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Abstract

Objective: Brain tumors are a leading global cause of mortality, often leading to reduced life expectancy and challenging
recovery. Early detection significantly improves survival rates. This paper introduces an efficient deep learning model to
expedite brain tumor detection through timely and accurate identification using magnetic resonance imaging images.

Methods: Our approach leverages deep transfer learning with six transfer learning algorithms: VGG16, ResNet50,
MobileNetV2, DenseNet201, EfficientNetB3, and InceptionV3. We optimize data preprocessing, upsample data through aug-
mentation, and train the models using two optimizers: Adam and AdaMax. We perform three experiments with binary and
multi-class datasets, fine-tuning parameters to reduce overfitting. Model effectiveness is analyzed using various perform-
ance scores with and without cross-validation.

Results: With smaller datasets, the models achieve 100% accuracy in both training and testing without cross-validation. After
applying cross-validation, the framework records an outstanding accuracy of 99.96% with a receiver operating characteristic
of 100% on average across five tests. For larger datasets, accuracy ranges from 96.34% to 98.20% across different models.
The methodology also demonstrates a small computation time, contributing to its reliability and speed.

Conclusion: The study establishes a new standard for brain tumor classification, surpassing existing methods in accuracy and
efficiency. Our deep learning approach, incorporating advanced transfer learning algorithms and optimized data processing,
provides a robust and rapid solution for brain tumor detection.
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Introduction
The brain, the most complex organ in the human body, over-
sees and coordinates numerous functions. It constitutes the
central nervous system with the spinal cord, which consists
of a vast network of approximately 86 billion neurons.1,2

Generally, the brain cell is formed through the neurogenesis
process and it takes about six months to mature a new brain
cell completely. But when brain cell DNA gets altered or
certain genes malfunction due to damage,3 it leads to the
unregulated growth of dysfunctional cells, causing brain
abnormalities. Brain tumors can develop at any age, but the
highest risk is observed in children under 15 and adults
between 85 and 89 years.4,5 Cancer web-portal statistics
show over 308,102 global diagnoses annually, with around
251,329 deaths from primary brain tumors.6 Including other
types of brain tumors, the mortality rate is significantly alarm-
ing, making it one of the world’s most feared diseases.

Commonly brain tumors are categorized as benign (non-
cancerous) or malignant (cancerous). Benign tumors grow
slowly, don’t spread, and can often be large; meningioma
is a common benign type, making up 30% of brain
tumors, more frequent in women.7–9 Although benign
tumors are typically removed via surgery, some can transi-
tion to premalignant and then malignant stages.10,11

Malignant tumors grow rapidly, with gliomas being the
most prevalent, accounting for 78% of adult brain
tumors.12–14 Particularly aggressive types include glioblast-
oma and astrocytoma.15,16 Of the 150+ distinct brain
tumors, the main categories are primary and secondary
(or metastatic).17 Primary brain tumors originate from
brain tissues and can be glial or non-glial.18 Both benign
and malignant tumors can be primary. Secondary or meta-
static tumors begin in other body parts (e.g. breast, lungs,
kidney, colon, and skin)19 and travel to the brain, always
being malignant and cancerous.

Researchers aim to detect brain tumors at their initial stage,
as early diagnosis can enhance survival rates and reduce brain
tumor cases and fatalities. Several computerized methods,
such as computed tomography (CT) scanning,magnetic reson-
ance imaging (MRI), positron emission tomography (PET),
and others, are employed for diagnosis.20 Of these, MRI is
favored for its precision in depicting the brain’s anatomical
structure, using a strong magnetic field and radio frequency
signals.21,22 It offers superior contrast with up to 65,535 grey
levels, often imperceptible to the human eye.23–25 Analyzing
numerousMRI imagesmanually canbe challenging, and time-
consuming, and also sometimes causes wrong diagnosis.
With the evolution of artificial neural networks researchers
have been investigating an automated diagnosis system of
brain tumors by implementing various machine learning
(ML)-based techniques and deep convolutional neural net-
works (CNNs).26 However, the ML model depends on
various handcrafted features, has much time complexity with
low accuracy results, and is expensive to carry out at the

same time. Compared to ML deep CNN algorithms can
learn automatically, recognize complex patterns and shapes,
and have the properties of self-learning. However, the draw-
backs of the traditional CNN model are that it suffers from
the vanishing-gradient problem, requires excessive data to
train, and cannot analyze three-dimensional (3D) input
images. On the contrary deep transfer learning (TL) models
can provide better accuracy even in the small number of train-
ing samples. The classification task can be performed more
effectively and reliably through TL frameworks.

In recent times, numerous TL models have emerged from
deep learning algorithms, emphasizing “knowledge transfer.”
These models have demonstrated efficiency across various
sectors, including agriculture, industry, and medical disease
prediction. The growing trend is to use CNN-based TL
for a wide array of computer vision challenges. Besides,
several TL research studies have been carried out for brain
tumor classification. However, many researchers used the
default model, the old noisy dataset that generates low out-
comes. Various studies did not analyze the results with per-
formance metrics. However, we have also investigated
some effective TL studies. In this research, we conducted
an outstanding TL experiment refining six TL architec-
tures: VGG16, ResNet50, MobileNetV2, EfficientNetB3,
DenseNet201, and InceptionV3 for brain tumor identification
and classification. The main objective of this experiment is to
build a robust and reliable brain tumor classification model
employing effective fine-tuning of the parameters, evaluate
the performance of the selected TL models, and further
verify the proposed framework on different datasets through
various performance and error measurement techniques.

The key contributions of this study are stated as follows:

• To fit the intended deep learning model, we applied a
suitable pre-processing method. Image enhancement
and augmentation are performed to increase the
number of images and resolve overfitting issues.

• We accomplished regularization and fine-tuning of the
parameters to increase the accuracy rate and developed
an extended layers-based framework to adjust the
weights of the utilized datasets.

• To validate the prediction outcomes, we utilized two dif-
ferent datasets using two different optimizers.
Furthermore, we implemented five-fold cross-validation
(CV) to evaluate the results of the small datasets.

• Model’s accuracy, errors, and complexity are analyzed
through various computation metrics, mean deviation,
and receiver operating characteristic (ROC) values for
each class.

• Finally, we provided a comparison of the experiment
results with the previous attempts and presented that our
proposed methodology has proved more effective for clas-
sifying brain tumors than other state-of-the-artodels.
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The main research contents of this article are arranged in the
following:

• Section “Related works” provides a thorough summary
as well as reviews of related literature, the inadequacies
of the previous works, and the goal and importance of
the research.

• Section “Proposed methodology” describes the steps of
the suggested methodology and the selected models in
detail.

• Section “Experiment and result analysis” analyzes the
experimental findings and computation methods elabor-
ately. In addition, a comparison of the previous research
and our proposed framework is also presented in this
section.

• The overall research outcomes of the methods, their lim-
itations, and the next steps are concluded in section
“Discussion.”

Related works
Over the years many researchers have built intelligent
systems to detect brain tumors using classical ML and
deep learning techniques. The intricacy of current
approaches in locating the precise boundaries and areas of
tumors reduces the overall accuracy of recognition. Most
of the experiment has poor accuracy and complex imple-
mentation architecture. Hence a fine-tuned, well-trained
TL-based neural network architecture plays a very effective
role in easily carrying out the classification of brain tumors.

Classification of brain tumor using CNN

In recent years, deep learning has been widely used for
brain MRI classification. For this approach, a dataset is
essential, and sometimes preprocessing is needed before
self-selecting key features. CNNs are a popular deep learn-
ing method for images. They act as feature extractors,
pulling vital classification information. Within CNNs,
lower layers detect basic structures such as shapes, textures,
and edges, while higher layers merge these to form compre-
hensive representations containing both global and local
details. However, CNN has limitations in feature extraction
in the case of small datasets, and cannot optimize important
features while taking long training time.

Using CNNs, Seetha et al.39 performed the classification
of brain tumor with a training accuracy of 97.5% on the
(BRATS) 2015 testing dataset. They trained the model on
a small set of data since the dataset contains <300 magnetic
resonance (MR) data, also no augmenting technique was
applied to increase the training data. Besides the experiment
lacks many useful information and result validation.

Sunanda Das et al.27 developed a CNN model for the
classification of brain tumors in T1-weighted contrast-
enhanced MRI images; a dataset of 3064 photos of three

different forms of brain tumors (glioma, meningioma, and
pituitary). They used a Gaussian filter, and histogram equal-
ization to preprocess the input data and three dropout layers
in the classification model with a dropout rate of 25%, 40%,
and 30%. Though dropout reduces overfitting, inappropriate
dropout rates decrease the strength of the neural network.
However, they gained a testing accuracy of 94.39%. Their
testing loss is high.

A deep multi-scale 3D CNN architecture is proposed by
Hiba et al.28 in order to classify the grade of glioma brain
tumors into low-grade gliomas and high-grade gliomas.
3D convolutional filters take advantage of generating
more powerful contextual features that deal with large
brain tissues’ variations. Instead of exploring only two-
dimensional (2D) slices, it examines the volumetric infor-
mation in MR images. They solved the heterogeneity and
low contrast problem of the data through preprocessing
and utilized a simple flipping method of augmenting tech-
nique. Their model achieved an accuracy of 96.49% using
the benchmark (Brats-2018) dataset. However, their
model is computationally memory exhausted as 3D CNN
generates a number of trainable parameters.

Parnian et al.29 developed Capsule Networks (CapsNets)
to overcome the shortcomings in CNN to fully utilize
spatial relations. The suggested improved CapsNet architec-
ture incorporates additional inputs from the tumor coarse
borders into its pipeline to sharpen the CapsNet’s focus.
The model handled transformations in a “Routing by
Agreement” process instead of a pooling layer, during
which lower-level capsules forecast how their higher-level
parents will behave. However, this method is incapable of
interpreting the features of brain tumors efficiently. They do
not perform any pre-processing technique and fail to extract
important parameters. Therefore the model does not obtain
a higher prediction outcome, on the contrary, model compu-
tation is complex. The accuracy of this approach is 90.89%.

Classification of brain tumor using a hybrid model

The related works provide substantial contributions to brain
tumor detection, demonstrating impressive accuracy rates
and innovative techniques. However, many of these
approaches still face challenges, particularly in generaliza-
tion, optimization, and handling small datasets.

Despite the high accuracy and promising results reported
by Kuirdi et al.,40, Khan et al.,41, Badjie et al.,42, and
Rajinikanth et al.,43, their methods exhibit several limita-
tions. Kuirdi et al.40 employed the Harris Hawks
Optimized Convolutional Network with substantial accur-
acy, but their approach may be constrained by its reliance
on a single dataset, potentially affecting its generalizability
to other imaging conditions or populations. Additionally,
the focus on noise elimination and specific segmentation
techniques might not address all types of tumor variability.
Khan et al.41 used a fusion-based contrast enhancement and
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deep TL, yet their results are based on a limited set of data-
sets, which may not fully capture the diversity of brain
tumors or imaging scenarios. The effectiveness of their
approach might vary with different types of tumors or
imaging conditions. Similarly, while Badjie et al.42

achieved remarkable accuracy with AlexNet, their study
primarily evaluated the model on a specific dataset, limiting
its applicability to diverse clinical settings. Rajinikanth
et al.43 developed a Computer-Aided Disease Diagnosis
system with high classification accuracy, but the system’s
reliance on handcrafted features and a specific classifier
might restrict its adaptability to other tumor types or
imaging techniques. These limitations highlight the need
for broader dataset validation and more adaptable method-
ologies to enhance the robustness and generalizability of
brain tumor detection systems.

