clinical variable that vio-

lated the proportional hazards (PH) assumption was

identified during the backward selection procedure, as

follows: (a) Time points (ranged from 0.5 years to

18.5 years, with increments of 0.5 years) were used for

the variable to fit Cox models; (b) the log partial likeli-

hood values of models for each time point were

obtained; and (c) the PH assumption for the variable

before and after the cutoff time points in these models

was checked. The proper cutoff time point was deter-

mined to be the one that makes (a) the corresponding

model with the largest log partial likelihood value and

(b) the PH assumption being satisfied both before and

after the cutoff time point. Variables that were not sig-

nificant in the models (Cox regression P-values > 0.05)

were removed one by one during the selection process.

Final baseline models included significant clinical vari-

ables (Cox regression P-value < 0.05) as well as the

force-entered treatment related covariates, which also

satisfied the PH assumption (P-value of PH assump-

tion test ≥ 0.05). For further details about this

approach, please see Yu et al. [34]. In the end, tumor

location (with a cutoff time point of 6 years), disease

stage, microsatellite instability (MSI) status, adjuvant

chemotherapy, and adjuvant radiotherapy (with a cut-

off time point of 7 years) were remained in the final

baseline model for DSS. For RMFS analysis, tumor

location (with a cutoff time point of 3 years), disease

stage, and adjuvant chemotherapy and radiotherapy

treatments were included in the final baseline model.

These baseline variables were then used as covariates

in multivariate analysis adjusting the association of

variants with survival outcomes. Principal component

analysis (PCA) in the patient cohort did not indicate

population stratification (the top principal component

accounted for merely 0.3% of the total variance);

hence, principal components obtained from the genetic

data were not included as covariates. At the time of

fitting the multivariate models (i.e., when SNPs were

entered into the baseline model one by one), the PH

assumption was checked again for all variables in these

models, including the tested genetic variants and clini-

cal covariates. If variants violated the PH assumption,

then they were analyzed in refitted multivariate Cox

models with 5 years entered as the cutoff time point.

If the covariates violated the PH assumption, then

their proper cutoff point(s) were identified/re-

identified, followed by refitting the multivariate models

as described by Yu et al. [34] (note that none of such

models included variants that reached the genome-

wide significance level). The final multivariate Cox

models are the ones with the PH assumption satisfied

for all variables. Hazard ratios (HRs) and 95% confi-

dence intervals (CIs) were obtained from the multivari-

ate Cox models.

SNPs in this study were examined under additive,

dominant, and recessive genetic models. We included

recessive model in order not to miss potential associa-

tions; however, results should be taken with caution

because of the rarity of the homozygous genotypes.

Variants with Cox regression P-values < 5 9 10�08 (ei-

ther during the entire follow-up [i.e., with no time-

varying associations] or before and/or after 5 years

postdiagnosis [i.e., with time-varying associations])

were considered to be the variants that were signifi-

cantly associated with the survival outcome.

Statistical analysis of the CNV/INDEL dataset fol-

lowed the same analysis procedure as the SNP dataset.

During the statistical analyses, patients with homozy-

gous deletions were compared with the patients with

other copy number states (i.e., ≥ 1 copy of the vari-

ant).

The empirical power (based on 10 000 simulation

replicates) was calculated using the SURVSNP package

[74] in R [71]. This study has at least 80% power to

detect effect sizes of 3.2, 3.6, and 18.4 (in DSS
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analysis) and 3.0, 3.4, and 16.8 (in RMFS analysis)

under the additive, dominant, and recessive models,

respectively, for variants with a MAF of 10%. Gener-

ally, increased power is expected as MAF increases.

We expect the same power for the first interval (i.e.,

the first 5 years postdiagnosis), but less power for the

second interval, as the number of events is less in that

time period.

Statistical analyses were performed using R ver. 3.5.0

[71] unless otherwise specified. Kaplan–Meier curves,

Manhattan, and QQ plots were generated using the

SURVIVAL [70] and QQMAN [75] packages in R [71],

respectively. Regional plots were created using soft-

ware LOCUSZOOM [76].

