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Generating the raw data for a de novo genome assembly project for a target eukaryotic
species is relatively easy. This democratization of access to large-scale data has allowed
many research teams to plan to assemble the genomes of non-model organisms. These
new genome targets are very different from the traditional, inbred, laboratory-reared model
organisms.They are often small, and cannot be isolated free of their environment – whether
ingested food, the surrounding host organism of parasites, or commensal and symbiotic
organisms attached to or within the individuals sampled. Preparation of pure DNA originat-
ing from a single species can be technically impossible, but assembly of mixed-organism
DNA can be difficult, as most genome assemblers perform poorly when faced with multiple
genomes in different stoichiometries. This class of problem is common in metagenomic
datasets that deliberately try to capture all the genomes present in an environment, but
replicon assembly is not often the goal of such programs. Here we present an approach
to extracting, from mixed DNA sequence data, subsets that correspond to single species’
genomes and thus improving genome assembly. We use both numerical (proportion of GC
bases and read coverage) and biological (best-matching sequence in annotated databases)
indicators to aid partitioning of draft assembly contigs, and the reads that contribute to
those contigs, into distinct bins that can then be subjected to rigorous, optimized assembly,
through the use of taxon-annotated GC-coverage plots (TAGC plots). We also present
Blobsplorer, a tool that aids exploration and selection of subsets from TAGC-annotated
data. Partitioning the data in this way can rescue poorly assembled genomes, and reveal
unexpected symbionts and commensals in eukaryotic genome projects. The TAGC plot
pipeline script is available from https://github.com/blaxterlab/blobology, and the Blobsplorer
tool from https://github.com/mojones/Blobsplorer.

Keywords: next-generation sequencing, metagenomics, assembly, parasites, symbionts, commensals,

contaminants

INTRODUCTION
The raw power of new sequencing methods has permitted the
expansion of genome science into a wide range of new bio-
logical systems. In particular the technologies permit genome
sampling from wild organisms and communities of organisms.
This approach was unthinkable in the era of Sanger-sequenced
genomes, as the per-base cost precluded deep sampling of mixed
starting materials in order to assemble the genome or transcrip-
tome of a particular target organism. However most species of
interest are not easily separable from their environments, either
because they cannot yet be cultured cleanly, or because they are
very intimately involved with a host or other commensal and
parasitic organisms.

In our research program, focused on the genome biology of the
phylum Nematoda and related animals (Blaxter et al., 2012; Godel
et al., 2012; Kumar et al., 2012; Wang et al., 2012), we are frequently
faced with DNA samples and thus genome sequence datasets from
wild isolates of target species where a significant proportion of the
sequence data derives from the non-nematode components of the

ecosystem. For example, tissue-dwelling nematodes often ingest
the cells of their host animals or plants, and immune reactions
can involve the adherence and crosslinking of host cells to para-
site surfaces. Even free-living nematodes, feeding on bacteria or
fungi, can come with attached or ingested food, as difficult-to-
remove biofilms, or sequestered in the animals’ intestines. These
mixed samples are akin to low-complexity metagenomes, where
a metagenome samples all the replicons present in an ecological
sample. We have frequently observed DNA samples that are “con-
taminated” with the genomes of other species: components of
food, commensal organisms, parasites and pathogens, or labora-
tory contaminants. It is particularly common to observe bacterial
genomic contamination of eukaryotic samples.

The research goals of these projects require the removal (or
at least positive identification) of the data that derive from non-
target genomes. Inadvertent inclusion of reads from accidentally
or unavoidably sampled bacterial or parasite data in a genome
assembly could result in target genome mis-assembly, reductions
in the overall quality of the genome assembly, or even attribution
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of the non-target genetic material (and the genes and functions
inferred from the sequence) to the reported target genome. There
are several issues that preclude simple co-assembly of raw low com-
plexity metagenome data. The first is that most assemblers, and
particularly de Bruijn assemblers, assume a particular modal read
coverage of the genome to be assembled. If the contaminating
genomes are at different molar concentrations then the internal
logic of the assembler may optimize the output to an erroneous
modal coverage. For example, a raw read dataset of a parasite
of vertebrates might contain 45% parasite, 45% host, and 10%
bacterial reads. If the parasite genome is 100 Mb, the vertebrate
3000 Mb and the bacterium 5 Mb, the genomes will be present
at molar ratios of one parasite to 0.03 host to approximately five
bacterium. Assemblers will find the bacterial replicons easier to
assemble, at the expense of the desired parasite genome. Secondly,
different genomes can have very different inherent “assembleabil-
ity,” and in particular bacterial genomes (with high proportional
content of protein-coding sequence, and low repeat content) are
more easily assembled than are highly repetitive and gene-poor
eukaryotes. Lastly, different genomes can have very different pro-
portions of G and C bases, and mixing low GC genome data with
balanced GC genome data may result in assemblies biased toward
the mid-GC range.