Moreover, despite the promising results reported by
Rasheed et al.44,45 and Haq et al.,46 several limitations are
evident in their approaches. Rasheed et al.44 achieved impres-
sive accuracy and high precision in classifying glioma, men-
ingioma, and pituitary tumors. However, their methodology
relied on a specific dataset, which raises concerns about the
model’s ability to generalize across different imaging modal-
ities or diverse patient populations. Moreover, the focus on
only a few tumor types may limit the algorithm’s applicability
to a broader range of brain tumors. Similarly, Rasheed et al.45

integrated Gaussian-blur sharpening and Contrast Limited
Adaptive Histogram Equalization (CLAHE) for tumor classi-
fication, achieving high accuracy and generalization.
Nonetheless, their approach also suffers from limited valid-
ation across various datasets and tumor types, potentially
affecting the robustness of the model in real-world applica-
tions. Additionally, Haq et al.46 developed a CNN for
nodule detection with notable precision and specificity. Yet,
their method’s performance was primarily evaluated on
nodule detection, which may not directly translate to the clas-
sification of different types of tumors or other imaging chal-
lenges. These limitations highlight the need for more
comprehensive evaluations and broader applicability in
developing robust diagnostic tools.

To address these gaps, our research introduces a novel
methodology that not only incorporates advanced prepro-
cessing and regularization techniques but also ensures
extensive validation through multi-dataset evaluation and
rigorous CV. By employing a diverse set of datasets and
optimizing the model’s performance across various condi-
tions, our approach aims to provide a more comprehensive
and adaptable solution for brain tumor classification. This
broader validation and adaptability are essential for devel-
oping models that can generalize well and perform reliably
in diverse real-world scenarios.

In conclusion, our work fills the gaps identified in
existing research by offering a more robust and general-
ized approach to brain tumor detection, supported by
comprehensive validation across multiple datasets and

advanced optimization techniques. This approach addresses
the limitations of previous studies and contributes to the
advancement of reliable and adaptable diagnostic tools.

For automatic brain MRI categorization, a variety of
algorithms based on conventional ML and deep learning
techniques have been conveyed. Kang et al.30 presented
an automated hybrid system for classifying brain tumors.
In this method, several pre-trained deep learning models
are utilized for feature extracting. Furthermore, various
ML classifiers are used to ensemble three top features.
From their report support vector machine (SVM) with
radial basis function (RBF) provides better results than
the other ML classifiers. The study reported 92.16% accur-
acy on the BT-small-2c dataset, 98.67% on the BT-large-2c
dataset, and 93.72% on the BT-large-4c dataset. The main
drawback of this research is that their accuracy is quite
inconsistent. The model is not reliable. Their prediction
outcome is also lower than us. Besides accuracy, they did
not measure any other performance score and also did not
analyze the computation time of their hybrid model.

A novel hybrid-brain-tumor-classification (HBTC)
framework was designed and evaluated by Syed Ali
et al.31 for the classification of cystic, glioma, meningioma,
and metastatic brain tumors. The HBTC framework
received the input brain MRI dataset and performed pre-
processing and segmentation to identify the tumor location.
Through segmentation of the tumor area, the co-occurrence
matrix (COM), run-length matrix (RLM), and gradient
characteristics were obtained. Furthermore, they incorpo-
rated J48, meta bagging (MB), and random tree (RT) clas-
sifier to classify brain tumors. They gradually increase the
performance from 64.8% to 98.8%. The study finds that
the increase in region of interest size increases the classifi-
cation accuracy. Among RT, meta begging, j48, and
MLP classifiers, MLP classifier outperformed the others.
However, the overall architecture of this research is compli-
cated to carry out the tumor classification and requires a lot
of matrix calculation that increases the computation time.
Feature extraction is performed through conventional
methods and is not suitable for detecting brain tumors
easily.

Asaf et al.32 proposed a hybrid deep learning model
called DeepTumorNet that categorizes brain tumors as
glioma, meningioma, and pituitary tumor. They incorpo-
rated a pre-trained GoogLeNet architecture as the base
architecture. Instead of the last five layers, they added 15
new layers to the TL model. As the proposed model consists
of a generalized GoogleNet model only, it lacks the charac-
teristics of a hybrid model. Besides they compared the
results of the proposed model along with several TL archi-
tectures while the minimum accuracy recorded is 97.66%
and the maximum accuracy is 99.67% on the generalized
GoogleNet model. However, they did not clarify the
result with an appropriate confusion matrix and loss accur-
acy curve.

4 DIGITAL HEALTH



Classification of brain tumor using TL architectures

The issues of the classical CNN model in feature reduction
and requiring large training data turn to a more extended
neural network model. Deep TL approaches have greatly
addressed these problems. The use of TL algorithms effect-
ively minimizes the computational complexity of ML clas-
sifiers. In addition, it can provide better outcomes even
training on a small dataset. Therefore, researchers are
now exploring various TL techniques in the case of brain
tumor detection. Deepak et al.33 used a pre-trained
GoogLeNet TL model to extract features from the figshare
brain MRI image dataset. They added three new layers to
the base model. Utilization of the SVM and K-Nearest
Neighbor classifiers instead of the classification layer
helped to increase the model performance. However, they
recorded accuracy by taking 10 epochs due to overfitting.
The loss curve shows the decrease in training loss while
the increase in validation loss indicates model overfitting.

Rayene et al.34 used nine TL models to classify three types
of brain tumors using contrast-enhanced magnetic resonance
images (CE-MRI) benchmark dataset. They modified the last
three layers of pre-trained networks in order to adapt them to
brain tumor classification tasks. They observed the highest
accuracy on AlexNet and VGG16-19 architecture rather
than the deeper architecture. However, except for accuracy,
they did not measure any other scale of model validation.
To evaluate the efficiency of the model measurement of val-
idation loss and actual loss is crucial.

Arbane et al.35 implemented threeTL architectures, namely
ResNet,Xception, andMobilNet-V2.To categorizebrainMRI
with andwithout tumors they adapted the last two layers of the
pre-trained networks as well as the loss of the function of the
last layer from softmax to sigmoid as they performed classifi-
cation tasks on the binary class 253 BT dataset. This attained
the best results with 98.24% and 98.42% in terms of accuracy
and F1-score, respectively. However, their model is computa-
tionally complex to build and lower accuracy compared to our
model. Besides they trained the model by taking 20 epochs
which is less than required.

A multi-modal brain tumor classification study is con-
ducted byGopal et al.36 includingfive varied classMRI data-
sets. They launched the experiment using a CNN-based
AlexNet TL system. Besides they presented a comparison
of the performance of the deep learning model along with
six different ML classifiers with multiple CV protocols.
The deep TL model increased the accuracy in a greater
range than the ML classifier in the case of with and
without CV. Among the CV techniques, TT CV recorded
better outcomes than K2, K5, and K10. The model achieved
the highest accuracy of 100% on binary class data, 95.97%
on three class data, 96.65% on four-class data, 87.14 on
five class data, and 93.74 on six class data.

Another multi-modal brain tumor classification study is
proposed by Muhammad et al.37 Initially, they built the

training model using Densenet201 architecture. For
feature selection, they applied two techniques: Entropy–
Kurtosis-based high feature values and a modified genetic
algorithm (MGA) based on metaheuristics after the
average pooling layer. Feature reduction is fulfilled
through thresholding. The selected features are then
refined and fused using a non-redundant serial-based
approach and final features are classified using a multi-class
SVM cubic classifier. They reported an accuracy of 99.9%
on BRATS2018 and 99.7% on BRATS2019 datasets.
However, the major drawback of this study is that the
fusion process increases the computational time. Besides
the feature reduction process sometimes reduces important
features that have an impact on the accuracy.

Hassan et al.38 classified brain tumors utilizing the binary
class 253 small BT dataset. They explored VGG-16,
ResNet-50, and Inception-v3 architecture to address
tumor identification. To crop the dark edges from the
images Open source Computer Vision (CV) Canny Edge
Detection technique is used. Furthermore, they trained the
models for 15 epochs with a batch size of 32. They achieved
accuracy 96%, 89%, and 75% accuracy at VGG-16,
ResNet-50, and Inception-V3, respectively. However, the
model needs to fine-tune the parameters. Besides the valid-
ation and loss of the model is quite inconsistent.

Analyzing the prior research we have seen that the per-
formance of the TL approach challenges the conventional
approaches. TL frameworks have proven effective in redu-
cing computational complexity, and time complexity. It can
easily optimize, extract, and learn a large number of para-
meters that inspire us to implement TL for brain tumor clas-
sification. Though several studies recorded outstanding
performance, many of them have issues with model overfit-
ting, long computation time, fine-tuning of parameters, and
low accuracy rate. Some study is conducted using a single
dataset or an imbalanced and unlabeled dataset. Many
developed models cannot classify multi-class brain tumor
data. Besides the models that are trained on small data
cannot predict genuinely except for the used datasets. In
our study, we aimed to address these problems through
effective fine-tuning of the important training parameters,
incorporating pre-processing and several augmentation
techniques to meet the data scarcity. To verify the
model’s strength two different datasets is explored.
Besides we recorded and analyzed the results through per-
formance score-precision, recall, F1-score, accuracy, stand-
ard deviation (SD), and ROC value. Our model provides
more accurate results with low computational complexity.
Table 1 shows a list of methodologies, datasets, and per-
formance of the previous years’ research.

Proposed methodology
We created a multi-class brain tumor classification and pre-
diction methodology using six TL frameworks because of
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Table 1. Summary of related works.

SI. No. Author (reference) Datasets Techniques Accuracy

1 Sunanda Das et al.27 3064 CE-MRI images CNN 94.39%

2 Hiba Mzoughi et al.28 (Brats-2018) 3D CNN 96.49%

3 Parnian Afshar et al.29 3064 CE-MRI images Modified CNN 88.33%

CapsNet 90.89%

4 Jaeyong Kang et al.30 253 MRI images
Br35H (Brain
tumor detection
2020),
Brain-tumor
-classification-
dataset

CNN, SVM,
RBF, TL models
(VGG-16,
ResNet-50,
DenseNet-169,
MobileNetV2,
InceptionV3,
ShuffleNetV2,
AlexNet)

90.35%
97.85%
90.19%

5 Syed Ali Nawaz et al.31 1000 MRI image dataset HBTC, COM,
RLM, MLP,
RT, MB

98.80%

6 Asaf Raza et al.32 3062 CE-MRI dataset CNN, GoogLeNet 99.67%

7 S. Deepak et al.33 MRI figshare dataset CNN, GoogLeNet 98%

8 Rayene Chelghoum et al.34 (CE-MRI) benchmark dataset CNN,
TL models
(AlexNet, ZFNet,
GoogleNet,
ResNet,
Inception-v4,
SENet)

98.71%

9 Mohamed Arbane et al.35 253 MRI images CNN, TL models
(ResNet, Xception and
MobilNet-V2)

98.24%

10 Gopal S. Tandel et al.36 REMBRANDT dataset CNN, ML-
classifier
(DT, SVM,
Naive Bayes,
K-nearest
neighbor),
TL model
(AlexNet)

96.65%

11 Muhammad et al.37 BRATS2018 BRATS2019 datasets Densenet201, SVM, MGA 95%

12 Hassan et al.38 253 MRI images VGG-16, ResNet-50, Inception-v3 96%
89%
75%

CapsNet: Capsule Network; CE-MRI: contrast-enhanced magnetic resonance images; CNN: convolutional neural network; COM: co-occurrence matrix; 3D:
three-dimensional; DT: decision tree; HBTC: hybrid-brain-tumor-classification; MB: meta bagging; MGA: modified genetic algorithm; ML: machine learning;
MLP: multi-layer perceptron; MRI: magnetic resonance imaging; RBF: radial basis function; RLM: run-length matrix; RT: random; SVM: support vector
machine; TL: transfer learning.
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the great contributions of TL approaches in earlier research.
The experiment integrates data collection, pre-processing,
data augmentation, feature extraction, fine-tuning of the para-
meters, and CV. Furthermore, the result is evaluated through
various performance metrics: precision, recall, F1-score,
accuracy, SD, and ROC values. The schematic block
diagram of the experimental framework is shown in Figure 1.

