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Abstract
Equivalent testing has been strongly recommended for demonstrating the comparability of

treatment effects in a wide variety of research fields including medical studies. Although the

essential properties of the favorable two one-sided tests of equivalence have been

addressed in the literature, the associated power and sample size calculations were illus-

trated mainly for selecting the most appropriate approximate method. Moreover, conven-

tional power analysis does not consider the allocation restrictions and cost issues of

different sample size choices. To extend the practical usefulness of the two one-sided tests

procedure, this article describes exact approaches to sample size determinations under

various allocation and cost considerations. Because the presented features are not gener-

ally available in common software packages, both R and SAS computer codes are pre-

sented to implement the suggested power and sample size computations for planning

equivalence studies. The exact power function of the TOST procedure is employed to com-

pute optimal sample sizes under four design schemes allowing for different allocation and

cost concerns. The proposed power and sample size methodology should be useful for

medical sciences to plan equivalence studies.

Introduction
Equivalence tests have been widely adopted for demonstrating the bioequivalence between two
drug formulations in biopharmaceutical studies. The notion of equivalence between treatment
effects is equally relevant and potentially useful in other of research fields such as medical sci-
ences. Although it is not the uniformly most powerful test and more powerful tests exist, the
two one-sided tests (TOST) procedure proposed by Schuirmann [1] andWestlake [2] is the
most common method for equivalence assessment under a two-group parallel design. A com-
prehensive review of the different types of equivalence tests was presented in Meyners [3]. Fur-
ther details on the design and analysis of equivalence studies can be found in Chow and Liu
[4], Chow, Shao, and Wang [5], Hauschke, Steinijans, and Pigeot [6], and Wellek [7].

It should be noted that the logic of the traditional difference-based tests and the formal
equivalence-based tests are fundamentally distinct. Rogers et al. [8] emphasized that the tradi-
tional test and the equivalence test are not mutually exclusive. If both test procedures are per-
formed, it is possible that both will be rejected, that neither will be rejected, or that one will be
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rejected and the other will not be rejected. Therefore, failing to reject a no-difference hypothesis
test does not necessarily support the conclusion of equivalence as was stressed in Blackwelder [9].
Also, Cribbie, Gruman, and Arpin-Cribbie [10], Parkhurst [11], and Schuirmann [12] conducted
comprehensive comparisons about the intrinsic appropriateness and theoretical properties
between the TOST procedure and the two-sample t test for assessing the equivalence of two treat-
ment means. More importantly, Allan and Cribbie [13] emphasized that the traditional tests are
often inappropriately applied to establish equivalence in the psychological literature.

To improve the underutilized situation, the TOST procedure is strongly recommended,
instead of the two-sample t test, when the research objective is to determine whether two treat-
ment means are sufficiently near each other to be considered equivalent. The theoretical justifi-
cation and computational ease are vital features of the TOST procedure for making statistical
inferences. However, an empirical study requires adequate statistical power and sufficient sam-
ple size to detect designated hypotheses and examine research questions. The corresponding
power calculations and sample size determinations must also be considered for a viable proce-
dure to extend the applicability in planning research designs. Accordingly, considerable atten-
tion has been devoted to the power and sample size issues of the TOST procedure in the
literature. Because the power function of the TOST is complicated in form, various expressions,
approximations and computing algorithms have been proposed and discussed from different
perspectives. The key findings are documented in Bristol [14], Chow, Shao, and Wang [15],
Chow and Wang [16], Diletti, Hauschke, and Steinijans [17], Liu and Chow [18], Muller-
Cohrs [19], Phillips [20], Schuirmann [12], Siqueira, Whitehead, Todd, and Lucini [21], and
Wang and Chow [22], among others. It is essential to note that the inferential procedure and
theoretical property of the TOST under a two-group parallel design immediately extend to the
two-sequence and two-period crossover designs and the replicated crossover designs as expli-
cated in Chow, Shao, and Wang [15], Chow andWang [16], Siqueira et al. [21], and Wang and
Chow [22].