We here present an effective solution to these problems. By per-
forming a very preliminary assembly, with no attempt to optimize
the output, and then classifying the resulting contigs by cover-
age (a proxy for relative molarity of the genomes in the mix),
relative GC content (separating genomes with distinct biases),
and best similarity match in public databases (separating data by
likely species of origin), we can divide the raw data into bins that
can be optimally assembled independently. We have used these
methods to clean up “contaminated” DNA samples, identify data
of interest in difficult-to-disentangle host–parasite systems, and
extract intracellular bacterial symbiont genomes from within a
whole-organism dataset (Kumar and Blaxter, 2011; Godel et al.,
2012). This idea is not unique to our group’s work, and has
been proposed previously for cleaning of Roche 454 sequence
datasets from microbial communities (Nederbragt et al., 2010)
and assembly of individual genomes from bacterial associates of
plants (D’haeseleer et al., 2013). Here we present an improved
version of our pipeline for exploration of taxon-annotated,
GC-coverage plots (TAGC plots; Kumar and Blaxter, 2011; Godel
et al., 2012) and a graphical tool for TAGC plot exploration, Blob-
splorer. The TAGC plot/Blobsplorer toolkit is coded in Perl, R and
JavaScript, and includes a graphical interface for exploring the dis-
tributions of read coverage, GC, and sequence similarity in large
next-generation datasets.

MATERIALS AND METHODS
EXAMPLE DATA: SEQUENCING
Caenorhabditis sp. 5 (strain JU800) DNA was provided by Asher
Cutter (University of Toronto). The DNA was extracted from a
sucrose- and detergent-cleaned plate culture of nematodes using
proteinase K and phenol–chloroform. The standard Illumina pro-
tocol was used to generate two libraries with fragment sizes 300 and
600 bp and sequenced on an Illumina HiSeq2000 instrument using
101 base, paired-end sequencing with V3 reagents. Raw sequence

data are available at the Short Read Archive with accession num-
ber ERP001495. Raw reads were adapter- and quality-trimmed
using fastq-mcf (Aronesty, 2011; Table 1) with a trimming thresh-
old quality of 20, discarding reads shorter than 50 b. A total of
136.3 M read pairs totaling 26.9 Gb remained after these trimming
steps (Table 2). A full analysis of the genome of Caenorhabditis sp.
5 will be published elsewhere. The Dirofilaria immitis sequencing
data have been described previously (Godel et al., 2012).

TOOLS USED IN THE TAGC PLOT PIPELINE
The TAGC plot pipeline uses a number of external tools (Table 1).
Some of the external tools are easily substituted with the user’s pre-
ferred option. The core processing is carried out using a Perl script,
gc_cov_annotate.pl and an R script makeblobplot.R (Table 1). The
output includes a tab-separated value (TSV) format file with
a single header row followed by one row per contig. The first
three columns of each row give the sequence ID, length, and GC
content. There follow an arbitrary number of columns, whose
field headers begin with the string “cov_,” giving the coverage for
each library. After these come an arbitrary number of taxonomic
annotation columns, whose field headers begin with the string
“taxlevel_.”

BLOBSPLORER
Blobsplorer takes as input the text file produced by
gc_cov_annotate.pl. The tool can process and display text files from
any source as long as they conform to the format defined above.
Blobsplorer is implemented as a single web page, with the process-
ing and visualization code written in JavaScript. JQuery is used to
update the plot in response to interface events and Raphael to draw
the plot itself. Blobsplorer uses the HTML5 file API, allowing it to
be distributed as a static web page which does not require a server-
side component: all processing is carried out by the browser, so
the tool can be run simply by opening a local copy of the page.

RESULTS
OVERVIEW OF THE TAGC PLOT (OR BLOBPLOT) METHOD
The TAGC plot method is simple to perform (Figure 1). The
user first collects and filters their raw genome sequencing data
as for any standard assembly project. A preliminary assembly
is then generated, without any attempt to optimize parameters.
This assembly serves to reduce the complexity of the data from
tens or hundreds of millions of short reads down to tens or
hundreds of thousands of longer, contiguated sequences (con-
tigs). The reduced complexity dataset is easier to screen, partly
because of the smaller number of analytic steps needed, but also
because the longer sequences are a better substrate for assess-
ment of numerical (GC proportion, coverage) and biological
(similarity to known sequences) metrics. The method is agnos-
tic as to which assembler is used for this step. In this paper we
present use of ABySS (Simpson et al., 2009), but we have also
used Velvet (Zerbino and Birney, 2008) and CLCBio assembly-
Cell (see http://www.clcbio.com/products/clc-assembly-cell/) in
the past. There is no need to extensively scaffold the assem-
bly, and we have used mate-pair data given to the assem-
bler as “single-end” for TAGC plot analyses in the D. immitis
example.

Frontiers in Genetics | Bioinformatics and Computational Biology November 2013 | Volume 4 | Article 237 | 2

http://www.clcbio.com/products/clc-assembly-cell/
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


“fgene-04-00237” — 2013/11/29 — 13:47 — page 3 — #3

Kumar et al. TAGC plots for genome data exploration

T
a

b
le

1
|

S
o

ft
w

a
re

a
n

d
d

a
ta

b
a

s
e

s
u

s
e

d
in

th
is

w
o

rk
.

T
o

o
l

o
r

re
s
o

u
rc

e

n
a

m
e

V
e

rs
io

n
R

e
fe

re
n

c
e

S
o

u
rc

e
w

e
b

s
it

e
A

d
d

it
io

n
a

l
p

a
ra

m
e

te
rs

u
s
e

d

C
o

m
m

e
n

ts

D
a

ta
Q

C
/fi

lt
e

ri
n

g

fa
st

q-
m

cf
1.

04
.6

36
A

ro
ne

st
y

(2
01

1)
ht

tp
://

co
de

.g
oo

gl
e.

co
m

/p
/e

a-
ut

ils
/w

ik
i/F

as
tq

M
cf

P
re

li
m

in
a

ry
a

s
s
e

m
b

ly
a

n
d

re
a

d
m

a
p

p
in

g

A
B

yS
S

1.
3.