This study was conducted from 2023 to 2024, encom-
passing a collaborative effort among researchers from
Jagannath University, Deakin University, King Saudi
Arabia, and Umm Al-Qura University. The nature of the
study involves developing a deep learning model for
brain tumor classification using TL models. Specifically,
the study was approved by the Institutional Ethics
Committee (IEC) of Jagannath University, with the ethics
waiver number IEC/2024/341.

Image preprocessing

Preprocessing is an efficient way to enhance the visual
appearance of the images in the dataset. This helps to increase
the quality and add parameters to the MR pictures while,
removing irrelevant noise and background of undesired
parts, smoothing the regions of the inner part to maintain rele-
vant edges.47,48 As we choose high-resolution MR image
datasets, it does not require much processing. Since the ori-
ginal size of the images in the dataset contains different
pixel numbers for different images, we resize all the images
and convert them into the same size of 160 × 160. This will
reduce the computational complexity of the model. In add-
ition, the inputs for the pre-trained models on ImageNet

cannot be larger more than 224 × 224 pixels.49 Before
feeding the images into the model, the images are also
labeled according to various classes, such as “Yes” and
“No” in the small dataset, while “Glioma,” ‘Meningioma,”
“No_tumor,” and “pituitary” in the multi-class dataset. This
enables the models to easily identify different labeled
images and increases the accuracy. Figure 2 represents
some image samples before and after the pre-processing.

Data augmentation

Data augmentation plays a very important role in making the
deep learning model more reliable by enabling the neural
network to be trained on a huge amount of training data. It
expands the amount of data by adding copies of already exist-
ing data after a minimal alteration. Serving as a regularizer it
also aids in minimizing overfitting as well as network gener-
alization errors while a ML model is being trained.50

In this research,we applied several augmentationmethods51

on image data to create a diversity of images based on rotation,
shifting, rescaling, zooming, horizontal flipping, vertical flip-
ping, brightness, and shearing operations. The Image Data
Generator feature of TensorFlow’s Keras framework was
used to carry out these tasks.49 The value of the image data
augmentation parameters, are as follows: rotation_range= 7,
rescale=1.255, zoom_range=0.1, width_shift_range= 0.05,
height_shift_range= 0.05, brightness_range= 0.05, shear_
range= 0.2, vertical_flip= true and horizontal_flip= true.
Each of these changes is considered as a distinct image thus
extensively increasing the number of images in the dataset.
Figure 3 displays a few instances of augmented pictures.

Figure 1. Overview diagram of the proposed methodology.
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Transfer learning (TL)

TL approaches reuse pre-trained knowledge and hence can be
trained using fewer training data. Due to the ubiquity of TL
approaches,we incorporate six pre-trained architectures includ-
ing VGG16, EfficientNetB3, ResNet50, MobileNetV2,
DenseNet201, and InceptionV3 in our methodology and
adapt them to meet our requirements through a smooth modifi-
cation process. We selected these models because of their out-
standing feature extraction capacity with low error rates and
accurate classification skills. All of these models were trained
on the Imagenet dataset and had a pre-trained weight. To
adapt the weights and inputs of the given dataset, we added
five new layers excluding the last output layer. To address
the overfitting issues, the models were trained on the widely
augmented data. Furthermore, important parameters of the
models are tuned to increase the accuracy rate.

VGG16: Visual Geometry Group (VGG)52 network
includes 16 trainable layers (i.e. layers that have weights).
Instead of using a large number of hyperparameters, VGG16
emphasized using convolution layers of a small 3×x3 filter
with a stride 1 and max pool layers of 2×x2 filters with
stride 2. It basically consists of several blocks of convolution
and max pooling layers and two fully connected (FC) layers
followed by a softmax for output. In addition, the model has
no nontrainable parameters and recorded an error rate of
6.8% in the 2014 ILSVRC challenge.

ResNet50: ResNet50 stands for Residual Network53

with a 50-layer CNN including 48 convolutional layers,

one MaxPool layer, and one average pool layer.54 At the
ILSVRC 2015 classification competition, the model
emerged as the winner with only a 3.57% training error.
With the deepening of layers, a model may suffer degradation
in accuracy. Hence the residual network brings out the
concept of skip connections that connect the output of the pre-
vious layer directly to the stack layer thus solving the
vanishing- and exploding-gradient problem. The model is
upgraded to layer depth 50 from the original ResNet34 archi-
tecture by replacing each two-layer block with a three-layer
bottleneck block. The bottleneck residual block simplifies
the number of parameters and matrix multiplications using
1 × 1 convolutions, which makes the model more accurate
and faster than Resnet34, VGG16, and VGG19.

MobileNetV2: A real-time classification system called
MobileNetV2 was created by Google to meet the computa-
tional demands of smartphones and other mobile devices.55

Because of its lightweight architecture, themodel gains a com-
petitive accuracy with significantly fewer parameters and
smaller computational complexity.56 It contains 53 convolu-
tion layers and one AvgPool with nearly 350 GFLOP. There
are only two types of blocks: Inverted Residual Block of
Stride 1 and Bottleneck Residual Block of Stride 2. The
inverted residual block employs lightweight convolutions to
filter features in the expansion layers. According to the under-
lying theory, the bottlenecks encapsulate the model’s inter-
mediate inputs and outputs while the inner layer encodes the
model’s capability of transitioning from lower-level view-
points such as pixels to higher-level descriptors like image

Figure 2. Few samples of magnetic resonance imaging (MRI) images (a) before and (b) after pre-processing.
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components. Both blocks contain three types of layers which
are 1 × 1 convolution with rectified linear unit 6 (ReLU6),
3 × 3 Depthwise Convolution, and again 1 × 1 convolution
but without any nonlinearity. It increases the classification
power of the model and makes it highly effective for image
classification tasks. Figure 4 shows the two different parts in
the MobileNetV2 model.

DenseNet201: DenseNet-201 is a dense CNN that has 201
layers, giving more smooth decision boundaries introduced by
Huang et al.57 Each layer in DenseNet is connected to all other
layers making the model deeper but at the same time making
themmore efficient to train.With a view tomaximizing informa-
tion flow between the levels of the network, each layer receives
input from all the previous layers and transmits its own feature
maps to all the following layers in a feed-forward manner. A
basic convolution and pooling layer form the foundation of
DenseNet. It consists of two important blocks: Dense Blocks
and Transition layers. A dense block has four levels and every
dense block has two convolutions, with 1×x1 and 3×x3 sized
kernels. In dense block Level 1, this is repeated six times, in
Level 2 it is repeated 12 times, in Level 3, 24 times and finally
in Level 4, 16 times. Each convolutional layer is followed by
BatchNormalization, ReLU activation, and then the actual
Conv2D layer. The transition layers eliminate half the number
of channels. Furthermore, the dense block has a growth rate of
(k) for each layer. If the growth rate is four then the transition
layer implies a 2×x2 average pool with a 1×x1 conv and a

stride of 2.58 With the deepening of so many layers, the
models can extract, train, and learn huge features while reducing
unnecessary parameters. We implemented DenseNet201 to
achieve higher accuracy with a robust and reliable outcome.
Besides themodel tends to eliminate the vanishing-gradient pro-
blems and also enables the reusability of features.

EfficientNetB3: In 2019, Tan and Le59 created this model
based on the fact that carefully balancing network depth,
width, and resolution can lead to better performance. We
chose the EfficientNetB3 model because it provides about
eight times smaller but six times faster model structure
than all the existing ConvNet models. This enables an
efficiency-oriented base model to surpass models at every
scalewhile avoiding extensive grid search of hyperparameters,
resulting in much better accuracy and efficiency. The main
concept of EfficientNet is to uniformly scale all dimensions
including depth, width, and resolution using a simple yet
highly effective compound coefficient. However, choosing
this scaling factor is followed by some restrictions that resolu-
tions are not divisible by 8, 16, etc. and channel size must be
multiples of 8.60 Resolution may be limited by memory even
though depth and breadth can still grow. Based on the reso-
lution of input shapes EfficientNet is categorized from B0 to
B7. In our work, we demonstrated EfficientNetB3 by scaling
up MobileNet and ResNet, which has a resolution of 300.

InceptionV3: InceptionV3 is a member of the Inception
family that achieves higher than 78.1% accuracy on the

Figure 3. Samples of augmented brain magnetic resonance imaging (MRI) images.
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ImageNet dataset at image recognition.61 The model is the
result of several concepts that have been established by
various scholars throughout the years. The model is 48
layers deep and can make enhancements through the
usage of Label Smoothing, factorized 7×x7 convolutions62

as well as average pooling, max pooling, concatenations,
dropouts, and FC layers. To convey label information
lower down the network auxiliary classifier is used and to
calculate loss, Softmax is used in this model. Inputs for acti-
vation are subjected to batch normalization, which is widely
employed throughout the model. We utilized this model as
it integrates several updated methods to solve overfitting
and increase the model’s strength.

Fine-tuning and feature extraction

As mentioned earlier, the study explores six different TL
algorithms. The original architecture of the TL models
was trained on the Imagenet dataset that contained about
14,197,122 images of 20,000 different categories of
objects.63 Initially, we downloaded the pre-trained
models. To configure the custom input for classification,
we excluded the top layer of the original model using the

command include_top=False for all the selected models.
Then we concatenated five new layers that were trained
only in the given MRI datasets to increase the efficiency,
feasibility, and adaptability of the models on the target
datasets. The models were trained and evaluated using
binary class and multi-class MRI image datasets. To
extract deep features and accommodate the new weights
of the brain MRI image datasets, we concatenated one
global average pooling 2D layer, followed by one
dropout layer with a dropout rate of 0.55, one dense
layer with dense unit 60, another dropout layer with a
dropout rate of 0.32, and a dense layer with dense unit 4
in all our training model.

To regularize the weights in the additional layer, the
already preprocessed images were given as input
instead of the raw data. Labeling of the input class as
Yes, No, Glioma, Meningioma, Pituitary, No_tumors
upgrades the model learning. Besides resizing all the
images to 160 × 160 reduces computational complexity.
To solve the overfitting problems of the training model,
we implemented several types of augmented parameters
to increase the training sample by a great number.
Furthermore, we utilized regularization to prevent

Figure 4. Main two blocks of MobileNetV2.
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overfitting by incorporating some limitations into the
weights and biases. However, we did not freeze the train-
able layers of the pre-trained architecture. For clear under-
standing, one of the implemented architectures
(EfficientNetB3) is presented in Figure 5. The execution
of the models goes through various operations including

padding, convolution, batch normalization, max pooling,
and activation (ReLU, exponential linear unit (ELU),
and softmax). Generally, the integral parts of the models
perform these operations. The maximum number of fea-
tures obtained by max pooling or activation is then for-
warded to the additional global average pooling layer.