Although the desirable properties of the two one-sided tests of equivalence, including the
exact power function, have been well documented in the literature, the associated power and
sample size calculations were illustrated mainly for selecting the most appropriate approximate
method. At first sight, the approximate power functions are comparatively easy to use and
seem to give practically useful results. But it does not retain all of the critical characteristics of
the model configurations, and thus, there is no guarantee that the resulting sample size tech-
niques will always give reliable performance. It was noted in Siqueira et al. [21] that simple
approximations are satisfactory under certain conditions and the difficulty of calculating the
sample size is not necessarily reduced by using the approximate formulas. On the other hand,
with the advance of computer technology and the general availability of statistical software,
computational simplicity is no longer a primary focus. Most importantly, the superiority of
exact techniques in terms of accuracy is irreplaceable. Therefore, the exact power and sample
size calculations should be considered instead. It is prudent to note that Bristol [14] and Schuir-
mann [12] described a particularly attractive and convenient expression for the exact power
function of the TOST that can be readily implemented with the embedded normal and chi-
square distribution functions in standard software systems.

Among others, Jan and Shieh [23] noted that conventional power analysis and sample size
determination do not address matters of allocation restrictions and cost issues. However,
researchers have been exploring design strategies that accommodate different constraints of
the allocation structure and project funding while maintaining adequate power. Specifically,
the allocation ratio of group sizes was fixed in the calculation of sample size for examining
independent proportions in Fleiss, Tytun and Ury [24], while Heilbrun and McGee [25] con-
sidered sample size problem for the comparison of normal means when one sample size is
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specified in advance. Moreover, in an actual experiment, the available resources are generally
limited and the cost for treating a subject often varies with treatment groups. For example,
Nam [26] presented optimal sample sizes to maximize power for the comparison of the treat-
ment and control under budget constraints. In contrast, Allison et al. [27] advocated designing
statistically powerful studies while minimizing costs.

In view of the insufficient consideration on the exact sample size methodology in the litera-
ture, the present article aims to contribute to the development of optimal sample size determi-
nations for the design of equivalence studies in two ways. First, the exact power function of the
TOST procedure is employed to compute optimal sample sizes under four design schemes
allowing for different allocation and cost concerns. The allocation schemes include (a) the ratio
of group sizes is given, and (b) one sample size is specified. Moreover, the cost implications
suggest optimally assigning subjects (a) to attain maximum power performance for a fixed
cost, and (b) to meet a designated power level for the least cost. Second, because existing soft-
ware packages do not accommodate power and sample size considerations with the same
degree of generality as described in this article, computer algorithms are developed to facilitate
the implementation of the suggested procedures. The proposed power and sample size meth-
odology should be useful for medical sciences to plan equivalence studies.

Methods

Two one-sided tests procedure
Consider independent random samples from two normal populations with the following for-
mulations:

Xij � Nðmi; s
2Þ; ð1Þ

where μi, σ
2 are unknown parameters, j = 1, . . ., Ni, and i = 1 and 2. For detecting the group

effect μd = μ1 –μ2 in terms of the hypothesis H0: μd = 0 versus H1: μd 6¼ 0, the common two-
sample t statistic has the form

T ¼ X 1 � X 2

S�
; ð2Þ

where X 1 ¼
XN1

j¼1

X1j=N1; X 2 ¼
XN2

j¼1

X2j=N2; S
�2 ¼ S2ð1=N1 þ 1=N2Þ; S2 ¼ fðN1 � 1ÞS21 þ

ðN2 � 1ÞS22g=n; S21 ¼
XN1

j¼1

ðX1j � X 1Þ2=ðN1 � 1Þ; S22 ¼
XN2

j¼1

ðX2j � X 2Þ2=ðN2 � 1Þ, and ν = N1 +

N2−2.
The primary focus of this article is the test of equivalence and without loss of generality, the

null and alternative hypotheses are expressed as

H0 : md � �D or md � D versus H1 : � D < md < D; ð3Þ

where Δ (> 0) is a priori constant that represents the minimal difference for declaring equiva-
lent means. It follows from the TOST procedure proposed by Schuirmann [1] and Westlake
[2] that the null hypothesis is rejected at the significance level α if

T1 ¼
X 1 � X 2 þ D

S�
> tv;a and T2 ¼

X 1 � X 2 � D
S�

< �tv;a; ð4Þ

where tν, α is the upper 100�α-th percentile of the t distribution with degrees of freedom ν.
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The exact power functionCE of the TOST procedure is presented in Equation A2 of S1 File.
The numerical computation of exact power requires the evaluation of the cumulative distribu-
tion function of a standard normal variable and the one-dimensional integration with respect
to a chi-square probability distribution function. Since all related functions are presented in
major statistical packages, the exact computations can be conducted with current computing
systems. For advance planning of equivalence studies, the presented power functionCE can be
employed to calculate the sample sizes {N1E, N2E} needed to attain the specified power (1 –β)
for the chosen significance level α, the model configurations {μd, σ