6
S

im
ps

on
et

al
.(

20
09

)
ht

tp
://

w
w

w
.b

cg
sc

.c
a/

pl
at

fo
rm

/b
io

in
fo

/s
of

tw
ar

e/
ab

ys
s

k-
m

er
of

61
Th

e
us

er
m

ig
ht

ca
re

to
ch

an
ge

th
e

k-
m

er

va
lu

e
de

pe
nd

in
g

on
th

e
qu

al
ity

an
d

le
ng

th

of
th

ei
r

re
ad

da
ta

;i
t

is
no

t
ne

ce
ss

ar
y

to

op
tim

iz
e

th
is

va
lu

e.
Th

e
pr

og
ra

m
ca

n
al

so

be
ru

n
tr

ea
tin

g
an

y
pa

ire
d

(m
at

e
or

pa
ire

d-
en

d)
da

ta
as

si
ng

le
-e

nd
.

B
ow

tie
2

2.
1.

0
La

ng
m

ea
d

an
d

S
al

zb
er

g
(2

01
2)

ht
tp

://
bo

w
tie

-b
io

.s
ou

rc
ef

or
ge

.n
et

/b
ow

tie
2/

in
de

x.
sh

tm
l

-k
1

–v
er

y-
fa

st
-lo

ca
l

Th
e

se
tt

in
gs

us
ed

ar
e

de
si

gn
ed

to
m

ap

re
ad

s
un

iq
ue

ly
an

d
qu

ic
kl

y

T
a

x
o

n
o

m
ic

a
n

n
o

ta
ti

o
n

B
LA

ST
+

2.
2.

28
Ye

et
al

.(
20

06
);

Jo
hn

so
n

et
al

.(
20

08
)

ht
tp

://
bl

as
t.

nc
bi

.n
lm

.n
ih

.g
ov

/B
la

st
.c

gi
?C

M
D

=W
eb

&

PA
G

E
_T

Y
P

E
=B

la
st

D
oc

s&
D

O
C

_T
Y

P
E
=D

ow
nl

oa
d

-t
as

k
m

eg
ab

la
st

-e
va

lu
e

1e
-5

-m
ax

_t
ar

ge
t_

se
qs

1

-o
ut

fm
t‘

6
qs

eq
id

st
ax

id
s’

N
C

B
In

t
M

ar
ch

1,
20

13
ft

p:
//f

tp
.n

cb
i.n

lm
.n

ih
.g

ov
/b

la
st

/d
b/

S
ee

ht
tp

://
bl

as
t.

nc
bi

.n
lm

.n
ih

.g
ov

/B
la

st
.c

gi
?

C
M

D
=W

eb
&

PA
G

E
_T

Y
P

E
=B

la
st

D
oc

s&

D
O

C
_T

Y
P

E
=P

ro
gS

el
ec

tio
nG

ui
de

fo
r

de
fin

iti
on

;o
ne

ca
n

al
so

us
e

cu
st

om

da
ta

ba
se

s,
or

ot
he

r
no

rm
al

iz
ed

da
ta

ba
se

s

T
A

G
C

p
lo

t
s
c
ri

p
ts

gc
_c

ov
_a

nn
ot

at
e.

pl
1.

0
Th

is
w

or
k

ht
tp

s:
//g

ith
ub

.c
om

/b
la

xt
er

la
b/

bl
ob

ol
og

y

m
ak

eb
lo

bp
lo

t.
R

1.
0

Th
is

w
or

k
ht

tp
s:

//g
ith

ub
.c

om
/b

la
xt

er
la

b/
bl

ob
ol

og
y

0.
01

ta
xl

ev
el

_o
rd

er
0.

01
is

th
e

th
re

sh
ol

d
of

di
sp

la
yi

ng

an
no

ta
te

d
co

nt
ig

s,
an

d
ta

xl
ev

el
_o

rd
er

se
ts

th
e

ta
xo

n
le

ve
lt

o
di

sp
la

y

gg
pl

ot
2

W
ic

kh
am

(2
00

9)
ht

tp
://

gg
pl

ot
2.

or
g/

N
C

B
It

ax
on

om
y

he
ira

rc
hy

fil
es

M
ar

ch
20

13
ft

p:
//f

tp
.n

cb
i.n

lm
.n

ih
.g

ov
/p

ub
/t

ax
on

om
y/

ta
xd

um
p.

ta
r.g

z

(C
on

tin
ue

d)

www.frontiersin.org November 2013 | Volume 4 | Article 237 | 3

http://code.google.com/p/ea-utils/wiki/FastqMcf
http://www.bcgsc.ca/platform/bioinfo/software/abyss
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=Download
ftp://ftp.ncbi.nlm.nih.gov/blast/db/
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=ProgSelectionGuide
https://github.com/blaxterlab/blobology
https://github.com/blaxterlab/blobology
http://ggplot2.org/
ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz
http://www.frontiersin.org/
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


“fgene-04-00237” — 2013/11/29 — 13:47 — page 4 — #4

Kumar et al. TAGC plots for genome data exploration

T
a

b
le

1
|

C
o

n
ti

n
u

e
d

T
o

o
l

o
r

re
s
o

u
rc

e

n
a

m
e

V
e

rs
io

n
R

e
fe

re
n

c
e

S
o

u
rc

e
w

e
b

s
it

e
A

d
d

it
io

n
a

l
p

a
ra

m
e

te
rs

u
s
e

d

C
o

m
m

e
n

ts

B
lo

b
s
p

lo
re

r

JQ
ue

ry
1.