Figure 5. EfficientNetB3 architecture of our proposed methodology: (a) The original EfficientNetB3 model and (b) fine-tuned EfficientNetB3
model.
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As seen in Figure 5(b), a 2D global average pooling layer is
used to achieve downsampling by calculating the mean of the
input’s height and width dimensions (spatial dimensions.). On
many accounts, it is preferable over the flattening layer. It acts
as a regularizer to reduce the overfitting of the model. The
dropout layer used then acts as a mask, suppressing half of the
neurons’ contributions to the subsequent layer while protecting
the functionality of all other neurons. During training, the
dropout layer randomly sets input units to 0 at a frequency
rate at each step. Inputs that are not set to 0 are scaled up by
1/(1− rate) to keep the total of all inputs the same.64 In addition,
the dropout layer also performs regularization tasks to reduce
overfitting and increase diversity. Then the dense layer is imple-
mentedwith a decreasing dense unit. Thefirst dense layer is initi-
alizedwith ahigher unit so that it can select thebest features out of
all the features generated so far. We used the ELU activation
function in thefirst dense layer.ELU, asopposed toReLU, con-
tains negative values, which enables them to reduce computing
complexity while bringing mean unit activation closer to zero,
similar to batch normalization. The output of this dense layer
was then forwarded to the next dropout layer with a small
dropout rate. Finally, the last dense layer is implemented with
a smaller unit andSoftMaxas activation tochoose the important
and related features from the output of the dropout layer. In the
case of classifyingmulti-class input data, softmax is regarded as
the best classifier to be used in the last layer of the neural
network. The softmax classifier converts the unprocessed
outputs of the neural network into a vector of probabilities—
basically, a probability distribution across the input classes.

When it comes to reducing the loss function value, an opti-
mizer is deployed along with the classifier. The optimization
process of the neural network is an essential part as it sustains
the weights, learning rate, and bias value to minimize the func-
tional loss at the output. The experiment is launched parallelly
to get the topmost optimization value using twowidely used opti-
mizers, Adam, andAdaMax. A sparse_categorical_crossentropy
rather thancategorical_crossentropy loss function is implemented

to compute the loss value. Generally, categorical cross-entropy
(CCE) generates a one-hot array containing the likely match for
eachcategory,whileacategory indexof themostprobablematch-
ing category is produced using the sparse CCE. The model is
trained with a batch size of 13, epochs 70 and patience 50 for
small datasets, and patience 70 for big datasets. We run the
model several times varying the dropout values and optimizer
parameters: learning rate and epsilon value to get a better
outcome. The final value of these parameters for all the
models is shown in Table 2. We used beta_1=0.91 and
beta_2=0.9994 for all the models. Tuning of the parameters in
the additional layers reduces the false positive (FP) and false
negative (FN) values in the prediction of input classes.

Experiment and result analysis

Experimental setup and implementation

Weput into practice the entire framework inKeraswith graph-
ics processing unit (GPU) support for TensorFlow. The
Anaconda Navigator using a Jupyter Notebook environment
served as the platform for the whole experiment, including
training and testing. It required a PC running Microsoft
Windows 10 Pro with an Intel(R) graphics card, Core (TM)
i3-6006U CPU running at 2.00GHz, 2000MHz, 2 cores, 4
logical processors, 8 GB RAM, & 120GB SSD. and 26GB
virtual memory. Code is written in Python programming lan-
guage with a number of libraries such as Pandas, NumPy,
Matplotlib, Seaborn, TensorFlow, Keras, Scikit-learn, etc.
We also utilized the hosted Google Colab GPU.

Dataset description

The datasets utilized for this experiment are collected from
Kaggle’s repository, all available publicly on the internet.
To avoid the problems associated with class imbalance,
we exploited the balanced datasets.

Table 2. Final value of the fine-tuned parameters for all the models on the binary class dataset.

Transfer learning
Adam AdaMax

models Dropout 1 Dropout 2 Learning rate Epsilon Dropout 1 Dropout 2 Learning rate Epsilon

VGG16 0.53 0.3 0.000016 1×10−9 0.02 0.03 1×10−4 1×10−9

EfficientNetB3 0.5 0.3 0.000016 1×10−8 0.03 0.02 1×10−3 1×10−8

DenseNet201 0.55 0.3 0.000016 1×10−8 0.02 0.03 1×10−3 1×10−8

InceptionV3 0.55 0.3 0.000016 1×10−9 0.025 0.03 1×10−3 1×10−9

ResNet50 0.5 0.3 0.000016 1×10−8 0.03 0.02 1×10−3 1×10−8

MobileNetV2 0.55 0.32 0.000016 1×10−8 0.04 0.025 1×10−3 1×10−8
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• Datset-1: The small dataset namely Brain_tumor_dataset,
contains a total of 253 images on two class categories
offered by Navoneel Chakrabarty.30 The distribution of
this dataset is shown in Table 3.

• Datset-2: Brain-tumor-classification-dataset is the big
dataset we used. Overall, 3264 images include four
major classes (glioma, meningioma, pituitary, and no
tumor) offered by Sartaj Bhuvaji.65 The distribution of
this dataset for each segment including training and
testing data is shown in Table 4.

K= 5-fold CV

To evaluate the performance of our brain tumor classification
model, we employed 5-fold CV. The dataset was split into
five subsets, with each fold used as a validation set while the
remaining four folds were utilized for training. This process
was repeated five times, ensuring that every subset was used
for validation exactly once. The final performance metrics
were obtained by averaging the results across all five folds, pro-
vidinga robust estimateof themodel’sgeneralizationcapability.

Evaluation of performance metrics

To assess the effectiveness of the developedmodel for classify-
ing different classes from the input data, we used four metrics,
accuracy, sensitivity or recall, precision, and F1 score. The
values of these metrics are measured and obtained through the
confusion matrix. In a 2D table of actual versus predicted
classes, the confusion matrix presented us with the total
correct and incorrect prediction of the model for each class.

The most obvious performance statistic is accuracy,
which is inversely correlated with the fraction of properly
predicted observations to all observations. The formula
can be depicted as:

Accuracy = (TP+ TN)
(TP+ FP+ FN + TN)

(1)

Precision is referred to as the proportion of accurately
anticipated positive values to all positively expected
values. The formula can be depicted as:

Precision = TP
(TP+ FP)

(2)

Recall is defined as the proportion between the total number
of actual values and the properly anticipated positive value.

The formula can be depicted as:

Recall = TP
(TP+ FN)

(3)

The F1-Score is the harmonic mean of the precision and
recall scores for a classification issue. The formula is as
follows:

F1-Score = (2 × Precision × Recall)
(Precision + Recall)

(4)

Here TN, TP, FN, and FP refer to true negative, true posi-
tive, false negative, and false positive values, respectively.
If it is positive in both actual and predicted class then it is
called TP (True 44 Positives), if in the actual class, it
is positive but in predicted class it is negative then it is
called FN, if in actual class it is negative and in predicted
class it is positive then it is called FP, if in actual class it
is negative and in predicted class also it is negative then it
is called TN. While the TP and TN values represent the
correct prediction, and FP and FN values represent
the incorrect prediction of the class value. Therefore the
lower the value of FN and FP the more reliable the model
becomes.

CCE loss

In addition, the loss function was used in this study to
evaluate how well the anticipated model performed. A
CCE loss was used to train the model as well as to lower
the cost of the model parameters. The value of the loss func-
tion is minimized by increasing the number of epochs. It is
obtained using the depicted equation:

L(Y , Ŷ) = −
∑

Y ∗ log (Ŷ)+ (1− Y) ∗ log log (1− Ŷ)
( )

(5)

where Y = true label, Ŷ = predicted labels & L(Y , Ŷ)= loss
function.

Normalization of confusion matrix

Normalization of the confusion matrix is accomplished to
compute and represent all the samples of each category
on a scale of 1.00. The precision values are determined

Table 3. Distribution of brain tumor dataset 1.

Type of images Number of images

Yes 155

No 98

Table 4. Distribution of brain tumors dataset 2.

Subset Glioma Meningioma Pituitary No_tumor

Training data 826 822 827 395

Test data 100 115 74 105

Total 926 937 901 500
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by adding the sums of the columns for each value or sample
that is allocated to a certain class, and, then dividing the
diagonal values by these sums. The diagonal values of the
matrix represent the recall or sensitivity values. These
values can be obtained using the following formula: 6.

RecallA = SensitivityA

= TPA
(TPA + EAB + EAC + EAD)

(6)

where diagonal values such as TPA, TPB, and so on
represent TPs for the corresponding classes. The off-
diagonal values of the normalized matrix are also calcu-
lated. For instance, the following equation may be used to
get the value of the row “A” × column “B” cell.

AB = EAB

(TPA + EAB + EAC + EAD )
(7)

where EBA, EAC were referred to as the error values.

Area under the receiver operating characteristic
curve (AUC-ROC) curve

Graphs that display the TP rate and FP rate of classifiers are
known as AUC-ROC curves. It shows the AUC-ROC
curve. We utilized the ROC curve in the binary class
dataset to evaluate the performance. Usually, it plots the
true positive rate (TPR) and false positive rate (FPR) on
the Y and X axes, respectively. Since the range of both
TPR and FPR is 0 to 1, the area remains between 0 and
1. The greater the AUC value the higher the performance.

Standard deviation (SD)

SD, a statistic that captures how much the data values
deviate from the mean, is a frequently used method to quan-
tify data spread. This is obtained by computing the square
root of the variance, or the average of the squared devia-
tions between each data value and the mean. When the
SD is low, it indicates that the data values are near the
mean; when it is high, it indicates that the data values are
dispersed over a large range. The larger deviation also
represents a larger bias or error. We computed the SD for
model evaluation for both two-class and multi-class data.

Results analysis and discussion

As said previously this research explored two MRI brain
tumor datasets for six deep learning frameworks. First, we
launched the experiment on a small dataset containing
only two types: “Yes” and “No.” After achieving remark-
able accuracy in the small dataset, we relaunched the
experiment on a big dataset containing three tumor
classes. The outcome of these models according to the
implemented methodology is analyzed for both datasets.

The parameters of the models are trained and optimized
taking batch size 13 on 70 epochs. To test the model’s gra-
dient values in a small and big amount of data the experi-
ment is launched using two widely used optimizers:
Adam and AdaMax. Adam is selected as it functions well
with a variety of paradigms, reduces memory requirements,
and is easy to implement. Furthermore, it adjusts the learn-
ing rate for each weight of the neural network by estimating
the first and second moments of the gradient. AdaMax is a
variant of Adam that employs the L-infinity norm of the
gradients rather than the second moment of the gradients.
It is selected as it can handle the vanishing-gradient and
exploding-gradient problems and also provide faster con-
vergence. Besides AdaMax performs well in case of
extremely sparse gradients.

Dataset-1 (two class). We split the small dataset by taking
85% of the samples for training purposes, while the remain-
ing 15% for testing. To keep the pdf smaller, we provided
the loss, accuracy graph, and confusion matrix before and
after normalization only for MobileNetV2 architecture.
We launched two experiments in this dataset for the effect-
ive evaluation of the results.

Experiment 1. We perform classification by splitting the
dataset. The classification result of each class is then eval-
uated using performance metrics precision, recall,
F1-score, and accuracy for both optimizers.

