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Calibration of miniature air 
quality detector monitoring data 
with PCA–RVM–NAR combination 
model
Bing Liu1* & Yirui Zhang2

The development of miniature air quality detectors makes it possible for humans to monitor air quality 
in real time and grid. However, the accuracy of measuring pollutants by miniature air quality detectors 
needs to be improved. In this paper, the PCA–RVM–NAR combined model is proposed to calibrate the 
measurement accuracy of the miniature air quality detector. First, correlation analysis is used to find 
out the main factors affecting pollutant concentrations. Second, principal component analysis is used 
to reduce the dimensionality of these main factors and extract their main information. Thirdly, taking 
the extracted principal components as independent variables and the observed values of pollutant 
concentrations as dependent variables, a PCA–RVM model is established by the relevance vector 
machine. Finally, the nonlinear autoregressive neural network is used to correct the error and finally 
complete the establishment of the PCA–RVM–NAR model. Root mean square error, goodness of fit, 
mean absolute error and relative mean absolute percent error are used to compare the calibration 
effect of PCA–RVM–NAR model and other commonly used models such as multiple linear regression 
model, support vector machine, multilayer perceptron neural network and nonlinear autoregressive 
models with exogenous input. The results show that, no matter which pollutant, the PCA–RVM–NAR 
model achieves better calibration results than other models in the four indicators. Using this model to 
correct the data of the miniature air quality detector can improve its accuracy by 77.8–93.9%.

Certain air pollutants, such as  PM2.5,  PM10, CO,  NO2,  SO2,  O3 ("two dusts and four gases") can affect human 
health and cause respiratory diseases and cardiovascular  diseases1–3. According to statistics, more than 3 million 
people die worldwide due to air quality problems every  year4,5. Therefore, obtaining air pollutant concentra-
tion information is very necessary to control air pollution and prevent health problems caused by air pollution.

Air quality monitoring platform. Many large cities in developed countries have established some air 
quality monitoring stations (national control points) in order to obtain information on the concentration of air 
pollutants. The concentrations of pollutants monitored by these air quality monitoring stations are relatively 
accurate. However, due to the high cost of establishing monitoring stations and high maintenance costs, the 
deployment of monitoring stations is relatively sparse. Another disadvantage of national control point moni-
toring is that the release of data is delayed, making it difficult to monitor the concentration of air pollutants in 
the entire region in real time. The development of miniature air quality detectors effectively overcomes these 
shortcomings of reference monitoring stations. The miniature air quality detector has low production and main-
tenance costs and is easy to install, so it can realize grid deployment and control of specific areas. For this specific 
areas where the miniature air quality detector is installed for the convenience of monitoring, this paper calls 
them self-built points. Another advantage of the miniature air quality detector is that it is easy to read the read-
ings, so it can realize real-time monitoring of the concentration of air  pollutants6,7. In addition, while monitoring 
the concentration of air pollutants, it can also monitor meteorological parameters such as temperature, humid-
ity, wind speed, air pressure, and precipitation in the region.

Electrochemical sensors are one of the core components of many miniature air quality detectors. It works by 
reacting with the measured gas and producing an electrical signal proportional to the gas concentration. The 
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gas reacts with the sensor through the tiny capillary-shaped openings and reaches the electrode surface, so that 
an appropriate amount of gas reacts with the sensing electrode to form a sufficient electrical signal, and finally 
achieve the purpose of monitoring. The miniature air quality detector will have zero drift or span drift after a 
period of use. In addition, unconventional pollutants in the air, weather factors, etc. will also cause errors in 
the measurement of the miniature air quality  detector8. Therefore, it is very meaningful to establish a pollutant 
concentration prediction model to calibrate the self-built point data.

Introduction to air quality prediction model. At present, many researchers have studied air quality 
prediction models. The main research methods are divided into two categories: chemical mechanism prediction 
and statistical model prediction. The chemical mechanism prediction is to quantitatively describe the changes of 
atmospheric pollutants in a certain area by using the numerical method of atmospheric dynamics and compre-
hensively considering the atmospheric physical and chemical  mechanism9,10. Chemical mechanism prediction 
has the advantages of multi-scale and openness, but the main disadvantage is that the uncertainty of pollutant 
emission sources is large, the calculation time is long, and the prediction accuracy is not high. Statistical model 
forecasting first uses statistical methods to screen out meteorological factors that are strongly correlated with air 
pollution concentrations, and then uses statistical models to establish quantitative relationships between them 
and air pollution concentrations. Statistical model forecasting has the advantages of simplicity and economy, 
good forecast timeliness and accuracy, so it is widely used in air quality forecasting.