2}, and the equivalence
threshold Δ. In order to enhance the applicability of the TOST procedure, optimal sample size
algorithms are described in the subsequent section for four design schemes under different
allocation and cost considerations. The R [28] and SAS/IML [29] programs employed to per-
form the corresponding sample size calculations are available in S3 File and S4 File, respec-
tively. While the optimal power and sample size considerations are primarily illustrated for the
equivalence evaluations of two-group parallel designs, they may be directly extended to equiva-
lence problems of two-sequence and two-period crossover designs as explicated in S2 File.

For illustration, simulation study was conducted to demonstrate the suggested exact
approach for power and sample size calculations. The empirical assessment examines the two
mean difference patterns and six standard deviation values presented in Table V of Siqueira
et al. [21]. Specifically, the two sets of mean differences and standard deviations are μd = {0.0,
0.1} and σ = {0.10, 0.12, 0.14, 0.16, 0.18, 0.20}, respectively. Also, the chosen sample sizes were
determined to achieve the power level 0.80 with the gold standard method reported in Siqueira
et al. [21]. They only considered balanced design with the sample sizes N1 = N2 = N and the
gold standard method is an approximation with the power functionCA given in Equation A5
of S1 File. Accordingly, the exact power functionCE presented in Equation A3 is employed to
compute the attained power for the twelve model configurations with α = 0.05 and Δ = 0.2231.

Moreover, estimates of the true power associated with given sample size and parameter con-
figuration were computed via Monte Carlo simulation of 100,000 independent data sets. For
each replicate, (N1, N2) normal outcomes are generated with the two-sample parallel design.
Then, the test statistics T1 and T2 are computed and the simulated power is the proportion of
the 100,000 replicates with the test statistics T1 > tν, 0.05 and T2 < −tν, 0.05. The adequacy for
power and sample size calculation is determined by the difference between the simulated
power and computed power. The computed power, simulated power, and the corresponding
difference are summarized in Table 1 for the examined model settings. An inspection of the
summarized results reveals that the suggested exact method based on the power functionCE

produces almost identical results with the simulation for all twelve cases. Specifically, the
resulting absolute differences are all less than 0.003 and the largest discrepancy 0.0025 is
incurred by the situation with μd = 0.1, σ = 0.12, and N = 13. Hence, the presented exact
approach and computer algorithm have the distinct advantage in computational accuracy.

Design schemes
With the exact power function of the TOST procedure, this study examines research designs
with the allocating and budgetary constraints. First, the ratio r = N2/N1 between the two group
sizes may be fixed in advance, so the task is to decide the minimum sample size N1 (N2 = rN1)
required to achieve the specified power level. Second, one of the two sample sizes, say N2, may
be pre-assigned, and so the smallest size N1 required to satisfy the designated power should be
found. Third, what is the least cost for a research study to maintain its desired power level?
Fourth, how can the maximum power be attained in a scientific investigation with a limited
budget?
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Design I: sample size ratio is fixed. Consider the scenario that the sample size ratio r =
N2/N1 is pre-assigned, and for ease of illustration, the ratio is assumed as r� 1. The common
balanced design with equal sample sizes is the special case with r = 1. An incremental process
can be conducted to determine the minimum sample size N1 needed to attain the specified
power 1 –β for the chosen significance level α and parameter values {μd, σ

2, Δ}. For comparative
purpose and computational ease, the approximate normal distribution T :∼ N(λ, 1) provides a
convenient solution where 0λ = μd/σ� and σ�

2 = σ2(1/N1 + 1/N2). To simplify the computation,
the starting sample size N1Z computed by the normal approximation would be the smallest
integer that satisfies the inequality N1Z � (1 + /r)σ2(zα + zβ)

2/(Δ–|μd|)
2 where zα and zβ are the

upper 100�αth and 100�βth percentiles of the standard normal distribution, respectively.
Design II: one sample size is fixed. Without loss of generality, the sample size N2 of the

second group is held constant. Just as in the previous case, the minimum sample size N1 needed
to ensure the specified power 1 –β can be found by an iterative search for the chosen signifi-
cance level α and parameter values {μd, σ

2, Δ}. The starting sample size N1Z, based on the nor-
mal approximation as is described in the previous situation, is chosen as the smallest integer
that satisfies the inequality N1Z � 1/{(Δ–|μd|)

2/[σ2(zα + zβ)
2]–/N2}.