Adam: To demonstrate how effectively the models
worked, the models’ actual versus validation loss and
accuracy are plotted through graphs. Since Adam adapts
the learning rate easily, it makes computation time faster
and requires fewer tuning parameters. The prediction out-
comes in the corresponding classes using the Adam opti-
mizer are shown in Figure 6 only for MobileNetV2
architecture. It shows that the FP and FN values are
reduced to zero since the model can predict the actual
number of data for the respective classes. Besides we see
from the graph that the initial training and validation loss
was too high. It decreases slowly and reduces to 0.011
while the training and validation accuracy increase to 1.0
after 20 epochs. According to Table 5 for Adam optimizer,
we see that the actual prediction of the class Yes, No of all
the models obtained is 100. The precision, recall, and
F1-score values for each model are depicted in Table 6.
From the table, we find that our models performed
smoothly achieving the precision, recall, and F1-score
value of 1.00 using the Adam optimizer.

AdaMax: Further to examine the effectiveness of the
AdaMax optimizer, we relaunched the experiments using
AdaMax. The use of the L-infinity norm in AdaMax
makes it more stable than Adam. We show the actual
versus validation loss and accuracy and prediction of
classes for the architecture in Figure 7 using AdaMax opti-
mizer. From the normalized confusion matrix, we see that
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Figure 6. Performance results of MobileNetV2 using Adam optimizer for the two-class dataset: (a) actual versus validation loss; (b) actual
versus validation accuracy; (c) confusion matrix before normalization; and (d) confusion matrix after normalization.

Table 5. True prediction value of the classes obtained through the confusion matrix in the two-class dataset without cross-validation.

Adam AdaMax

Transfer learning (TL) model Yes No Yes No

VGG16 100% 100% 100% 100%

EfficientNetB3 100% 100% 100% 100%

DenseNet201 100% 100% 100% 100%

InceptionV3 100% 100% 100% 100%

ResNet50 100% 100% 100% 100%

MobileNetV2 100% 100% 100% 100%

Average 100% 100% 100% 100%
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the TP value of each class is 1 which shows 100% predic-
tion of the actual class values. Besides the graph depicts that
both the training and validation loss is minimized to 0.012
and the accuracy is increased to 1. The performance scores
for the AdaMax optimizer are also demonstrated in Table 7.
According to Table 5 for AdaMax optimizer, we see that the
actual prediction of the class Yes, No of all the models
obtained is 100. Using AdaMax, we obtain the same preci-
sion, recall, and F1-score value as we got using Adam. The
comparison of training and testing accuracy using these two
optimizers is depicted in Table 8. From the table, we con-
clude that our proposed framework can predict brain
tumors with 100% test accuracy in all the implemented
TL algorithms for both Adam and AdaMax optimizers in
this dataset.

As for both optimizers, the training and testing accuracy
of all the models are recorded to 100, we launched another

experiment in this dataset to validate the model
performance.

Experiment 2. We launched this experiment implementing a
five-fold CV approach along with various performance
metrics precision, recall, F1-score, accuracy, SD, and
AUC-ROC curve using AdaMax optimizers. The value of
these metrics for each fold is listed through Tables 9 and
10 of all the model. We computed the average of the
results obtained in all the test sets for all the metrics.

After CV, the VGG16 model achieved the highest accur-
acy of 99.95% in Fold4 with an SD of 0.115. The model
achieved an average accuracy of 99.87% and an average
SD of 0.120. EfficientNetB3 model achieved the highest
accuracy of 99.98 in Fold5 with an SD of 0.105. The
model achieved an average accuracy of 99.95% and an
average SD of 0.111. DenseNet201 model achieved the
highest accuracy of 99.986 in Fold4 with an SD of 0.109.
The model achieved an average accuracy of 99.943 and
an average SD of 0.113. InceptionV3 model achieved the
highest accuracy of 99.996% in Fold5 with an SD of
0.103. The model achieved an average accuracy of 99.95
and an average SD of 0.110. MobileNetV2 model achieved
the highest accuracy of 99.998 in Fold5 with an SD of
0.100. The model achieved an average accuracy of
99.96% and an average SD of 0.105. ResNet50 model
achieved the highest accuracy of 99.96 in Fold4 with an
SD of 0.109. The model achieved an average accuracy of
99.943% and an average SD of 0.113. As the result
achieved effective outcome in all the parameters there is
no issue of potential bias.

Dataset-2 (Four Class). We justified the performance
obtained in the two class 253 image dataset utilizing
another four-class dataset. We split this dataset by taking
80% of the samples for training purposes, while the remain-
ing 20% for testing. The classification of tumor classes is
carried out for all the selected models. The result is evalu-
ated through precision, recall, F1-score, accuracy, and
SD. The model can classify glioma, meningioma, pituitary
tumor tissues, and normal brain tissues more accurately.

Adam:Using Adam optimizer the training and validation
loss and accuracy along with the prediction of the actual class
label for the MobileNetV2 architecture is depicted in
Figure 8. We can easily understand the number of actual
and false predictions of each class for each model from the
normalized confusion matrix. As depicted in the graph, in
the first epoch, the loss was high while accuracy was low.
In the first 20 epochs, the training loss is minimized to
almost 0.0 and the accuracy has increased. The validation
loss is also minimized to 0.1. Besides, we added the predic-
tion of each class through the normalized confusion matrix
in Tables 11. On an average 98.3% of the meningioma
class and without tumor images has been truly predicted.
The Glioma class contains more misclassified images

Table 6. Performance analysis of the models using optimizer Adam
on two-class datasets without cross-validation.

Models Tumor class Precission Recall F1-score

VGG16 Yes 1.00 1.00 1.00

No 1.00 1.00 1.00

Average 1.00 1.00 1.00

EfficientNetB3 Yes 1.00 1.00 1.00

No 1.00 1.00 1.00

Average 1.00 1.00 1.00

DenseNet201 Yes 1.00 1.00 1.00

No 1.00 1.00 1.00

Average 1.00 1.00 1.00

InceptionV3 Yes 1.00 1.00 1.00

No 1.00 1.00 1.00

Average 1.00 1.00 1.00

MobileNetV2 Yes 1.00 1.00 1.00

No 1.00 1.00 1.00

Average 1.00 1.00 1.00

ResNet50 Yes 1.00 1.00 1.00

No 1.00 1.00 1.00

Average 1.00 1.00 1.00
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than others. Furthermore, we can see the precision, recall,
and F1-score values for the corresponding class of the
models in Table 12. The models achieved an average 97%
precision, recall, and F1-score value in all the classes.
According to Tables 13 and 14, the highest accuracy
obtained is 98.20% for MobileNetV2 architecture with a
small deviation of 0.120.

AdaMax: The loss, accuracy graph, and the normalized
results of the confusion matrix using AdaMax optimizer are
shown in Figure 9. The actual prediction of the classes
using AdaMax is recorded in Table 11. AdaMax has
increased the average true positive value for meningioma,
pituitary, and no_tumor classes. The most misclassified
class is gloma. On average 99% of the meningioma class,
98.2% of the no_tumor class, 97.2% of the pituitary class,
and 95.3% of the glioma class images are truly predicted
using AdaMax. Some samples of misclassified images are
shown in Figure 10. The performance scores of the
models are demonstrated in Table 13. The average preci-
sion, recall, and F1-score value of each class is between

0.96 and 0.98. Table 14 displays a comparison of training
and testing accuracy obtained through Adam and
AdaMax optimizer on this dataset. The accuracy of
ResNet50 is decreased in AdaMax while the accuracy of
DenseNet201 has increased. Comparing the testing accur-
acy we can say that MobileNetV2 architecture has the
highest performance with an accuracy of 98.16% and an
SD of 0.121 while VGG16 has the lowest accuracy of
96.21% and an SD of 0.143 using our proposed framework.
In addition, we can train the models using the presented
methodology with 100% accuracy.

Discussion
To get a stable accuracy, we observe the result by increas-
ing the number of epochs from 50 to 70. In experiment one,
our proposed model achieves 100% testing accuracy on the
two-class dataset. In experiment two, our proposed frame-
work obtained 99.99% testing accuracy with ROC 100 util-
izing the CV method on the two-class dataset. Furthermore,

Figure 7. Performance results of MobileNetV2 using AdaMax optimizer for the two-class dataset: (a) actual versus validation loss; (b)
actual versus validation accuracy; (c) confusion matrix before normalization; and (d) confusion matrix after normalization.
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in the four-class dataset, our model achieved 98.20% accur-
acy. Our proposed framework has reduced the overfitting
issues of the model. Tables 8 and 14 show that the perform-
ance results for Adam and AdaMax optimizers are quite
similar. However, as indicated in Table 15, AdaMax
demonstrates faster computational performance compared
to Adam, reducing the time per epoch except for
VGG16 and ResNet50. MobileNetV2, with the fewest para-
meters, exhibits the lowest execution time and highest
accuracy, while InceptionV3 follows as the second fastest
model with high accuracy. In contrast, DenseNet201,
EfficientNetB3, and ResNet50 require significantly more
computational time, but these models also provide high
accuracy values. VGG16, despite its popularity, shows
lower effectiveness in precision, recall, F1-score, and
overall accuracy compared to other models. The number
of total parameters, trainable parameters, and non-trainable

parameters in each model remains constant regardless of the
optimizer or dataset used. However, the execution time of
different models is also influenced by the number of
layers and parameters.

Comparison with the state-of-the-art methods

To address the detection and classification of brain tumors,
numerous researchers around the world are working incred-
ibly hard. Several datasets have been created using the clin-
ical brain MRI reports of a lot of patients and various
methodologies emerged of extreme research in this field.
A comparison is carried out to demonstrate the efficacy of
our experimented framework with other state-of-the-art
methods considering both the 253 image dataset and the
3264 image dataset.

The experimented results of our proposed methodology
for the corresponding study on the small dataset are illu-
strated in Table 16 along with the other state-of-the-art
models. As listed in the table, in the small binary class
dataset, our implemented framework appeared with excel-
lently higher performance. As mentioned earlier, we
achieved a test accuracy of 100% in all the selected
models with the precision, recall, F1-score value 1.00 in
each class in experiment one according to Tables 6 to 8.
Our model can predict the actual number of each class
with 100% accuracy as shown in Table 5. Besides the exe-
cution time of our model is also very small compared to
others as shown in Table 15. Another experiment on the
small dataset also achieved outstanding accuracy, ROC
value, precision, recall, and F1-score value with small
deviation for each fold of CV as shown in Tables 9 and
10. However, Hassan et al.38 classified brain tumors utiliz-
ing VGG-16, ResNet-50, and Inception-v3 architecture

Table 7. Performance analysis of the models using optimizer
AdaMax on two-class datasets.

Models Tumor class Precission Recall F1-score

VGG16 Yes 1.00 1.00 1.00

No 1.00 1.00 1.00

Average 1.00 1.00 1.00

EfficientNetB3 Yes 1.00 1.00 1.00

No 1.00 1.00 1.00

Average 1.00 1.00 1.00

DenseNet201 Yes 1.00 1.00 1.00

No 1.00 1.00 1.00

Average 1.00 1.00 1.00

InceptionV3 Yes 1.00 1.00 1.00

No 1.00 1.00 1.00

Average 1.00 1.00 1.00

MobileNetV2 Yes 1.00 1.00 1.00

No 1.00 1.00 1.00

Average 1.00 1.00 1.00

ResNet50 Yes 1.00 1.00 1.00

No 1.00 1.00 1.00

Average 1.00 1.00 1.00

Table 8. Accuracy of the transfer learning models on two-class
datasets using our proposed methodology.