Traditional statistical forecasting models include Multiple Linear Regression (MLR)  model11–13, grey  models14, 
hidden Markov  models15,16, time series  models17,18 and so on. These traditional models are simple in structure, 
strong in interpretability and short in operation time, and are often used in air quality forecasting in recent years. 
Suriano et al. designed and developed the SentinAir system for field evaluation of sensor performance. In order 
to evaluate the system function and capability, indoor and outdoor experiments were performed independently. 
Linear regression (LR) and multiple linear regression models were used to calibrate the ten sensor data. The 
results show that the calibration effect of the MLR model is better than that of the LR model because it allows 
the quantification of the interfering effects of temperature, relative humidity and other  gases19. However, the 
factors affecting air quality are complex, and it is difficult for these models to accurately reflect the nonlinear 
relationship between various factors and air quality. With the rise of big data and artificial intelligence, artificial 
neural  networks20–22 have also been used to predict air quality. Arsic et al. used multiple regression analysis and 
artificial neural network to predict ground-level ozone concentrations in the close vicinity of the city of Zren-
janin (Serbia). The comparison results show that the artificial neural network has a better effect in monitoring 
the ozone concentration than the multiple linear regression  model23.

Although the prediction effect of artificial neural network is good, neural network usually requires more 
data than traditional machine learning algorithms, and the output results are difficult to interpret. Random 
forest  algorithm24–26 is also commonly used to predict air quality in recent years, but random forest is prone to 
overfitting in some noisy regression or classification problems. Support Vector Machine (SVM) can cleverly solve 
small sample, high-dimensional, nonlinear problems, and it follows the principle of structural risk minimization. 
Suarez Sanchez et al. used 2006–2008 experimental data on air pollutants to create a highly nonlinear model of 
the air quality in the Aviles urban nucleus (Spain) based on SVM  techniques27. Liu et al. successfully predicted 
the concentration of air pollutants in Nanjing with the help of support vector regression machine, and calibrated 
the measurement data of the miniature air quality  detector28.

However, for the air quality prediction problem, the support vector machine model also has certain short-
comings. First, as the dimension of training samples increases, the model prediction time is prolonged, which 
seriously restricts the timeliness of the model. Second, there are many parameters in the principle of the sup-
port vector regression  machine29,30. In addition to the kernel function parameters, the penalty factor C and the 
radius of the insensitive loss area ε will have a greater impact on the accuracy of the model, and it is difficult to 
establish a high-precision air quality prediction model. To address these issues, a Bayesian framework-based 
sparse probabilistic learning model relevance vector machine (RVM) is introduced in this paper to predict air 
quality. The relevance vector machine uses the active correlation decision theory to realize the sparseness of the 
model, which greatly reduces the amount of calculation, and the time of model prediction is better controlled. 
In addition, some model parameters can obtain the optimal solution through self-adaptive iteration, and there 
are few adjustment parameters, which is convenient for model optimization.

The main work of this paper is to find out the influencing factors affecting the concentration of six types of 
air pollutants through correlation analysis, and then use Principal Component Analysis (PCA) to extract the 
main information in these influencing factors. Then, these main information are used as input, the concentra-
tion of pollutants in the air is used as output, and the air quality prediction model is established with the help 
of relevance vector machine. Finally, the prediction residuals are corrected by the Nonlinear Autoregressive 
(NAR) neural network to further improve the prediction accuracy of the model. We call this combined model 
the PCA–RVM–NAR combined model. In practical applications, this model has achieved good results in air 
quality prediction, and it can provide a reference model for air quality prediction and data calibration of min-
iature air quality detectors.

Material and methods
Data source and preprocessing. The emergence and development of miniature air quality detectors pro-
vide the possibility for grid and real-time monitoring of air quality. However, its measurement is affected by 
many factors, so the measurement data will have errors. This paper uses a statistical model to calibrate it. A 
total of two sets of data (http:// www. mcm. edu. cn/ html_ cn/ node/ b0ae8 510b9 ec0cc 0deb2 266d2 de19e cb. html) 
are used in this study to establish the calibration model of the miniature air quality detectors. The first set of data 

http://www.mcm.edu.cn/html_cn/node/b0ae8510b9ec0cc0deb2266d2de19ecb.html


3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9333  | https://doi.org/10.1038/s41598-022-13531-4

www.nature.com/scientificreports/

comes from an air quality monitoring station in Nanjing, which contains 4200 sets of data and is considered 
accurate in this paper. It recorded the hourly concentration of two dusts and four gases from November 14, 2018 
to June 11, 2019. The second set of data is provided by a miniature air quality detector juxtaposed with the air 
quality monitoring station. It contains 234,717 sets of data, and the interval between each set of data is no more 
than five minutes. The second set of data includes not only the concentration of two dusts and four gases, but 
also five meteorological parameters such as temperature, humidity, wind speed, air pressure, and precipitation.