8.
2

ht
tp

://
jq

ue
ry

.c
om

/
ht

tp
://

co
de

.jq
ue

ry
.c

om
/jq

ue
ry

-1
.8

.2
.js

A
dd

iti
on

al
JQ

ue
ry

pl
ug

in
s

us
ed

:j
qu

er
y-

ui
,

dr
op

ki
ck

,t
ag

si
np

ut
,p

la
ce

ho
ld

er
,c

ha
rd

in
.js

R
ap

ha
el

2.
1.

0
ht

tp
://

ra
ph

ae
ljs

.c
om

/
ht

tp
://

gi
th

ub
.c

om
/D

m
itr

yB
ar

an
ov

sk
iy

/r
ap

ha
el

/r
aw

/m
as

te
r/

ra
ph

ae
l-m

in
.js

ad
di

tio
na

lR
ap

ha
el

pl
ug

in
s

us
ed

:

ra
ph

ae
l.e

xp
or

t

A
s
s
e

m
b

ly
v
a

li
d

a
ti

o
n

C
ae

no
rh

ab
di

tis

br
ig

gs
ae

pr
ot

eo
m

e

W
S

23
0

S
te

in
et

al
.(

20
03

)
ft

p:
//f

tp
.w

or
m

ba
se

.o
rg

/p
ub

/w
or

m
ba

se
/s

pe
ci

es
/c

_b
rig

gs
ae

/

se
qu

en
ce

/p
ro

te
in

/

S
ee

ht
tp

://
w

w
w

.w
or

m
ba

se
.o

rg
/s

pe
ci

es
/

c_
br

ig
gs

ae
#0

2–
10

C
ae

no
rh

ab
di

tis
sp

.5

E
ST

as
se

m
bl

y

N
E

M
B

A
S

E
4

E
ls

w
or

th
et

al
.(

20
11

)
ht

tp
://

w
w

w
.n

em
at

od
es

.o
rg

/d
ow

nl
oa

ds
/d

at
ab

as
es

/

N
E

M
B

A
S

E
4/

C
S

C
_n

uc
.f

sa

S
ee

ht
tp

://
w

w
w

.n
em

at
od

es
.o

rg
/n

em
ba

se
4/

sp
ec

ie
s_

in
fo

.p
hp

?s
pe

ci
es

=C
S

C

C
ae

no
rh

ab
di

tis
sp

.5

R
N

A
-S

eq

tr
an

sc
rip

to
m

e

as
se

m
bl

y

1.
0

ht
tp

://
ne

m
at

od
es

.o
rg

/g
en

om
es

/c
ae

no
rh

ab
di

tis
_s

p5
/

in
de

x.
ht

m
l

U
np

ub
lis

he
d

da
ta

fr
om

th
e

C
ae

no
rh

ab
di

tis

sp
.5

ge
no

m
e

pr
oj

ec
t

C
E

G
M

A
2.

4
Pa

rr
a

et
al

.(
20

07
)

ht
tp

://
ko

rfl
ab

.u
cd

av
is

.e
du

/d
at

as
et

s/
ce

gm
a/

Frontiers in Genetics | Bioinformatics and Computational Biology November 2013 | Volume 4 | Article 237 | 4

http://jquery.com/
http://code.jquery.com/jquery-1.8.2.js
http://raphaeljs.com/
http://github.com/DmitryBaranovskiy/raphael/raw/master/raphael-min.js
http://www.wormbase.org/species/c_briggsae#02-10
http://www.nematodes.org/downloads/databases/NEMBASE4/CSC_nuc.fsa
http://www.nematodes.org/nembase4/species_info.php?species=CSC
http://nematodes.org/genomes/caenorhabditis_sp5/index.html
http://korflab.ucdavis.edu/datasets/cegma/
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


“fgene-04-00237” — 2013/11/29 — 13:47 — page 5 — #5

Kumar et al. TAGC plots for genome data exploration

The average GC content of each contig in the preliminary
assembly is calculated. The raw reads are mapped back to this
preliminary assembly and the resulting alignment BAM file used
to calculate average read-depth coverage for each contig. We use
Bowtie 2 (Langmead and Salzberg, 2012) here. It is also possible
to use other read mappers that output BAM format, or to use read
or k-mer coverage metrics reported by the assembler directly. The
contigs from the preliminary assembly are compared to the NCBI
non-redundant nucleotide (nt) database using the megablast
option in the BLAST+ suite (Ye et al., 2006; Johnson et al., 2008)
to identify a best species hit. It is also possible to construct custom
local databases if the taxonomy of the “contaminants” is known,
but use of the complete NCBI nt database is recommended as
this also results in detection of unexpected contaminants. GC
content, read-coverage, and taxonomic information are then com-
bined to generate a standard format file, which is visualized
as a TAGC plot. The TAGC plot is then reviewed, and strate-
gies for removal of contaminants, extraction of required reads,
and other binning operations defined. The TAGC plot data can
also be viewed in Blobsplorer, a JavaScript tool that permits
exploration and selection of contig sets interactively in a web
browser.