2.5. Validating associations in the TCGA cohort

White (excluding Hispanics/Latinos) colorectal cancer

patients with primary tumors were selected. Clinical

and outcome data were downloaded from the Geno-

mic Data Commons (GDC) data portal [77] (https://

portal.gdc.cancer.gov/; nationwidechildrens.org_clini-

cal_patient_coad.txt, nationwidechildrens.org_clinical_-

patient_read.txt, nationwidechildrens.org_auxiliary_-

coad.txt, nationwidechildrens.org_auxiliary_read.txt)

(on Dec 13 – 14, 2020) and a study published in 2018

[78], respectively. Germline genetic data of patients

(obtained from blood) were obtained from birdseed

files in the GDC Legacy Archive [77] (on Nov 16,

2020). High-confidence genotype calls (birdseed confi-

dence value < 0.1) of SNPs were extracted, and those

genotypes with low-confidence calls were set as ‘miss-

ing’. As a result, clinical and genetic data were avail-

able for 266 patients. Among the 266 patients, four

were removed because they either had a high heterozy-

gosity rate or were possible relatives, population out-

liers, or non-European. The final TCGA cohort

consisted of 262 unrelated colorectal cancer patients

(Table S4). These data and procedures are described in

detail as follows: Germline genetic data (Affymetrix

genome-wide human array 6.0) of colorectal cancer

patients (COAD and READ) were obtained from bird-

seed files (one file per patient) from the GDC Legacy

Archive (https://portal.gdc.cancer.gov/legacy-archive/

search/f). SNP data from different birdseed files were

combined and converted to a single plink PED/MAP

file through the following steps [79]: (a) Genotyping

calls (in the format of allele counts 0, 1, or 2) from

birdseed files were first assigned as ‘missing’ for low-

confidence SNPs (confidence value ≥ 0.1); (b) informa-

tion of SNPs’ genotyping calls from birdseed files was

then combined; (c) probe IDs were replaced with rs

numbers for all SNPs based on the information in the

annotation file of the Affymetrix genome-wide human

SNP array 6.0; (d) duplicated SNPs (n = 2) were

removed (the one with more missing data); (e) dupli-

cated samples (n = 4) were removed (the one with

more missing data); (f) allele counts were converted to

genotypes composed of A, T, C, and G; (g) additional

required information was added to form the final

PED-formatted file (sex information was derived from

GDC clinical data; phenotype was assigned to 2 [i.e.,

affected; colorectal cancer patients]; paternal and

maternal IDs were assigned to 0; and family IDs were

assigned the same as individual IDs); and (h) the MAP

file was constructed based on the Affymetrix annota-

tion file. In the end, 266 patients and 906 598 SNPs

were included in the PLINK PED/MAP file. In this

266 patients cohort, patients were excluded if they (a)

have any mismatched sex information (between sex

information in the clinical data and the sex informa-

tion imputed by PLINK from genetic data; n = 0); (b)

have genotyping call rate < 5% (n = 0); (c) have a high

heterozygosity rate (out of 6 SD) (n = 1); (d) are dupli-

cations or possible relatives (identity-by-state [IBS]

PI_HAT score > 0.125) [21] (n = 1); (e) are population

outliers (the minimum Z score of individual’s IBS dis-

tances to five nearest neighbors < �4) [42,80] (n = 1);

(f) are possible non-European descendants (comparing

to the 1000 Genomes phase3 data in the multidimen-

sional scaling [MDS] plot which was created based on

the usage of the --genome and --mds-plot flags in

PLINK1.9 [81]) (n = 1). After these steps, 262 colorectal

cancer patients remained in the cohort.

The genetic data of the 262 patients were then used

for principal component analysis (PCA) using PLINK1.9

[81]. SNPs used for PCA were those that (a) locate on

autosomal chromosomes, (b) have MAFs ≥ 1%, (c)

have missing call rates < 5%, (d) have HWE P-

values ≥ 1 9 10�06, (e) locate outside the long-LD

regions [82], and (f) are independent SNPs (SNPs

remained after pruning; pair-wise LD r2 < 0.2) [83]. In

the end, 115 051 SNPs of the 262 patients were used

for PCA. The top PC (Fig. S10) accounts for 0.9% of

total variance.

Genotypes for the SNP identified in the patient

cohort (WBP11-rs7314075) were not available in this

cohort, but genotype data were available for six SNPs

(rs11056174, rs2041909, rs2041908, rs6488711,

rs2241221, and rs11835363) that are in high LD with

it (r2 > 0.8 based on the European data (EUR) in

Haploreg 4.1 database [84]). Genotype data of these

SNPs were used to examine their associations with

DSS in multivariate Cox models with disease stage,

tumor location, MSI status, and the top principal

component as the covariates (Fig. S10). In all Cox
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models, PH assumption was checked and satisfied for

both clinical and genetic variables.