Data preprocessing is the first step in establishing the data correction model of the miniature air quality 
detector. Data that is more than 3 times the mean value of the left and right nearest neighbors is regarded as an 
outlier and eliminated in this paper. Then average the measured values of the self-built point within an hour to 
compare with the data of the national control point, and delete some data that cannot correspond to the self-
built point and the national control point. After data preprocessing, a total of 4135 sets of corresponding data 
are obtained, and Table 1 shows them.

Data exploratory analysis. Exploratory analysis of data can give us a deeper understanding of the inter-
relationships between variables. In order to more intuitively reflect the relationship between the national control 
point measurement data and the self-built point measurement data, we average the measurement data on a daily 
basis and conduct visual  analysis6,9. It can be seen from Fig. 1 that no matter what kind of pollutants it is, the 
general trend of the self-built point data and the national control point data is the same, but there are also cer-
tain errors. The difference between  PM2.5 and  PM10 is relatively small, indicating that the miniature air quality 
detector has high accuracy in measuring the concentrations of these two types of pollutants. The errors of  NO2 
and  O3 in the previous period are relatively large, and the errors in the latter period are relatively small. It may 
be that the climate has a great influence on the concentration of these two pollutants measured by the miniature 
air quality detector. The measurement errors of CO and  SO2 are large, indicating that it is difficult to monitor the 
concentrations of these two pollutants with a miniature air quality detector.

Figure 2 is a line chart of the changes of five meteorological parameters with time. It can be seen that there 
is abundant rain in this area, the daily average temperature is relatively mild, the daily average air pressure is 
stable between 1000–1050 Pa, and the air humidity and wind speed change more obviously. Further discussion 
and analysis are needed to find the relationship between meteorological parameters and the concentrations of 
the six types of pollutants.

The measurement error of the miniature air quality detector may have a certain relationship with the mete-
orological parameters, and there are obvious differences in the meteorological parameters in different seasons. 
We have drawn a  boxplot31 of the six categories of pollutants by season as shown in Fig. 3. It can be seen that 
the concentrations of  PM2.5,  PM10, CO, and  SO2 are the highest in autumn and winter. The main reason is that 
the temperature in autumn and winter is lower, and it is difficult for the lower air and upper air to generate 
convection, resulting in slower diffusion of pollutants. The reason for the high concentration of  O3 in summer 
is the strong solar radiation and high temperature in summer, which is easy to cause photochemical smog and 
secondary ozone production. The slightly higher  NO2 concentration in spring may be related to thunderstorms. 
In addition, the errors between the measured and actual values of the six types of pollutants have obvious differ-
ences in the four seasons, indicating that meteorological parameters will affect the measurement of the miniature 
air quality detector.

Correlation analysis. The concentration of pollutants in the air is an important criterion for evaluating air 
quality. Different geographical environments have different influence factors on the concentration of air pollut-
ants. The Pearson correlation coefficient is used in this paper to screen the main factors affecting air  quality25,32. 
Equation (1) is its expression, where xi is the value of the first variable, yi is the value of the second variable, x 
is the mean of x , y is the mean of y , and n represents the number of samples. The value range of the Pearson 
correlation coefficient is [− 1, 1], and the larger its absolute value, the stronger the correlation between the two 
variables.

Table 1.  Descriptive statistics of pollutant concentrations and meteorological parameters measured by 
national control point and self-built point after pretreatment.

Input variable Ranges Mean Standard deviation Skewness Kurtosis

PM2.5 (μg/m3) 1 to 216.883 64.127 37.328 0.988 0.701

PM10 (μg/m3) 2 to 443.25 102.391 65.267 1.476 2.862

CO (mg/m3) 0.05 to 3.895 0.863 0.452 1.463 3.136

NO2 (μg/m3) 0.947 to 157.136 45.209 28.403 0.653 − 0.259

SO2 (μg/m3) 1 to 651.3 19.397 18.723 12.781 342.11

O3 (μg/m3) 0.579 to 259 61.586 40.941 1.091 2.035

Wind speed (m/s) 0.133 to 2.387 0.7 0.346 0.862 0.748

Pressure (Pa) 996.871 to 1039.8 1018.8 8.889 − 0.093 − 0.599

Precipitation (mm/m2) 0 to 312.1 132.084 87.004 0.245 − 0.728

Temperature (°C) − 3.882 to 37.944 11.882 8.603 0.625 − 0.399

Humidity (rh%) 10.667 to 100 68.903 21.931 − 0.487 − 0.756
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It can be seen from Table 2 that under the premise of the significant level 0.05, except for  NO2 concentration 
and temperature, the other variables are significantly correlated with each other. The positive correlation between 
 PM2.5 concentration and  PM10 concentration is the highest, and the correlation coefficient is 0.89, indicating that 
they have the same trend of change. The negative correlation between temperature and air pressure is the highest, 
and the correlation coefficient is − 0.85, indicating that there is a reverse trend between them.