Transfer
learning

Adam AdaMax

models

Training
accuracy
(%)

Testing
accuracy
(%)

Training
accuracy
(%)

Testing
accuracy
(%)

VGG16 100 100 100 100

EfficientNetB3 100 100 100 100

DenseNet201 100 100 100 100

InceptionV3 100 100 100 100

ResNet50 100 100 100 100

MobileNetV2 100 100 100 100
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Table 9. Performance analysis of the models using optimizer AdaMax on two-class datasets after cross-validation.

Models Folds Tumor Precission Recall F1-score Accuracy ROC Prediction

Class (%) value (%) SD time (s)

VGG16 Fold1 Yes 1.00 1.00 0.99 99.87 100 0.119 8

No 1.00 0.99 1.00

Fold2 Yes 0.99 1.00 0.99 99.91 100 0.116 9

No 1.00 0.99 1.00

Fold3 Yes 0.99 1.00 1.00 99.83 100 0.120 7

No 1.00 0.98 0.99

Fold4 Yes 0.99 1.00 1.00 99.95 100 0.115 6

No 0.99 1.00 1.00

Fold5 Yes 0.99 0.99 0.99 99.80 100 0.120 7

No 1.00 0.98 0.99

Average Yes 0.992 0.998 0.994 99.872 100 0.118 7.4

No 0.998 0.98 0.996

EfficientNetB3 Fold1 Yes 0.99 1.00 1.00 99.95 100 0.111 9

No 0.99 0.99 1.00

Fold2 Yes 1.00 1.00 0.99 99.92 100 0.115 10

No 0.99 1.00 1.00

Fold3 Yes 1.00 1.00 1.00 99.96 100 0.108 8

No 1.00 1.00 0.99

Fold4 Yes 0.99 0.99 1.00 99.93 100 0.114 9

No 0.99 1.00 0.99

Fold5 Yes 1.00 1.00 1.00 99.98 100 0.105 8

No 1.00 0.99 1.00

Average Yes 0.996 0.998 0.998 99.948 100 0.111 8.8

No 0.994 0.996 0.996

DenseNet201 Fold1 Yes 0.99 1.00 1.00 99.94 100 0.114 10

No 1.00 1.00 1.00

Fold2 Yes 1.00 0.99 1.00 99.96 100 0.112 11

(continued)
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using this 253 BT dataset with accuracy 96%, 89%, and
75% accuracy at VGG-16, ResNet-50, and Inception-V3,
respectively. Their model obtained very poor accuracy
while lacking other performance metrics for result ana-
lysis. Furthermore, they did not perform fine-tuning of
the parameters. Arbane et al.35 implemented three TL
architectures, namely ResNet, Xception, and MobilNet-V2
to categorize brain MRI. This attained the best results with
98.24% and 98.42% in terms of accuracy and F1-score,
respectively. To create tumor boundary they applied the

OpenCV method. However, their model is computationally
complex to build and lower accuracy compared to our
model. An automated hybrid system for classifying brain
tumors is presented by Kang et al.30 To ensemble three
top features they utilized several pre-trained deep learning
models for feature extracting with various ML classifiers.
The study reported 92.16% accuracy on the BT-small-2c
dataset. Except for accuracy, they did not measure any
other performance score and also did not analyze the com-
putation time of their hybrid model.

Table 9. Continued.

Models Folds Tumor Precission Recall F1-score Accuracy ROC Prediction

Class (%) value (%) SD time (s)

No 1.00 1.00 0.99

Fold3 Yes 1.00 0.99 0.99 99.93 100 0.115 9

No 0.99 1.00 0.99

Fold4 Yes 1.00 1.00 0.99 99.986 100 0.109 9

No 1.00 1.00 1.00

Fold5 Yes 1.00 0.99 0.99 99.918 100 0.117 10

No 0.99 0.99 0.99

Average Yes 0.998 0.994 0.994 99.943 100 0.113 9.8

No 0.996 0.998 0.994

InceptionV3 Fold1 Yes 1.00 1.00 0.99 99.96 100 0.110 6

No 1.00 1.00 1.00

Fold2 Yes 1.00 1.00 0.99 99.93 100 0.112 6

No 0.99 1.00 1.00

Fold3 Yes 0.99 1.00 1.00 99.97 100 0.108 5

No 1.00 0.99 0.99

Fold4 Yes 1.00 0.99 1.00 99.91 100 0.115 4

No 0.99 0.99 1.00

Fold5 Yes 1.00 1.00 1.00 99.996 100 0.103 5

No 1.00 1.00 1.00

Average Yes 0.998 0.998 0.996 99.95 100 0.110 5.2

No 0.996 0.996 0.998

ROC: receiver operating characteristic; SD: standard deviation.
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The experimented results for the corresponding study
on the big dataset are illustrated in Table 17 along with
the other state-of-the-art models. The highest accuracy
obtained in our experiment is 98.20% with a little devi-
ation of 0.120. The precision, recall, and F1-score

values are also higher in this dataset. Besides our
model has low computational time thus low computation
complexity compared to the existing studies. While the
accuracy of the existing model is not more than 90%.
Their accuracy is comparatively very low. However,

Table 10. Performance analysis of the models using optimizer AdaMax on two-class datasets after cross-validation.

Folds Models Tumor Class Precission Recall F1-score Accuracy (%) ROC value (%) SD Run time (s)

MobileNetV2 Fold1 Yes 1.00 1.00 1.00 99.97 100 0.104 5

No 1.00 0.99 1.00

Fold2 Yes 1.00 1.00 1.00 99.98 100 0.103 4

No 1.00 1.00 0.99

Fold3 Yes 1.00 0.99 1.00 99.94 100 0.109 5

No o.99 1.00 1.00

Fold4 Yes 0.99 0.99 1.00 99.95 100 0.107 4

No 1.00 1.00 0.99

Fold5 Yes 1.00 1.00 1.00 99.998 100 0.100 4

No 1.00 1.00 1.00

Average Yes 0.998 0.996 1.00 99.966 100 0.105 4.4

No 0.998 0.998 0.996

ResNet50 Fold1 Yes 1.00 0.99 1.00 99.92 100 0.116 9

No 0.99 1.00 1.00

Fold2 Yes 0.99 1.00 0.99 99.94 100 0.115 8

No 1.00 1.00 0.99

Fold3 Yes 1.00 0.99 1.00 99.91 100 0.116 8

No 0.99 1.00 0.99

Fold4 Yes 1.00 1.00 0.99 99.96 100 0.113 7

No 1.00 1.00 1.00

Fold5 Yes 0.99 0.99 1.00 99.90 100 0.118 7

No 1.00 0.99 0.99

Average Yes 0.996 0.994 0.996 99.88 100 0.116 7.8

No 0.996 0.998 0.994

ROC: receiver operating characteristic; SD: standard deviation.
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Figure 8. Performance results of MobileNetV2 using Adam optimizer for the four-class dataset: (a) actual versus validation loss; (b) actual
versus validation accuracy; (c) confusion matrix before normalization; and (d) confusion matrix after normalization.

Table 11. True prediction value of the classes obtained through the confusion matrix in the four-class dataset.

Adam AdaMax

TL model Glioma Meningioma Pituitary No_tumor Glioma Meningioma Pituitary No_tumor

VGG16 94% 96% 98% 97% 94% 96% 98% 96%

EfficientNetB3 96% 99% 95% 100% 97% 99% 95% 100%

DenseNet201 94% 100% 95% 99% 95% 100% 96% 98%

InceptionV3 95% 100% 95% 99% 94% 100% 97% 90%

ResNet50 96% 95% 99% 99% 96% 99% 100% 97%

MobileNetV2 97% 100% 97% 99% 96% 100% 97% 99%

Average 95.3% 98.3% 96.5% 98.3% 95.3% 99% 97.2% 98.2%

TL: transfer learning.
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Table 12. Performance analysis of the models for four classes using optimizer Adam.

Models Tumor class Precission Recall F1-score

VGG16 Glioma 0.97 0.94 0.95

Meningioma 0.95 0.96 0.96

No_tumor 0.97 0.97 0.97

Pituitary 0.99 0.98 0.98

Average 0.97 0.9625 0.96

EfficientNetB3 Glioma 0.96 0.96 0.96

Meningioma 0.99 0.99 0.99

No_tumor 0.97 1.00 0.99

Pituitary 0.97 0.95 0.96

Average 0.9725 0.975 0.975

DenseNet201 Glioma 0.97 0.97 0.96

Meningioma 0.96 0.96 0.98

No_tumor 0.98 0.96 0.97

Pituitary 0.97 1.00 0.98

Average 0.97 0.97 0.98

InceptionV3 Glioma 0.96 0.95 0.96

Meningioma 0.98 1.00 0.99

No_tumor 0.97 0.99 0.98

Pituitary 0.98 0.95 0.96

Average 0.9725 0.9725 0.9725

MobileNetV2 Glioma 0.98 0.97 0.98

Meningioma 1.00 1.00 1.00

No_tumor 0.97 0.99 0.98

Pituitary 0.98 0.97 0.98

Average 0.98 0.9825 0.98

ResNet50 Glioma 0.99 0.96 0.97

Meningioma 0.97 0.95 0.96

No_tumor 0.97 0.99 0.98

Pituitary 0.96 0.99 0.97

Average 0.9725 0.9725 0.97
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Table 13. Performance analysis of the models for four classes using optimizer AdaMax.

Models Tumor class Precission Recall F1-score

VGG16 Glioma 0.95 0.95 0.96

Meningioma 0.95 0.97 0.96

No_tumor 0.97 0.97 0.97

Pituitary 0.98 0.98 0.98

Average 0.96 0.97 0.97

EfficientNetB3 Glioma 0.96 0.97 0.97

Meningioma 0.98 0.99 0.99

No_tumor 0.97 1.00 0.99

Pituitary 0.98 0.95 0.97

Average 0.9725 0.9775 0.98

DenseNet201 Glioma 0.98 0.95 0.96

Meningioma 0.98 1.00 0.99

No_tumor 0.97 0.98 0.97

Pituitary 0.96 0.96 0.96

Average 0.97 0.9725 0.97

InceptionV3 Glioma 0.98 0.94 0.96

Meningioma 0.98 1.00 0.99

No_tumor 0.94 0.99 0.96

Pituitary 0.98 0.97 0.97

Average 0.97 0.975 0.97

MobileNetV2 Glioma 0.98 0.96 0.97

Meningioma 1.00 1.00 1.00

No_tumor 0.95 0.99 0.96

Pituitary 0.99 0.97 0.98

Average 0.98 0.98 0.98

ResNet50 Glioma 1.00 0.93 0.96

Meningioma 0.96 1.00 0.97

No_tumor 0.99 0.99 0.99

Pituitary 1.00 0.99 0.99

Average 0.97 0.97 0.97
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our models performed smoothly on both datasets for all
the selected architectures with greater accuracy. Sunanda
Das et al.27 developed a CNN model for the classification
of brain tumors in T1-weighted contrast-enhanced MRI
images; a dataset of 3064 photos of three different forms
of brain tumors (glioma, meningioma, and pituitary).

They used a Gaussian filter, and histogram equalization
to preprocess the input data and three dropout layers in
the classification model with a dropout rate of 25%,
40%, and 30%. Though dropout reduces overfitting,
inappropriate dropout rates decrease the strength of
the neural network. However, they gained a testing

Table 14. Accuracy and standard deviation (SD) of the transfer learning models on four class datasets using our proposed methodology.