EXAMPLE OF TAGC PLOT USE IN FILTERING DATA FOR ASSEMBLING
Caenorhabditis sp. 5
Here we demonstrate the use of the method to generate TAGC
plots for the sequencing of the free-living nematode Caenorhabdi-
tis sp. 5 (see http://nematodes.org/genomes/caenorhabditis_sp5/).
Caenorhabditis sp. 5 is an as-yet unnamed species, found in eastern
Asia, a member of the briggsae subgroup of the genus Caenorhab-
ditis (Kiontke et al., 2011). All the scripts used are available at
https://github.com/blaxterlab/blobology, along with an accompa-
nying bash script that can be run to replicate the results below, or
modified to run the pipeline on a different read set.

A preliminary assembly was performed on the adapter- and
quality-trimmed reads using ABySS (Simpson et al., 2009) with
default options and a k-mer of 61 with the 300 and 600 bp
libraries provided as separate inputs. We used ABySS because it is
open-source, modular, and highly parallelizable. One of the
advantages of ABySS is that it does not require the user to pro-
vide an a priori fragment-size estimate as the tool works out the
fragment sizes for each library based on its own mapping of reads
to an initial unitig assembly. Empirical verification of library insert
sizes is a useful, additional quality-control step. We did not attempt
to optimize k-mer, coverage cutoff, or other assembly parameters,
as the goal of the preliminary assembly is only to reduce the scale
of the dataset for taxonomic identification and to estimate cover-
age. As ABySS uses read pair data in assembly, the output assembly
file sequences will include unresolved bases (“N”) that link contigs
spanned by read pairs. Thus the contigs we assess might strictly be
considered “scaffolds.” The final ABySS assembly FASTA format
file was filtered to remove sequences smaller than 200 bp, result-
ing in 12,264 contigs with an N50 (length-weighted median) of
32,806 bp and a mean length of 13,125 bp, spanning 161.0 Mb.
The expected size of the Caenorhabditis sp. 5 genome is ∼130 Mb.

We note that different assemblers have inbuilt low-coverage
cutoff parameters. For example, ABySS, used here, has a filter to

discard contigs with a k-mer coverage less than the square root
of median coverage, while CLCBio assemblyCell has a coverage
cutoff of 2. Thus different assemblers may return very different
numbers of contigs from the same input data solely due to their
handling of low coverage contigs. While these contigs will tend to
be shorter than higher-coverage contigs, they can contribute sig-
nificantly to assembly span, and depress the N50 and (especially)
the mean lengths of assemblies. These “extended” assemblies may
score better on some biological measures of completeness, but our
experience is that, given sufficient (i.e., >60-fold) coverage of the
target genome, discarding these short, poorly supported contigs is
advantageous.

Read coverage can be derived directly from the assembler out-
put (for example both ABySS and Velvet report coverage metrics
in the FASTA headers of the output files). We wanted to review
the coverage and contamination statistics for each of our libraries
separately, to permit detection of per-sample or per-library con-
taminants, and so remapped all data using Bowtie 2. Any read
alignment tool that produces a BAM file can be used, as the down-
stream tools simply need an assembly FASTA file and an alignment
BAM file. Mapping was performed using the settings -k 1 (max
number of matches per query) and --very-fast-local because the
goal was to get an estimate of read coverage rapidly, and not to
get the most precise or sensitive mapping. For the Caenorhabditis
sp. 5 data, 98.69% of all reads mapped back to the preliminary
assembly.

TAXONOMIC ANNOTATION OF THE PRIMARY ASSEMBLY
We identified the taxonomic attribution of the best-matching
sequence in the NCBI nt database using BLAST+ megablast (Ye
et al., 2006; Johnson et al., 2008). We generated a two-column table
with the contig ID in the first column and the taxonomy ID of
the species of origin of the best hit (lowest e-value) using the
BLAST+ output formatting controls (see Table 1). Other tools
such as MEGAN (Huson et al., 2007; Huson and Weber, 2013)
or exonerate (Slater and Birney, 2005) might have provided more
accurate results, but BLAST+ is convenient because it is very fast,
natively parallel, and provides species taxonomy IDs in tabular
form in one step. While we queried all 12,264 sequences in the
preliminary Caenorhabditis sp. 5 assembly against NCBI nt, a
randomly selected subset from preliminary assemblies with many
hundreds of thousands of assembled sequences can speed up this
part of the process with little reduction in final ability to screen
for contaminants.

MAKING AND INTERPRETING TAGC PLOTS
A custom Perl script, gc_cov_annotate.pl, was used to collate the
three input types: the assembly FASTA file, the alignment BAM
files, and the tabular sequence-to-species mapping file, and pro-
duce a single data file that was visualized using the ggplot2 graphics
library (Wickham, 2009) in R. The output (Figures 2 and 3)
includes separate panes for each library read file and colors contigs
plotted in the GC-coverage space by the most abundantly repre-
sented taxa matched. Unmatched contigs are shaded gray. In the
case of the Caenorhabditis sp. 5 TAGC plots (Figure 2A), there
were no major differences between the two independent libraries
other than in average read depth, as expected. The TAGC plots
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Table 2 | Sequence data for Caenorhabditis sp. 5.