Among the 12 SNPs in three loci identified under

the recessive genetic model in DSS analysis and their

28 high-LD SNPs, one identified SNP rs12757197 (also

named as kgp2690683 in the NFCCR cohort) and

three high-LD SNPs (rs358347, rs357167, and

rs165269) were included in the TCGA dataset. How-

ever, these SNPs either had no genotypes with double

minor alleles (rs12757197) or had no reliable effect

estimations (rs358347, rs357167, and rs165269 had ‘in-

finity’ appeared in their upper limit of the 95% confi-

dence interval) in the analysis using the TCGA data.

2.6. Examining the associations of CMS with

SNPs in high LD with rs7314075 and WBP11

expression levels in the TCGA dataset

As per the recommendation of one of the reviewers,

we also checked the associations between the geno-

types of the SNPs in high LD with WBP11-rs7314075

as well as the WBP11 tumor gene expression levels

with tumor consensus molecular subtypes (CMS) in

the TCGA dataset. WBP11 expression data were

downloaded from the UCSC Xena [85], and tumor

CMS information was obtained from a study pub-

lished in 2015 [86]. Fisher’s exact test was utilized for

testing the association of SNP genotypes with the

CMS classifications, and Kruskal–Wallis test was used

to examine the associations of WBP11 gene expression

levels and CMS classifications (ANOVA was not used

because the normality assumption was violated). When

a significant association was detected by the Kruskal–
Wallis test, further pair-wise comparison was per-

formed using Dunn’s test to see which two CMS

groups have different WBP11 expression levels.

2.7. Bioinformatics analyses

The functional consequences of the SNPs identified

(and SNPs that are in high LD with them according to

the Haploreg database v4.1 [84], based on the European

population) were checked in the RegulomeDB database

(v2.0) [87] and GTEx (data release v8) [88] (GTEx had

data for colon, but not rectum tissues). Expression

levels of genes in tumors and adjacent normal tissues

(noted as ‘solid tissue normal’ in TCGA) were explored

in UCSC Xena [85] using the colorectal tissue data

from TCGA [89]. The gnomAD database [90] was used

to search for SNP frequencies in different populations.

Official gene names and basic definitions of gene func-

tions were retrieved from Gene Entrez [91].

3. Results

3.1. Associations between SNPs and survival

outcomes

In this study, we examined 505 and 495 Caucasian

patients from Newfoundland, Canada, in the SNP and

CNV analysis parts, respectively. Patients were fol-

lowed up to 19 years. During this period, 99 patients

had died from colorectal cancer and 124 patients had

experienced recurrence and/or metastasis (Table 1).

Associations (P < 5910�08) that are detected for

disease-specific survival (DSS) and recurrence/

metastasis-free survival (RMFS) in multivariable anal-

yses are shown in Table 2 and Tables S5 and S6.

3.1.1. Associations with constant HRs

After adjustment for clinical covariates, one common

SNP that locates in an intron of WBP11 (rs7314075)

Table 2. rs7314075 that is significantly associated with disease-specific survival (DSS) in multivariate analysis under the dominant and

additive genetic models.

Chr Pos

Minor/major

allele MAF

Variant

type

Info

score

Genetic

model HR (95% CI)a P-value

P-value

of the PH

assumption

test

Located

regionb

12 14945417 A/G 0.14 Imputed 0.964 Dominant 3.36 (2.18, 5.16) 3.27 9 10�8 0.96 Intron of

WBP11Additive 2.65 (1.88, 3.75) 3.24 9 10�8 0.63

Models are adjusted for MSI status, disease stage, tumor location (6 years as the cutoff time point), adjuvant chemotherapy, and radiother-

apy statuses (7 years as the cutoff time point for adjuvant radiotherapy).