Transfer learning
Adam AdaMax

models Training Testing SD Training Testing SD

accuracy (%) accuracy (%) accuracy (%) accuracy (%)

VGG16 99.96 96.34 0.145 99.923 96.21 0.143

EfficientNetB3 100 97.94 0.133 100 97.98 0.130

DenseNet201 100 97.23 0.158 100 97.70 0.151

InceptionV3 99.94 97.90 0.129 100 97.90 0.132

ResNet50 100 97.77 0.183 100 96.85 0.174

MobileNetV2 100 98.20 0.120 100 98.16 0.121

Figure 9. Performance results of MobileNetV2 using AdaMax optimizer for the four-class dataset: (a) actual versus validation loss;
(b) actual versus validation accuracy; (c) confusion matrix before normalization; and (d) confusion matrix after normalization.
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accuracy of 94.39%. Their testing loss is high. Parnian
et al.29 developed Capsule Networks (CapsNets) to over-
come the shortcomings in CNN to fully utilize spatial

relations. The suggested improved CapsNet architecture
incorporates additional inputs from the tumor coarse
borders into its pipeline to sharpen the CapsNet’s focus.

Figure 10. Some samples of misclassified images.

Table 15. Parameters details and execution time of the models on both datasets using our proposed methodology.

Run time (s)

Dataset-1 Dataset-2

Total Non-trainable Total Adam AdaMax Adam AdaMax

TL model parameters parameters layers

ResNet50 23,710,896 53,120 50 180 200 500 520

InceptionV3 21,925,968 34,432 159 130 93 350 260

DenseNet201 18,437,488 229,056 201 290 248 1000 966

VGG16 14,745,712 0 16 145 138 632 490

EfficientNetB3 10,875,999 87,303 234 240 208 523 480

MobileNetV2 2,335,088 34,112 88 80 80 230 200

TL: transfer learning.

26 DIGITAL HEALTH



The model handled transformations in a “Routing by
Agreement” process instead of a pooling layer, dur-
ing which lower-level capsules forecast how their
higher-level parents will behave. However, this method
is incapable of interpreting the features of brain tumors
efficiently. They do not perform any pre-processing tech-
nique. Their model does not obtain a higher prediction
outcome, on the contrary, model computation is complex.

The accuracy of this approach is 90.89%. Utilizing a
hybrid system for classifying brain tumors, Kang et al.30

achieved 93.72% accuracy on the BT-large-4c dataset.
The model is not reliable. Their prediction outcome is
also lower than us. Besides except accuracy, they
did not measure any other performance score and also
did not analyze the computation time of their hybrid
model.

Table 16. Performance results in comparison among the suggested model and the other previous state-of-art works based on four class
categories using 253 magnetic resonance (MR) image dataset.

Study (year) Architecture Dataset Accuracy (%)

Hassan et al. (2020) VGG-16, 253 MR images 96

ResNet-50, 89

Inception-v3 75

Mohamed Arbane et al. (2021) ResNet, Xception 253 MR images 98.24

and MobilNet-V2

Jaeyong Kang et al. (2021) VGG16, 253 MR images 92.09

ResNet50 95.15

DenseNet169 95.70

InceptionV3 95.81

MobileNetV2 94.70

Proposed Methodology VGG16, 253 MR images 100

EfficientNetB3 100

(Without cross-validation) ResNet50 100

DenseNet201 100

InceptionV3 100

MobileNetV2 100

Proposed Methodology VGG16, 253 MR images 99.87

EfficientNetB3 99.95

(After cross-validation) ResNet50 99.88

DenseNet201 99.94

InceptionV3 99.95

MobileNetV2 99.96
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Practical implications and limitations

Although our proposed models demonstrated superior per-
formance, it is essential to discuss their practical implica-
tions. Integrating these models into clinical workflows
could potentially enhance the accuracy and efficiency of
brain tumor diagnosis. However, challenges such as the
need for robust validation in diverse clinical settings,
potential biases in the datasets, and the limitations of the
study should be acknowledged. Further validation and
testing in real-world scenarios are necessary to confirm
the generalizability of the models.

Ethical considerations of artificial intelligence (AI)
models in clinical environments

To address ethical considerations in implementing AI
models in clinical environments:

1. Patient confidentiality: Ensure robust data protection,
including encryption, anonymization, and compliance
with regulations such as Health Insurance Portability

and Accountability Act and General Data Protection
Regulation to safeguard patient information.

2. Algorithmic bias: Mitigate bias by using diverse, rep-
resentative datasets and regularly auditing the model
to ensure fair treatment across demographic groups.

3. Transparency and accountability: Provide clear
explanations of AI decisions, ensuring the model
serves as a support tool, with healthcare providers
retaining final responsibility for diagnoses.

4. Continuous monitoring: Regularly monitor and
update AI models to maintain accuracy and relevance,
ensuring they adapt to evolving medical knowledge
and patient needs.

Addressing these concerns promotes responsible AI use in
healthcare, prioritizing patient safety and fairness.

Conclusions
This experiment successfully developed an efficient and fine-
tuned deep neural network architecture utilizing pre-trained
models for the detection and classification of brain tumors.

Table 17. Performance results in comparison among the suggested model and the other previous state-of-the-art works based on four class
categories using the 3064 MR image dataset.

Study (year) Architecture Dataset Accuracy (%)

Sunanda Das et al. (2019) CNN 3064 MR images 94.39

Parnian Afshar et al. (2019) Modified CNN, 3064 MR images 88.33

CapsNet 90.89

Jaeyong Kang et al. (2021) VGG16, 3064 MR images 81.73

ResNet50 82.73

DenseNet169 84.87

InceptionV3 81.23

MobileNetV2 84.40

Proposed Methodology VGG16, 3264 MR images 96.34

EfficientNetB3 97.98

ResNet50 97.77

DenseNet201 97.70

InceptionV3 97.90

MobileNetV2 98.20

CNN: convolutional neural network; MR: magnetic resonance.
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From data collection to feature extraction, the experiment
employed effective preprocessing techniques, data augmenta-
tion, and fine-tuning of parameters, leading to the reconstruc-
tion of models and the observation of robust outcomes.
Iterative optimization of various parameters resulted in
stable and high prediction accuracy. Regularization and the
addition of extended layers significantly enhanced prediction
accuracy while reducing model overfitting. In addition,
implementation of CV with several evaluation metrics
makes the model computationally effective.

Among the six implemented models, MobileNetV2 stood
out with the lowest execution time and highest accuracy,
whereas VGG16 faced challenges and achieved the lowest
accuracy. The comparison between the Adam and AdaMax
optimizers showed consistent results, with AdaMax offering
faster computation. For the small dataset, all models achieved
100% accuracy without CV for both training and testing.
After performing CV, the models generate an average accur-
acy of 99.96% with higher precision, recall, F1-score, and
ROC value demonstrating the effectiveness of our frame-
work. On the larger dataset, the models maintained strong
performance, with the highest testing accuracy reaching
98.20% and training accuracy reaching 100%.

Our experiment shows that the proposed framework is
robust, reliable, and capable of supporting medical profes-
sionals in the timely and accurate diagnosis of brain
tumors. However, real-time implementation and integration
into clinical workflows would require further validation in
diverse clinical settings.

Future work

Future research will focus on:

1. Larger and diverse datasets: Expanding the frame-
work by utilizing larger and more varied MRI datasets
to improve generalizability.

2. Multi-modal integration: Enhancing diagnostic accur-
acy by integrating other medical imaging modalities,
such as CT or PET scans, and combining them with
genetic and clinical data.

3. Data scarcity and imbalance: Addressing data scar-
city and class imbalance through techniques such as
synthetic data generation, TL, and advanced
oversampling.

4. Advanced fine-tuning: Further optimizing models
using hyperparameter tuning and training with larger
datasets for more precise predictions.

These steps aim to enhance the framework’s real-world
applicability and effectiveness in brain tumor diagnosis.

Acknowledgement: The authors would like to extend their
sincere appreciation to the Researchers Supporting Project

Number (RSP2024R301), King Saud University, Riyadh, Saudi
Arabia.

Contributorship: SMR contributed to conceptualization, data
curation, methodology, software, formal analysis, visualization,
writing—original draft and writing—review and editing.
MMI contributed to supervision, methodology, investigation,
validation, and project administration. MAT contributed to
investigation, validation, methodology, visualization, and writing
—review and editing. MAU contributed to supervision,
investigation, resources, validation, and writing—review and
editing. MK and MK contributed to investigation, validation, and
visualization. MZK contributed to visualization, validation,
methodology, and investigation.

Declarations of conflicting interest: The authors declared no
potential conflicts of interest with respect to the research,
authorship, and/or publication of this article.

Ethics approval: Not applicable.

Funding: The authors disclosed receipt of the following financial
support for the research, authorship, and/or publication of this
article: This research is supported by the Grant for Advanced
Research in Education (GARE), Bangladesh Bureau of
Educational Information & Statistics (BANBEIS), Ministry of
Education, Government of the People’s Republic of Bangladesh,
GO NO. 37.20.0000.004.033.020.2022, fiscal year 2022–2024.

Informed Consent: Not applicable.

Availability of data and materials: The selected datasets are
sourced from free and open-access sources such as Dataset-1:
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-
brain-tumor-detection, Dataset-2: https://www.kaggle.com/datasets/
sartajbhuvaji/brain-tumor-classification-mri.

Guarantor: MAT.

ORCID iD: Mohammed Alamin Talukder https://orcid.org/
0000-0002-3192-1000

References
1. Park KS. Nervous system. In: Humans and electricity:

Understanding body electricity and applications. Korea:
Springer Cham, 2023, pp.27–51.

2. Talukder MA, Islam MM, Uddin MA, et al. An efficient deep
learning model to categorize brain tumor using reconstruction
and fine-tuning. Expert Syst Appl 2023; 230: 120534.

3. Evans-Martin F. The nervous system. New York: Infobase
Holdings, Inc., 2022.

4. Legler JM, Ries LAG, Smith MA, et al. Brain and other
central nervous system cancers: recent trends in incidence
and mortality. J Nat Cancer Inst 1999; 91: 1382–1390.

Rasa et al. 29

https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
https://orcid.org/0000-0002-3192-1000
https://orcid.org/0000-0002-3192-1000
https://orcid.org/0000-0002-3192-1000


5. Packer RJ, Gurney JG, Punyko JA, et al. Long-term neuro-
logic and neurosensory sequelae in adult survivors of a child-
hood brain tumor: childhood cancer survivor study. J Clin
Oncol 2003; 21: 3255–3261.

6. Martucci M, Russo R, Schimperna F, et al. Magnetic reson-
ance imaging of primary adult brain tumors: state of the art
and future perspectives. Biomedicines 2023; 11: 364.

7. Folkman J. The vascularization of tumors. Sci Am 1976; 234:
58–73.

8. Baldi I, Engelhardt J, Bonnet C, et al. Epidemiology of men-
ingiomas. Neurochirurgie 2018; 64: 5–14.

9. Strowd III RE and Blakeley JO. Common histologically
benign tumors of the brain. CONTINUUM: Lifelong Learn
Neurol 2017; 23: 1680–1708.

10. Wang J-J, Lei K-F and Han F. Tumor microenvironment:
recent advances in various cancer treatments. Eur Rev Med
Pharmacol Sci 2018; 22: 3855–3864.

11. Adashek JJ, Kato S, Lippman SM, et al. The paradox of
cancer genes in non-malignant conditions: implications for
precision medicine. Genome Med 2020; 12: 1–19.