Nematode

strain

identifier

Library

insert

size (bp)

Type of sequencing Number of raw

reads

Number of

bases in raw

reads (Gb*)

Number of

reads after

trimming

Number of bases

in trimmed reads

(Gb)

ERA accession

JU800 300 HiSeq2000 101 b PE* 88.6 M* pairs 17.9 86.9 M pairs 17.3 ERR138445

JU800 600 HiSeq2000 101 b PE 52.4 M pairs 10.6 49.4 M pairs 9.6 ERR138446

*Gb, gigabases; PE, paired end; M, million.

show a major “blob” of contigs with high (∼100-fold) coverage
and 35–55% GC, with predominant taxonomic identification as
Rhabditida (the order containing Caenorhabditis). The apparent
skew in this blob, with contigs of lower mean GC having lower
coverage, is typical of Illumina datasets, as there are biases due
to library preparation and solid-phase PCR that result in under-
representation of low GC sequences. Note also that there are
some contigs, annotated as Rhabditida, with very high coverages

(up to 2000-fold). These represent either repeats, or the mito-
chondrial genome. To the right, at higher GC, are a set of blobs
with distinct coverage means, and distinct consistent taxonomic
assignments (to orders of bacteria, including Pseudomonadales,
Xanthomonadales, Actinomycetales, and Burkholderiales). These
blobs derive from contaminating bacterial species, some at low
levels (Pseudomonadales at ∼10-fold, or one genome to every 10
Caenorhabditis sp. 5 genomes) and some at higher levels (such as

FIGURE 1 |TheTAGC plot workflow. Flowchart showing analysis steps and intermediate data files in the TAGC plot workflow. Rectangles indicate processing
stages, while parallelograms represent data files.
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FIGURE 2 |TAGC plot of Caenorhabditis sp. 5 preliminary assembly. (A) A
TAGC plot was constructed as described in the text from the ABySS assembly
of the full Illumina dataset for Caenorhabditis sp. 5. The three panels are (left)
300 bp library, (middle) 600 bp library, and (right) both libraries combined,
mapped to an assembly that used the combined data. Individual contigs are
plotted based on their GC content (x -axis) and their read coverage (y -axis;

logarithmic scale). Contigs are colored according to taxonomic order of their
best megablast match to the NCBI nt database (with E -value cutoff < 1e−05).
Any taxonomic order annotation associated with 1% or more of annotated
contigs is marked with a color; contigs without an annotation from these are
in gray. (B) The TAGC plot from an ABySS assembly of the Caenorhabditis sp.
5 data after removal of the bacterial contaminants. Annotation as in part (A).

Actinomycetales at ∼200-fold coverage). To aid visualization, if
the number of contigs assigned a specific taxonomic identification
is less than 1% of the total number of annotated contigs, that taxon
is not shown in the legend.

BLOBSPLORER: INTERACTIVE TAGC PLOTS
To aid exploration of TAGC plots, we have developed an interactive
tool, Blobsplorer, for investigation of TAGC plots. Blobsplorer is
written in JavaScript and consists of a single static web page. All
processing is carried out client-side and requires no additional
dependencies. Because next-generation assemblies tend to have

large numbers of contigs (particularly for mixed-species data), a
degree of sampling is usually necessary to allow the interface to
update in a responsive manner. In testing, we found that a desktop
computer can comfortably display data for around 20,000 contigs.
Blobsplorer has the ability to sample data points when loading
input data files.

The Blobsplorer workflow is straightforward. After selecting
an input file, the user chooses a sampling level from the drop-
down menu before clicking “load contigs.” A point is then plotted
on the TAGC plot for each sampled contig. The taxonomic level
at which coloring is applied can by changed by selecting a value
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FIGURE 3 |TAGC plot of Dirofilaria immitis and its Wolbachia

endosymbiont. The four panels display TAGC plots for (upper left) a paired
end library form the “Pavia” male nematode, (upper right) a mate pair library
from the “Pavia” male nematode, (lower left) a paired end library from the
“Athens” female nematode and (lower right) all data combined. The specified

read sets were aligned to an assembly generated from the paired end data.
The TAGC plots were taxonomically annotated, and contigs with best
similarity to Spirurida (the order to which D. immitis belongs) and Rickettsiales
(the alphaproteobacterial order to which Wolbachia belongs) were highlighted
in color. Other conventions as in Figure 2.

from the “color by” drop-down menu. Clicking the “Download
as SVG” button will generate a copy of the plot in scalar vector
graphics (SVG) format, which can be opened in a scalar vector
drawing package for further processing (for example, to create
publication-ready graphics). Once the data have been loaded and
displayed, groups of contigs can be defined by drawing ellipses on
the plot. To draw an ellipse, the user clicks once on the plot to
define the center, and then moves the cursor to define the shape of

the ellipse. They then click a second time, and move the cursor to
define the rotation of the ellipse. Clicking for the third and final
time on the plot completes the definition of the ellipse. Multiple
ellipses can be drawn in this way to define a set of contigs. Clicking
the “highlight selected” button will confirm the selection visually
by shading the selected contigs in red, while clicking the“download
contig ids” button will generate a text file containing the identi-
fiers of the selected contigs which can be downloaded for further
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processing. Clicking the name of a taxonomic group in the taxo-
nomic annotation key will cause points assigned to that group to be
highlighted.