Chr, chromosome; CI, confidence interval; HR, hazard ratio; MAF, minor allele frequency; PH, proportional hazard; Pos, position.
a

Hazard ratio was estimated under the dominant genetic model for [AA+AB] vs BB and under the additive genetic model for AA vs AB vs

BB, where A is the minor allele and B is the major allele.
b

Gene annotation is obtained from the UCSC database [96] (‘UCSC genes’ from the UCSC browser [GRCh37/hg19]).
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was significantly associated with the risk of death from

colorectal cancer under both dominant (HR = 3.36; P-

value = 3.27 9 10�08) and additive (HR = 2.65; P-

value = 3.24 9 10�08) genetic models (Table 2). Under

the dominant genetic model (Fig. 1), patients with AA

or AG genotype had more than three times of the risk

of death from colorectal cancer compared to patients

with GG genotype. Under the additive genetic model,

in line with the results of the dominant genetic model,

risk of death from colorectal cancer increased more

than 1.5 folds as per A allele (i.e., the minor allele).

With regard to SNPs examined under the dominant

and additive models in the RMFS analysis, none of

them reached significant P-values in the multivariate

analysis. Top SNPs with suggestive associations for

these genetic models are shown in Table S7.

Under the recessive genetic model, associations were

detected in multivariate analyses for 13 genomic

regions (a total of 12 SNPs from three genomic loci in

DSS and 56 SNPs from 10 loci in RMFS analyses)

that passed the genome-wide significance level of

5 9 10�08 (P-values 10�08–10�12) (Tables S5 and S6).

Some of these variants were located in genes (Tables

S5 and S6). Since many of these associations included

small numbers of minor allele homozygous genotypes,

these results should be approached with caution.

3.1.2. Time-varying associations

Interestingly, three variants from two different geno-

mic loci (chromosomes 2 and 12: rs200143895,

rs11064732, rs817090) had time-varying associations

with RMFS under the recessive model after adjust-

ment for clinical covariates. These variants were asso-

ciated with the risk of recurrence/metastasis only after

5 years postdiagnosis (Table S6).

No SNPs with time-varying associations were

detected in other models examined in multivariate

analysis.

3.2. Examining the association of WBP11-

rs7314075 with DSS in the TCGA cohort

WBP11-rs7304075 itself was not included in the

TCGA genetic data, but there were six SNPs (Table 3)

that were in high linkage disequilibrium (LD)

(r2 > 0.8) with it in this dataset. These SNPs were ana-

lyzed for their associations with DSS in the TCGA

colorectal cancer cohort. Four SNPs (rs11056174,

rs2041909, rs6488711, and rs2241221) were signifi-

cantly associated with the risk of death from colorectal

cancer under both dominant and additive genetic mod-

els (adjusted for tumor location, disease stage, MSI

status, and the top principal component) (Table 3).

Consistent with the results obtained in our patient

cohort (Table 2), genotypes containing the minor alle-

les of these SNPs were associated with an increased

risk of outcome in the TCGA patient cohort

(HRs = 2.93–3.00 under the dominant genetic model;

HR–2.32–2.39 under the additive model) (Table 3).

3.3. Functional roles of SNPs

We explored the potential functional features of

WBP11-rs7314075 and its highly linked SNPs. Accord-

ing to Haplogreg [84], there were 38 SNPs that were

highly linked with the WBP11-rs7314075. Two of these

highly linked SNPs (rs2241221 and rs11056174) were

cis-eQTLs (i.e., located within � 1 Mb region of the

transcription start sites of the associated genes) accord-

ing to RegulomeDB [87] (Table 4). These SNPs were

associated with the expression level of ERP27 in

monocytes. Comparison of gene expression levels using

the TCGA data showed that the expression levels of

ERP27 and WBP11 were higher in the colon and rec-

tal tumors than in adjacent normal tissues (the ‘solid

tissue normal’ in TCGA data) (Fig. 2 and Fig. S11).

The three variants with time-varying associations

and their high-LD SNPs were also examined, but none

of them were found to be eQTLs. Other eQTLs

Fig. 1. Kaplan–Meier curves of rs7314075 in the disease-specific

survival (DSS) analysis under the dominant genetic model. The P-

value of the log-rank test is 2 9 10�06.
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identified in the recessive model analyses are shown in

Table S8.

3.4. Examining the associations of high-LD SNP

genotypes and WBP11 expression levels with

CMS in the TCGA dataset

A nominal association was detected between rs2241221

and CMS (Fisher’s exact test P-value = 0.052). Addi-

tionally, a significant association was found between

WBP11 expression levels and CMS (Kruskal–Wallis

test P-value = 9.66 9 10�07). Pair-wise comparisons

further showed that the expression levels of WBP11

were different between CMS1, CMS2, and CMS4 in

the TCGA dataset (Table S9).