12. Barnholtz-Sloan JS, Ostrom QT and Cote D. Epidemiology of
brain tumors. Neurol Clin 2018; 36: 395–419.

13. McFaline-Figueroa JR and Lee EQ. Brain tumors. Am J Med
2018; 131: 874–882.

14. Pichaivel M, Anbumani G, Theivendren P, et al. An overview
of brain tumor. Brain Tumors 2022; 1: 1–10.

15. Chaulagain D, Smolanka V, Smolanka A, et al. Glioblastoma:
a literature review.

16. Hirtz A, Rech F, Dubois-Pot-Schneider H, et al. Astrocytoma:
a hormone-sensitive tumor? Int J Mol Sci 2020; 21: 9114.

17. Franceschi E, Frappaz D, Rudà R, et al. Rare primary central
nervous system tumors in adults: an overview. Front Oncol
2020; 10: 996.

18. Dorsey JF, Salinas RD, Dang M, et al. Cancer of the central
nervous system. In: Abeloff’s clinical oncology. Elsevier,
2020, pp.906–967.

19. Sharif M, Amin J, RazaM, et al. An integrated design of particle
swarm optimization (PSO) with fusion of features for detection
of brain tumor. Pattern Recogn Lett 2020; 129: 150–157.

20. Talukder MA, Layek MA, Kazi M, et al. Empowering
COVID-19 detection: Optimizing performance through fine-
tuned efficientnet deep learning architecture. Comput Biol
Med 2024; 168: 107789.

21. Jayadevappa D, Srinivas Kumar S and Murty D. Medical
image segmentation algorithms using deformable models: a
review. IETE Tech Rev 2011; 28: 248–255.

22. Naeem A, Anees T, Naqvi RA, et al. A comprehensive ana-
lysis of recent deep and federated-learning-Based methodolo-
gies for brain tumor diagnosis. J Pers Med 2022; 12: 275.

23. Abd-Ellah MK, Awad AI, Khalaf AA, et al. A review on brain
tumor diagnosis fromMRI images: Practical implications, key
achievements, and lessons learned.Mag Reson Imaging 2019;
61: 300–318.

24. Mohan G and Subashini MM. MRI based medical image ana-
lysis: Survey on brain tumor grade classification. Biomed Sig
Process Control 2018; 39: 139–161.

25. Panda B and Panda CS. A review on brain tumor classification
methodologies. Int J Sci Res Sci Technol 2019; 6: 346–359.

26. Talukder MA, Islam MM, Uddin MA, et al. Toward reliable
diabetes prediction: Innovations in data engineering and

machine learning applications. Digital Health 2024; 10:
20552076241271867.

27. Das S, Aranya ORR and Labiba NN. Brain tumor classifica-
tion using convolutional neural network. In: 2019 1st inter-
national conference on advances in science, engineering
and robotics technology (ICASERT), Dhaka, Bangladesh, 3–
5 May 2019, pp.1–5. IEEE.

28. Mzoughi H, Njeh I, Wali A, et al. Deep multi-scale 3D con-
volutional neural network (CNN) for MRI gliomas brain
tumor classification. J Digit Imag 2020; 33: 903–915.

29. Afshar P, Plataniotis KN and Mohammadi A. Capsule
networks for brain tumor classification based on MRI
images and coarse tumor boundaries. In: ICASSP
2019–2019 IEEE international conference on acoustics,
speech and signal processing (ICASSP), Brighton, UK,
12–17 May 2019, pp.1368–1372. IEEE.

30. Kang J, Ullah Z and Gwak J. MRI-based brain tumor classi-
fication using ensemble of deep features and machine learning
classifiers. Sensors 2021; 21: 2222.

31. Nawaz SA, Khan DM and Qadri S. Brain tumor classification
based on hybrid optimized multi-features analysis using mag-
netic resonance imaging dataset. Appl Artif Intell 2022; 36: 1–
27.

32. Raza A, Ayub H, Khan JA, et al. A hybrid deep learning-
based approach for brain tumor classification. Electronics
2022; 11: 1146.

33. Deepak S and Ameer P. Brain tumor classification using deep
CNN features via transfer learning. Comput Biol Med 2019;
111: 103345.

34. Chelghoum R, Ikhlef A, Hameurlaine A, et al. Transfer learn-
ing using convolutional neural network architectures for brain
tumor classification from MRI images. In: IFIP international
conference on artificial intelligence applications and
innovations, Neos Marmaras, Greece, 5–7 June 2020,
pp.189–200. Springer.

35. Arbane M, Benlamri R, Brik Y, et al. Transfer learning for
automatic brain tumor classification using MRI images. In:
2020 2nd international workshop on Human-Centric
smart environments for health and Well-being (IHSH),
Boumerdes, Algeria, 9–10 February 2021, pp.210–214. IEEE.

36. Tandel GS, Balestrieri A, Jujaray T, et al. Multiclass mag-
netic resonance imaging brain tumor classification using
artificial intelligence paradigm. Comput Biol Med 2020;
122: 103804.

37. Sharif MI, Khan MA, Alhussein M, et al. A decision support
system for multimodal brain tumor classification using deep
learning. Complex Intell Syst 2022; 8: 3007–3020.

38. Khan HA, JueW, Mushtaq M, et al. Brain tumor classification
in MRI image using convolutional neural network. Math
Biosci Eng 2020; 17: 6203–6216.

39. Seetha J and Raja SS. Brain tumor classification using
convolutional neural networks. Biomed Pharmacol J 2018;
11: 1457.

40. Kurdi SZ, Ali MH, Jaber MM, et al. Brain tumor classification
using meta-heuristic optimized convolutional neural net-
works. J Pers Med 2023; 13: 181.

41. Khan MA, Khan A, Alhaisoni M, et al. Multimodal brain
tumor detection and classification using deep saliency map
and improved dragonfly optimization algorithm. Int J Imag
Syst Technol 2023; 33: 572–587.

30 DIGITAL HEALTH



42. Badjie B and Ülker ED. A deep transfer learning based archi-
tecture for brain tumor classification using MR images.
Inform Technol Control 2022; 51: 332–344.

43. Rajinikanth V, Kadry S and Nam Y. Convolutional-neural-
network assisted segmentation and SVM classification of brain
tumor in clinical MRI slices. Inform Technol Control 2021; 50:
342–356.

44. Rasheed Z, Ma Y-K, Ullah I, et al. Automated classification of
brain tumors from magnetic resonance imaging using deep
learning. Brain Sci 2023; 13: 602.

45. Rasheed Z, Ma Y-K, Ullah I, et al. Brain tumor classification
fromMRI using image enhancement and convolutional neural
network techniques. Brain Sci 2023; 13: 1320.

46. Haq I, Mazhar T, Malik MA, et al. Lung nodules localization
and report analysis from computerized tomography (CT) scan
using a novel machine learning approach. Appl Sci 2022; 12:
12614.

47. Varuna Shree N and Kumar TNR. Identification and classifi-
cation of brain tumor MRI images with feature extraction
using DWT and probabilistic neural network. Brain Inform
2018; 5: 23–30.

48. DemirhanA,TörüMandGüler I.Segmentationof tumorandedema
along with healthy tissues of brain using wavelets and neural net-
works. IEEE J Biomed Health Inform 2014; 19: 1451–1458.

49. Ahamed KU, Islam M, Uddin A, et al. A deep learning
approach using effective preprocessing techniques to detect
COVID-19 from chest CT-scan and X-ray images. Comput
Biol Med 2021; 139: 105014.

50. Yang S, Xiao W, Zhang M, et al. Image Data Augmentation
for Deep Learning: A Survey. arXiv preprint arXiv:2204.
08610.

51. Shorten C and Khoshgoftaar TM. A survey on image data
augmentation for deep learning. J Big Data 2019; 6: 1–48.

52. Simonyan K and Zisserman A. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

53. He K, Zhang X, Ren S, et al. Identity mappings in deep
residual networks. In: European conference on computer
vision, Amsterdam, The Netherlands, 8–16 October 2016,
pp.630–645. Springer.

54. Ramesh BN, Asha V, Pant G, et al. Brain Tumor Detection
using CNN withResnet50. In: 2023 International Conference

on Sustainable Computing and Smart Systems (ICSCSS),
Coimbatore, India, 14–16 June 2023, pp.509–514. IEEE.

55. Xiang Q, Wang X, Li R, et al. Fruit image classification based
on Mobilenetv2 with transfer learning technique. In:
Proceedings of the 3rd international conference on computer
science and application engineering, Sanya, China, 22–24
October 2019, pp.1–7. New York, USA: Digital Library,
CSAE.

56. Tsang S-H. Review: Mobilenetv2—light weight model
(image classification). Towards Data Science, Svibanj.

57. Huang G, Liu Z, Van Der Maaten L, et al. Densely connected
convolutional networks. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, San Juan,
31 October 2017, pp.4700–4708. IEEE.

58. Islam MM, Adil MAA, Talukder MA, et al. DeepCrop: Deep
learning-based crop disease prediction with web application.
J Agric Food Res 2023; 14: 100764.

59. Tan M and Le Q. Efficientnet: Rethinking model scaling for
convolutional neural networks. In: International conference
on machine learning, Long Beach, California, USA, 9–15
June 2019, pp.6105–6114. PMLR.

60. Ashurov A, Zhou Y, Shi L, et al. Environmental sound clas-
sification based on transfer-learning techniques with multiple
optimizers. Electronics 2022; 11: 2279.

61. Demir A, Yilmaz F and Kose O. Early detection of skin
cancer using deep learning architectures: ResNet-101 and
Inception-V3. In: 2019 medical technologies congress
(TIPTEKNO), Izmir, Turkey, 3–5 October 2019, pp.1–4. IEEE.

62. Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the
IEEE conference on computer vision and pattern recognition,
Las Vegas, NV, USA, 5 July 2016, pp.2818–2826. IEEE.

63. Zhou F, Wu B and Li Z. Deep meta-learning: Learning to
learn in the concept space. arXiv preprint arXiv:1802.03596.

64. Dahl GE, Sainath TN and Hinton GE. Improving deep neural
networks for LVCSR using rectified linear units and dropout.
In: 2013 IEEE international conference on acoustics, speech
and signal processing, Vancouver, BC, Canada, 26–31 May
2013, pp.8609–8613. IEEE.

65. Aurna NF, Yousuf MA, Taher KA, et al. A classification of
MRI brain tumor based on two stage feature level ensemble
of deep CNN models. Comput Biol Med 2022; 146: 105539.

Rasa et al. 31


	 Introduction
	 Related works
	 Classification of brain tumor using CNN
	 Classification of brain tumor using a hybrid model
	 Classification of brain tumor using TL architectures

	 Proposed methodology
	 Image preprocessing
	 Data augmentation
	 Transfer learning (TL)
	 Fine-tuning and feature extraction

	 Experiment and result analysis
	 Experimental setup and implementation
	 Dataset description
	 K = 5-fold CV
	 Evaluation of performance metrics
	 CCE loss
	 Normalization of confusion matrix
	 Area under the receiver operating characteristic curve (AUC-ROC) curve
	 Standard deviation (SD)
	 Results analysis and discussion
	 Dataset-1 (two class)
	 Experiment 1
	 Experiment 2
	 Dataset-2 (Four Class)


	 Discussion
	 Comparison with the state-of-the-art methods
	 Practical implications and limitations
	 Ethical considerations of artificial intelligence (AI) models in clinical environments

	 Conclusions
	 Future work

	 Acknowledgement
	 References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