BINNING THE RAW DATA: POSITIVE AND NEGATIVE FILTERS
Following TAGC plot visualization, our approach is to devise
a contig and read selection strategy that will bin data for the
desired target organism(s) separately from any contaminants. This
separation then permits exploration and optimization of assem-
bly parameters focused on the raw data coverage, and biological
idiosyncrasies, of one genome at a time. We devised a mix of
positive and negative filters to keep contigs that were likely to
derive from the nematode genome (because of their taxonomic
annotation, coverage, or GC) and to exclude contigs (using the
same criteria but focusing on the bacterial blobs). In the case
of Caenorhabditis sp. 5, we used a simplified database of pro-
teobacterial sequences (all the contaminants were proteobacteria)
to identify contigs deriving from the contaminants. In addition we
identified contigs with GC and coverage similar to the identified
proteobacterial contaminants. To produce a cleaned read set for
high-quality assembly, we identified and removed the reads that
mapped to contaminant contigs, and then also identified the pair
reads of any unpaired reads in this set, and collected the reads (and
pairs) that mapped to these. This set of reads was removed from
the filtered raw data before reassembly. Scripts and commands
for selecting contigs by various criteria, and the reads that map
to them, are provided in the GitHub repository. The reassembly
was again screened using TAGC plots to confirm that the read
cleaning process had been effective (Figure 2B). We have found
that second-round assemblies can sometimes reveal novel or fur-
ther contaminant contigs. This is likely to be due to sequence
data that failed to be assembled by the de Bruijn assembler in the
first round because of conflicts or interference between different
possible paths in the assembly graph. In many cases these second-
round-identified contaminants have only been visible as blobs of
distinct GC and coverage, and have not had significant similarity
to known genomes.

The second preliminary (i.e., non-optimized) assembly of the
Caenorhabditis sp. 5 genome derived from the cleaned read data
contained 10,120 contigs, with an N50 of 31.4 kb (Table 3).
It scored equivalently to the first assembly in biological mea-
sures of completeness (including mapping to Caenorhabditis sp.
5 expressed sequence tags (Elsworth et al., 2011), representation
of matches to the proteome of the closely related Caenorhabditis
briggsae (Stein et al., 2003; Yook et al., 2012), and screening with
the Core Eukaryotic Genes Mapping Approach, CEGMA; Parra
et al., 2007). Each of these metrics of biological completeness were
essentially unaffected by the removal of 25 Mb of contaminating
bacterial sequence. The reduction in N50 is partly a product of the
removal of the more-easily assembled bacterial data (which had
an N50 of ∼45 kb). We would expect the N50 to be improved on
reassembly under optimal parameters.

Multi-genome coassemblies can contain errors. One risk with
the TAGC plot method is that sequences erroneously constructed
or scaffolded may contain DNA from more than one genome.
Removal of all of a contig because one part matches an iden-
tified undesired contaminant risks discarding good data. We
recommend a conservative approach, for example only discard-
ing contigs that are tagged as having their best megablast match
to a contaminant if there is no match better than a relatively
permissive cutoff to the target taxon. Similarly it is sometimes dif-
ficult to tell where the blobs from the contaminants end and that
from the target starts. The Caenorhabditis sp. 5 example had rela-
tively clear separation between bacterial and nematode blobs, but
this should not be expected in every case. Again, a conservative
approach is warranted, retaining the maximal amount of target
data.

IDENTIFYING SYMBIONTS AND LATERAL GENE TRANSFERS WITH
TAGC PLOTS
As indicated above, TAGC plots are also useful for separating sev-
eral desired target genomes from a mixed dataset. In the case
of bacterial symbionts of eukaryotes, this then permits indepen-
dent, optimized assembly of host and symbiont. We illustrate this

Table 3 | Assembly statistics for Caenorhabditis sp. 5.

Measure Preliminary

assembly

Contigs removed from

preliminary assembly

Assembly of data after removal of

reads mapping to contaminant

contigs

Span (bp) 160,970,414 25,566,044 135,507,189

Number of contigs* 12,264 2,148 10,120

N50 of contigs (bp) 32,806 44,901 31,396

CEGMA completeness 97.58% – 96.37%

Representation of Caenorhabditis sp. 5 EST transcriptome** 98.1% – 98.1%

Representation of Caenorhabditis sp. 5 RNA-Seq transcriptome*** 97.41% – 97.42%

Matches to Caenorhabditis briggsae proteome**** 79.04% – 79.04%

*Or scaffolds, as the contigs may contain “N” base calls.
**The Caenorhabditis sp. 5 expressed sequence tag dataset includes 2,265 unigene sequences.
***The Caenorhabditis sp. 5 RNA-Seq transcriptome assembly contains 30,756 unigene sequences.
****Caenorhabditis briggsae is the closest fully sequenced Caenorhabditis species to Caenorhabditis sp. 5. Its proteome contains 21,961 entries.
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here with data from the sequencing of the genome of the dog
heartworm, D. immitis (genome size ∼95 Mb), which carries
an apparently obligate symbiont, the rickettsial alphaproteobac-
terium Wolbachia pipientis wDi (genome size ∼1 Mb; Godel
et al., 2012). Fragments of the wDi genome are present in the
nematode nuclear genome, horizontally transferred from this
germline-transmitted symbiont. In this case therefore, simple
separation by taxonomic annotation of the contigs may risk con-
fusing true wDi contigs with nuclear insertions. For D. immitis,
we generated datasets from two different nematodes, including
male (“Pavia”; where Wolbachia abundance is low) and female
(“Athens”; where abundance is higher). In the TAGC plots of
the different libraries (Figure 3) distinct blobs annotated as Rick-
ettsiales in origin were found at different relative coverage in each
library. In the “Athens” library the Rickettsiales wDi blob is clearly
separable from the nuclear D. immitis blob, as it has approximately
10-fold greater coverage. Also evident in the “Athens” data is a low
coverage blob of higher GC content. This blob is derived from the
canine host of D. immitis. A simple coverage cutoff along with
a selection for megablast matches to Rickettsiales resulted in a
high-quality wDi read set that generated a much better assembly
(reducing the number of contigs from 63 to only two, one of 920 kb
and one of 1 kb; Comandatore et al., 2013). Similarly, removal of
the dog contamination, and filtering the wDi reads generated a
better D. immitis assembly. This procedure also usefully left the
wDi nuclear insertion-derived read data in the nuclear genome
read set, permitting investigation of laterally transferred fragments
(Godel et al., 2012).