3.5. Associations between CNVs/INDELs and

survival outcomes

None of the CNVs/INDELs reached the P-value

threshold of 5 9 10�06 in the univariate analyses,

therefore, were not selected for multivariable analyses.

We show the top three CNVs/INDELs identified in

the DSS and RMFS analyses in Table S10.

4. Discussion

We investigated the associations of a genome-wide set

of common SNPs and 254 CNVs/INDELs with time to

death from colorectal cancer (DSS) and time to recur-

rence/metastasis (RMFS) in a colorectal cancer patient

cohort with a long follow-up. As a result, we identified

one common SNP, WBP11-rs7314075, that was signifi-

cantly associated with DSS when adjusted for clinical

factors (3.27 9 10�08 for dominant model, and

3.24 9 10�08 for additive model). A set of highly linked

SNPs with WBP11-rs7314075 were also associated with

DSS in the TCGA patient cohort. This is one of the

first replicated GWAS findings in colorectal cancer.

This variant and the SNPs that are in high LD with

them have not been reported in other GWASs [21–26]
and the candidate gene/pathway studies examining the

Table 3. Associations between SNPs in high LD with rs7314075 and disease-specific survival (DSS) in multivariate analysis in the TCGA

dataset under the dominant and additive genetic models.

Genetic model SNP Chr Pos Minor/major allele MAF HR (95% CI)a P-value

P-value of the PH

assumption test

Dominant rs11056174 12 14909977 T/C 0.14 2.94 (1.20, 7.20) 0.018 0.56

rs2041909 12 14915409 C/T 0.14 3.00 (1.23, 7.32) 0.016 0.58

rs2041908 12 14916150 G/A 0.14 2.32 (0.96, 5.65) 0.063 0.73

rs6488711 12 14933216 T/C 0.14 2.93 (1.20, 7.17) 0.018 0.56

rs2241221 12 14959391 C/T 0.16 2.97 (1.23, 7.16) 0.015 0.47

rs11835363 12 14982700 C/T 0.16 2.42 (1.00, 5.88) 0.050 0.23

Additive rs11056174 12 14909977 T/C 0.14 2.35 (1.05, 5.29) 0.038 0.81

rs2041909 12 14915409 C/T 0.14 2.38 (1.06, 5.32) 0.035 0.85

rs2041908 12 14916150 G/A 0.14 1.96 (0.87, 4.44) 0.106 0.92

rs6488711 12 14933216 T/C 0.14 2.32 (1.03, 5.20) 0.041 0.79

rs2241221 12 14959391 C/T 0.16 2.39 (1.08, 5.31) 0.032 0.72

rs11835363 12 14982700 C/T 0.16 2.01 (0.90, 4.50) 0.091 0.39

Models are adjusted for MSI status, disease stage, tumor location, and the top principal component. Bolded values are P-values < 0.05, indi-

cating significant associations between variants and DSS.

Chr, chromosome; CI, confidence interval; HR, hazard ratio; MAF, minor allele frequency; PH, proportional hazard; Pos, position.
a

Hazard ratio was estimated under the dominant genetic model for [AA+AB] vs BB and under the additive genetic model for AA vs AB vs

BB, where A is the minor allele and B is the major allele.

Table 4. Variants that are in high LD with WBP11-rs7314075 that

are eQTLs.

Outcome—

genetic

model rs ID

eQTL-associated

gene (tissue)—

RegulomeDBa

eQTL-associated

gene (tissue)—

GTExa

DSS-

dominant/

additive

rs2241221 FLJ32115/ERP27

(monocyte)

–

DSS-

dominant/

additive

rs11056174 FLJ32115/ERP27

(monocyte)

–

DSS, disease-specific survival; eQTL, expression quantitative trait

locus; SNP, single nucleotide polymorphism.
a

Variants that are in high LD with WBP11-rs7314075 (retrieved

from Haploreg [84]) were explored in RegulomeDB [87] and GTEx

[88]. Note that GTEx data were for colon tissue, as it has no data

for rectal tissue. The eQTLs are all cis-eQTLs that locate within

� 1 Mb of the transcription start sites of the genes shown in the

table.

3339Molecular Oncology 15 (2021) 3329–3347 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

Y. Yu et al. Genetic prognostic markers in colorectal cancer



colorectal cancer outcomes (based on the dbCPCO

database [92]). Hence, these SNPs are novel candidate

prognostic markers in colorectal cancer. In addition, we

also identified fifteen genomic loci that were associated

with clinical outcomes under the recessive model and

they require validation in other independent cohorts.