Design III: total cost is fixed and the actual power needs to be maximized. Suppose CF

is the overhead cost of the study, and C1 and C2 are the costs per subject in the first and second
groups, respectively; then the total cost of the study is C = CF + C1N1 + C2N2. Accordingly, the
traditional consideration of the total number of subjects can be viewed as a special case of the
cost function C, with CF = 0 and C1 = C2 = 1. Within the normality context, Pentico [30]
showed that the optimal allocation with different unit sampling costs is when the ratio of the

sample sizes assumes the equality N1/N2 = C1=2
2 =C1=2

1 . For a fixed value of total cost C and a
specified fixed cost CF, the maximum power is obtained with the sample size combination

N1Z ¼ C1=2
2 ðC � CFÞ

C1C
1=2
2 þ C2C

1=2
1

and N2Z ¼ C1=2
1 ðC � CFÞ

C1C
1=2
2 þ C2C

1=2
1

:

Notably, the optimal property is valid only when the statistic T has a normal distribution.
However, this is not the case here and a two-step procedure is conducted to find the exact opti-
mum. First, a detailed power assessment is performed for the sample size combinations {N1,
N2} with N1 from N1min to N1max and N2 = Floor[(C–CF−C1N1)/C2], where N1min = Floor(N1Z)–
3, N1max = Floor[{C–CF−C2(Floor(N2Z)– 3)}/C1], and the function Floor(a) returns the largest

Table 1. The computed power and simulated power of the two one-sided test for α = 0.05,Δ = 0.2231, and equal sample sizesN1 =N2 =N.

μd σ N Computed power Simulated power Difference

0.00 0.10 5 0.8823 0.8806 0.0017

0.12 6 0.8220 0.8218 0.0002

0.14 8 0.8333 0.8331 0.0002

0.16 10 0.8238 0.8242 –0.0004

0.18 12 0.8049 0.8035 0.0014

0.20 15 0.8181 0.8192 –0.0011

0.10 0.10 9 0.8033 0.8050 –0.0017

0.12 13 0.8148 0.8123 0.0025

0.14 17 0.8062 0.8065 –0.0003

0.16 22 0.8066 0.8068 –0.0002

0.18 28 0.8110 0.8106 0.0004

0.20 34 0.8070 0.8083 –0.0013

doi:10.1371/journal.pone.0162093.t001
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integer that is less than or equal to a. Second, the optimal sample size allocation is the one giv-
ing the largest power.

Design IV: target power is fixed and the total cost needs to be minimized. In addition
to the preceding scenario with limited budget, a distinct approach to take into account both
power and cost issues is to find the optimal sample size combination which minimizes the total
cost and attains the pre-chosen target power. In view of the discrete character of sample size,
the exact procedure is conducted in three steps.

First, in order to achieve the nominal power 1 –β while minimizing total cost C = CF +
C1N1Z + C2N2Z, a nearly optimal sample size combination under the normal distribution for T
is

N1Z ¼ ð1þ C1=2
2 =C1=2

1 Þs2ðza þ zb�Þ2
ðD� jmdjÞ2

and N2Z� ¼
ð1þ C1=2

1 =C1=2
2 Þs2ðza þ zb�Þ2

ðD� jmdjÞ2

where zβ� = zβ/2 if μd = 0, and zβ� = zβ if μd 6¼ 0. It can be seen that N1Z�/N2Z� = C1=2
2 =C1=2

1 and
σ2(1/N1Z� + 1/N2Z�) = (σ–|μd|)

2/(zα + zβ�)
2. Then, the power computation and cost evaluation

are conducted for sample size combinations with N1 from N1min to N1max and a proper value of
N2 � Floor[1/{(Δ–|μd|)

2/[σ2(zα + zβ�)
2] – 1/N1}] satisfying the required power, where N1min =

max{5, Ceil(N1Z�)– 2}, N1max = Ceil(N1Z�) + 10, themax function selects the largest value of the
elements, and the function Ceil(a) returns the smallest integer that is greater than or equal to a.
Second, the optimal sample size allocation is the one giving the smallest cost while maintaining
the specified power level. Third, there may be more than one combination giving the same
amount of least cost. A further screening and selection process is conducted to find the one
{N1E, N2E} producing the largest power.