DISCUSSION
We have presented an approach to interpreting and cleaning raw
high-volume sequence datasets to improve both assembly met-
rics and biological interpretation. The ideas behind this approach
are not new. Difference in GC proportion is used by several raw
data quality-control tools, such as fastqc (Andrews, 2013), to
identify potential problems in raw read data. Coverage filters are
commonly used in genome assembly to remove low- and high-
abundance k-mers from de Bruijn graphs to simplify resolution.
Taxonomic annotation is commonly used post assembly to identify
contaminants. What distinguishes the TAGC plot approach is the
combining of these measures in screening preliminary assemblies
in the context of targeted sequencing of “contaminated” samples.
TAGC plots are very useful in pre-screening pilot datasets before
proceeding to bulk sequencing, as they can identify unexpected
contamination of target genomes with other DNA. They assist in
generating better assemblies by separating different genomes that
need different assembly parameter sets into independent assembly
projects. Rather than achieve a global optimum that in fact is not
at all optimal for each constituent genome, split-data assembly
can approach each genome and find local optima. In addi-
tion, early removal of contaminant genes from a target assembly
can avoid compromising costly downstream analyses with rogue
data.

The problem of multi-genome datasets is at the core of the
huge effort that has gone in to development of assemblers capable
of delivering biologically meaningful results from metagenomic
datasets. In a metagenome study, the “target” is usually all the

genomes in the environment studied, and an important analytical
goal is the identification of which genes in the environment are
present on the same replicons, and thus likely to be active within
a single membrane-bound organism. To approach the binning of
metagenome data, several groups have used approaches similar
to TAGC plots, integrating coverage, GC, and taxonomic affin-
ity to propose potential linkages between contigs. Importantly,
some authors have in addition used higher-dimensional vectors of
base composition patterns than simple nt counts. A major locus
of activity has been in the use of multidimensional dinucleotide,
trinucleotide and, most commonly, tetranucleotide composition
vectors (4NCV; Teeling et al., 2004; Slater and Birney, 2005; Chat-
terji et al., 2007; Emmersen et al., 2007; Dick et al., 2009; Willner
et al., 2009; Ghosh et al., 2011; Lamprea-Burgunder et al., 2011;
Brisson et al., 2012; Saeed et al., 2012; Strous et al., 2012). Hexanu-
cleotide counting has also been used to separate simple mixtures
of a few species (Hraber and Weller, 2001). Where whole-genome
sequence training data are available, 4NCV are extremely pow-
erful in binning new data into “known” groups. Applied de novo
to metagenomic data, 4NCV can be used to inform hypotheses
of association between sequences. The limitation in the 4NCV
approach is that the vectors are most informative when derived
from long sequences (tens of kilobases) and become less discrimi-
natory when derived from short contigs or reads. The best available
4NCV tool, MetaWatt (Strous et al., 2012), uses machine learning
to cluster contigs into bins of coherent coverage, GC proportion,
4NCV, and taxonomic annotation. It has a highly featured graph-
ical user interface that aids exploration and selection of binned
data. In our hands, the tool is effective but hard to use with larger
eukaryotic datasets, as it over-splits the datasets, and is partic-
ularly slow to respond when a large number of bins and their
contigs are selected. It is clear that addition of 4NCV (or simi-
lar high-dimensional nt pattern information) to the TAGC plot
approach could be very valuable, particularly if efficient methods
of unsupervised binning could be developed. Other tools designed
to split raw or assembled data into bins that putatively derive from
distinct species have been proposed that might serve as useful
post TAGC-plot approaches. Support vector machines informed
by corpora of training data can be used to separate mixed-origin
assemblies based prior expectations of species content (Rudd
and Tetko, 2005; Emmersen et al., 2007). Another development
might be to use a read or k-mer normalization method such as
khmer (Brown et al., 2012) to first equalize the effective molar-
ity of the genomes, and then simply use taxonomic matching
(and/or 4NCV) to separate the contigs into putative single-genome
bins.

The TAGC plot method has been used in several recent genome
assembly efforts, largely thus far in nematodes (because of our lab-
oratory’s interests and contacts). We and colleagues have used it
in assembly of several species’ genomes, and in isolation of their
Wolbachia symbionts (Kumar and Blaxter, 2011; Godel et al., 2012;
Kumar, 2012; Comandatore et al., 2013; see also http://nematod.es
for open access genomes from additional species). Schwarz et al.
(2013) used TAGC plots to clean up their Haemonchus contor-
tus read sets before assembly. We have also used TAGC plots to
examine transcriptome assemblies, though obviously the coverage
dimension in these data reflects gene expression levels rather than
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genome coverage, and have found them useful, particularly when
screening infected hosts sequenced to reveal both host and par-
asite/pathogen transcription (Heitlinger et al., 2013). Edinburgh
Genomics1 use TAGC plots as a standard part of their data quality-
control pipeline, particularly for ecologically or environmentally
focused genomics projects where the species of interest is new to
genome analysis.
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