Interestingly, three variants in two genomic loci showed

time-varying associations; they predicted the outcome

risk after 5 years, but not prior to this time point (i.e.,

candidate markers of late local/distant recurrent dis-

ease). To our knowledge, these variants are the first

variants that can predict late recurrent disease in col-

orectal cancer. On the other hand, in contrast to SNPs,

there were no associations of common CNVs/INDELs

with the clinical outcomes examined. To our knowl-

edge, it is one of the few GWASs examining colorectal

cancer outcomes, the first GWAS that examines the

germline sets of both SNP and CNVs/INDELs in the

same patient cohort, and the most comprehensive study

examining the time-varying associations of genetic

markers with clinical outcomes in colorectal cancer.

Overall, with its comprehensive and unique study

design, analysis, and results, this study significantly

advances the prognostic research in colorectal cancer

and expands the knowledge on the relationship of

genetic variants with patient outcomes.

Fig. 2. Expression level of WBP11 in colorectal tumors and normal tissues. Analysis was done in UCSC Xena [85] using the GDC TCGA

COAD and READ data. In both datasets, primary tumors and adjacent normal tissues (noted as ‘solid tissue normal’ in TCGA data) were

selected (recurrent and metastatic tumors were excluded). Then, only tumors and normal tissues with their anatomical sites noted as colon

(in COAD) and rectum and rectosigmoid junction (in READ) were analyzed. (A) WBP11 expression in colon tumors and normal tissues from

the TCGA COAD cohort; (B) WBP11 expression in rectal tumors and normal tissues from the TCGA READ cohort. Expression of WBP11 is

significantly higher in colon and rectum tumors compared to normal tissues. The number of patients in the colon and rectum tumor

datasets is larger than those in the normal tissue datasets. This may explain why the gene expression levels in tumors have a higher

variance compared to that in the normal tissues.
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4.1. Associations with constant HRs (i.e., with

proportional hazards)

One common SNP (rs7314075) was associated with

DSS under both dominant and additive genetic mod-

els. Further investigations in the TCGA (COAD and

READ) patient dataset strengthened our confidence in

this association. Rs7314075 has a MAF of 14% in the

patient cohort and locates in the 8th intron of WBP11.

WBP11 encodes a protein that is involved in mRNA

splicing [93]. Interestingly, a study on gastric cancer

found that inhibiting WBP11 expression results in the

suppression of b-catenin and thus suppression of pro-

liferation and migration of tumor cells [94]. b-catenin
is a key component of WNT signaling pathway, which

is involved in tumorigenesis and disease progress in

colorectal cancer [95]. In line with the findings in gas-

tric cancer [94], analysis of the TCGA data showed

that the expression levels of WBP11 in colon and rec-

tum tumors were higher than in adjacent normal tis-

sues. Also, the tumor WBP11 expression levels were

associated with CMS in the TCGA dataset, which is a

gene expression-based classification system and has

been reported to have associations with outcomes in

colorectal cancer [86]. These findings suggest a possible

role of WBP11 in colorectal cancer that needs to be

examined further. According to RegulomeDB [87],

there are two SNPs (that are in high LD with

rs7314075) that are annotated as eQTLs in monocytes:

rs2241221 and rs11056174. Interestingly, for both

eQTLs, the target gene is identified as FLJ32115/

ERP27. ERP27 codes for an endoplasmic reticulum

protein. An analysis of the TCGA data showed that,

similar to WBP11, this gene has higher expression

levels in colorectal tumors compared to nontumor

samples (Fig. S11). Overall, findings by this study and

existing literature suggest a possible biological relation-

ship of WBP11 with disease outcomes in colorectal

cancer, and the ERP27 gene can be an interest for

future studies.

The remaining associations with DSS and RMFS

were detected under the recessive genetic model and

included variants from three and 10 genomic loci,

respectively. While genotypes that are associated with

outcomes are relatively rare, these SNPs/loci are worth

examining in future studies with larger cohort sizes.