Results
To illustrate the computational aspects of the suggested procedures for design planning, the
example of Minnesota Multiphasic Personality Inventory (MMPI) similarities between alcohol
and drug-dependent subjects presented in Rogers et al. [8] is extended here to sample size
determinations for equivalence testing under various design schemes. Detailed discussions and
related results of the MMPI differences between alcoholics and drug abusers can be found in
Cannon, Bell, and Fowler [31].

Due to the prospective nature of advance research planning, the general guidelines suggest
that typical sources like published finding or expert opinion can offer plausible and reasonable
planning values for the vital characteristics of mean effects, variance components, and equiva-
lence threshold. As an illustration of sample size determination for planning equivalence study,
the reported summary statistics of the Masculinity-Femininity scale for the drug and alcohol-
dependent groups are modified as the population means and variance. Specifically, μd = 61.4–
59.2 = 2.2, σ = 9.78. With these specifications, significance level α = 0.05, and equivalence
bound Δ = 5.92 (10% of the MMPI scores of the alcoholic subjects), the numerical computation
showed that the resulting power for the TOST isCE = 0.7711 for the reported sample sizes {N1,
N2} = {49, 207} of the MMPI study. The attained power is slightly less than the fairly common
and somehow minimal level of 0.80.

In order to warrant a decent chance of assessing the equivalence property with the pre-
assigned the sample size ratio r = N2/N1 = 4, the optimal sample sizes {54, 216} are required to
attain the designated power 0.80. Alternatively, when the sample size N2 = 210 is fixed before-
hand, it requires a group size of N1 = 55 in order to achieve the selected power 0.80. However,
it is important to take budget issues into account. For illustration, assume the unit sampling
costs for the two treatment groups are C1 = 4 and C2 = 1. Under cost consideration with the
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overhead cost CF = 0 and the total budget C = 400 units, the optimal sample size solution is {67,
132} which has an actual power of 0.8111. On the other hand, the optimal sample sizes {65,
128} are required to attain the designated power 0.80 with the least total cost. The detailed
computation showed that the attained power and total cost are 0.8005 and 388, respectively.
The prescribed parameter configurations are incorporated in the user specifications of the sup-
plementary R and SAS/IML programs. Researchers can easily identify the statements contain-
ing the exemplifying values in the computer code and then modify the programs to
accommodate their own model specifications. Nonetheless, the suggested procedures will yield
accurate power calculations and sample size determinations provided that all the required
information is properly specified.

Conclusions
Many studies are designed explicitly to show that two treatments are functionally equivalent or
that a new method is as effective as a well-established method under the same condition.
Under such circumstance, the traditional tests are inappropriate to establish equivalence,
because failing to reject a no-difference hypothesis test does not necessarily support the conclu-
sion of equivalence. Notably, the TOST procedure for establishing statistical equivalence has
been used effectively across a wide range of research disciplines. As a contrasting and concrete
example, the TOST procedure were illustrated with the MMPI equivalence evaluations between
alcohol and drug-dependent subjects in Rogers et al. [8], while the previous study of Cannon,
Bell, and Fowler [31] focused on the research issues of MMPI differences between alcoholics
and drug abusers. Consequently, it is advisable that investigators should determine when
equivalency testing is useful and delineate meaningful equivalence bounds relative to the sub-
stantive issues in their expert areas of research.

To enhance the usefulness of TOST methodology, it is prudent to develop a full account of
computer programs for implementing the necessary calculations in equivalence studies. Evi-
dently, the lack of efficient and convenient computer software impedes the practical use of
equivalence tests and the theoretical development of equivalence research. This article exam-
ines the power and sample size problem of equivalence testing for the means from two inde-
pendent and normally distributed populations with an unknown variance. The exact power
function of the TOST procedure is described and employed to compute the optimal sample
sizes under various allocation and cost considerations. In view of the importance of power and
sample size calculations in design planning and the limited features of available software pack-
ages, computer programs are developed to facilitate the usage of the proposed techniques.
Overall, the illustrated power and sample size calculations and accompanying algorithms rein-
force the theoretical and practical implications of TOST in equivalence studies.
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