4.2. Time-varying associations

Variants in two separate genomic regions were identi-

fied to have time-varying associations (i.e., nonpropor-

tional hazards) in the RMFS analysis. These genetic

markers were able to distinguish between patients with

different outcome risk in the long term (after 5 years

postdiagnosis). Minor allele homozygous genotypes of

these SNPs predicted shorter RMFS times. According

to the gnomAD database [90], the MAF of one of

these SNPs (rs817090) is much higher in the African

(30%) and Ashkenazi Jewish (18%) populations than

Europeans. Therefore, it is possible that this SNP may

predict the outcome risk of a higher number of col-

orectal cancer patients from these populations. All

three variants are located in intergenic regions, and

according to RegulomeDB [87] and GTEx [88], there

is no strong evidence supporting potential regulatory

functions. Similar results were obtained for the SNPs

that are in high LD with them. These findings suggest

that further studies are needed to elucidate the biologi-

cal mechanisms that can explain these SNPs’ associa-

tions with the recurrent colorectal cancer in the long

term.

Our study significantly contributes to the scientific

knowledge on prognostic markers with time-varying

associations. This kind of markers are understudied in

colorectal cancer [24,29,34,35]. Since such variables

may be missed by traditional analyses, application of

appropriate statistical methods, as we have done in

this study, is important to detect these variants. Addi-

tionally, such markers can provide unique clinical

information (e.g., the time-periods of high outcome

risk), they can be quite useful in the clinic management

of patients. Research into variants with time-varying

associations, therefore, should be encouraged. Should

the time-varying associations we detected be replicated

in independent cohorts, these markers may be used to

predict the colorectal cancer patients with a risk of

recurrent disease after 5 years. Since clinic surveillance

of patients for disease outcomes normally does not

continue beyond the first 5 years, such information

can be important to identify the patients who have

high risk in the long term. This in turn can facilitate

effective surveillance and clinical management of the

patients at risk, with an anticipated improvement of

their long-term disease outcomes. We hope that our

study will inspire more studies specifically looking for

this clinically important type of prognostic markers.

4.3. Strengths and limitations

This study included common genetic variants, leaving

rare variants to be investigated by further studies. We

report associations, which are not the same as causa-

tion—this should be kept in mind while interpreting

our results. We may have missed associations of rare

variants and rare genotypes (especially in recessive

genetic model analyses) or associations with small
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effects. Also, while we used a conservative P-value

threshold to control type I errors, we cannot rule out

the possibility of false-positive findings. Therefore,

findings of this study need to be replicated in other

colorectal cancer cohorts prior to any clinic utility

can be established. In this study, 5 years was chosen

as the cutoff time point in survival analysis of the

variants that violated the PH assumption. This time

point helps define simple and clinically meaningful

models. However, there can be variants that have

their cutoff time points other than 5 years; such vari-

ants can be an interest for future studies. The patient

cohort has up to 19 years of follow-up. To our

knowledge, this is one of the longest follow-up data

in colorectal cancer, which allowed us to examine the

time-varying associations, particularly those that

appear after the initial 5 years. Also, this study inves-

tigated different types of genetic variants (i.e., SNPs,

CNVs/INDELs) in the same colorectal cancer cohort.

This allowed us to have a comprehensive view of the

relationships between genetic variants and survival

outcomes in colorectal cancer. In addition, this study

assumed no specific genetic model for the tested SNPs

and included analyses under the three main genetic

models. Such a comprehensive examination should

have limited the possibility of missing SNPs with

potential prognostic associations. We also detected

the association of a set of SNPs that are highly linked

with WBP11-rs7314075 in the TCGA colorectal can-

cer cohort dataset, increasing our confidence in the

association of this SNP with DSS. Last, we made

sure that all variables in Cox models satisfied the PH

assumption, which increases the reliability of effect

inference. More importantly, examining the PH

assumption allowed the detection of novel genetic

variants with time-varying associations. If validated

in independent sets, these markers can help distin-

guish patients with different outcome risk during

select time-periods following diagnosis and therefore

provide more specific prognostic estimates.

5. Conclusions

In conclusion, this study identified a novel common

variant (which also showed an association in the

TCGA patient dataset) and a number of rare variants,

but no CNVs, that are associated with clinical out-

comes in colorectal cancer. We also identified genetic

variants with time-varying associations, a traditionally

understudied type of prognostic markers. Overall,

identified variants/loci—if their prognostic values are

validated in independent patient cohorts—can be used

to stratify colorectal cancer patients into different risk

groups and help guide the treatment strategies and

clinic follow-up in the future.
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