Establishment of sensor calibration model
Introduction to basic principles. The relevance vector machine is a sparse probability model similar to 
the support vector machine proposed by Tipping in 2000. It is a new supervised learning method. The model 
combines theories such as Markov’s, Bayes’s principle and maximum likelihood. Due to the high sparsity of the 
algorithm and the structure based on probabilistic learning, RVM can enable us to obtain high prediction accu-
racy. In addition, compared with the support vector machine, it greatly reduces the number of kernel functions 
involved in the prediction calculation and reduces the prediction calculation time. RVM also has the advantages 
of probabilistic prediction, automatic parameter setting and arbitrary use of kernel  functions33–35.
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Figure 1.  Comparison of daily average data of six types of pollutants at national control point (NCP) and 
self-built point (SBP). Figures are generated using Matlab (Version R2016a, https:// www. mathw orks. com/) 
[Software].
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The relevance vector machine is not constrained by the Mercer condition when selecting the kernel function, 
it can achieve binary classification and probability output, and the running speed is fast. Let the training data 
samples be {xn, tn|n = 1, 2, . . . , N} , where xn is the input value,tn is the output value, N is the number of data 
samples, Eq. (2) is the expression of the regression model, where k(x, xn) is the kernel function, ω = {ωn}

N
n=0 is 

the weight value of each input quantity, εn is the data noise and obeys the Gaussian distribution, εn ∼ N(0, σ 2) , 
σ 2 is an unknown quantity. Thus, the Eq. (3) that satisfies the Gaussian distribution is obtained, where tn is related 
to y(xn) and σ 2 , and tn is independent of each other. Equation (4) is the likelihood function of the training sample 
set, where t = {t1, t2, . . . , tN }

T,ω = {ω0, ω1, . . . , ωN }
T,� = [ϕ(x1), ϕ(x2), . . . , ϕ(xN )]

T is an N × (N + 1) 
matrix, and the expression of each column in the matrix is ϕ(xn) = [1, k(xn, x1), k(xn, x2), . . . , k(xn, xN )]

T . 
The hyperparameter α = {α0, α1, . . . , αN }

T is introduced to solve ω and σ 2 in Eq. (4), ωn satisfies the Gaussian 
distribution, and its expression is Eq. (5). Equation (6) is the expression of the input value  x∗ and the output 
value t∗ of the prediction data set. According to the Bayesian and Markov properties and Eq. (6), Eq. (7) can be 
obtained by simultaneous simplification, where Eqs. (8)–(10) represent the covariance and weight mean.
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Figure 2.  Variation of the daily average value of five meteorological parameters.
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Equation (11) can be obtained after the maximum likelihood function is simplified. Find the partial derivative 
of α and σ 2 in Eq. (11), and let them be 0 to establish two equations. After simplification, Eqs. (12)–(13) can be 
obtained, where γn = 1− αn�nn , �nn is the element of row n and column n  of � . α and σ 2 are obtained through 

(10)A = diag(a0, a1, . . . , aN )

Figure 3.  Comparing the concentration of six types of pollutants at national control sites (Ncp) and self-built 
sites (Sbp) on a seasonal basis.

Table 2.  Pearson linear correlation coefficient between the concentrations of six types of air pollutants 
measured at national control point and five meteorological parameters measured at self-built point (Band * 
indicates significant correlation at a significant level of 0.05).

Variable PM2.5 PM10 CO NO2 SO2 O3 Wind speed Pressure Precipitation Temperature Humidity

PM2.5 1.00 0.89* 0.66* 0.26* 0.29* − 0.26* − 0.23* 0.89* − 0.70* − 0.16* 0.18*

PM10 1.00 0.63* 0.34* 0.35* − 0.19* − 0.18* 0.38* − 0.10* − 0.03* − 0.09*

CO 1.00 0.30* 0.31* − 0.27* − 0.31* − 0.07* 0.08* − 0.05* 0.22*

NO2 1.00 − 0.34* − 0.26* − 0.36* − 0.10* − 0.14* − 0.02 − 0.11*

SO2 1.00 − 0.28* − 0.19* 0.19* 0.27* − 0.10* 0.11*

O3 1.00 0.39* − 0.45* − 0.12* 0.68* − 0.62*

Wind speed 1.00 0.09* 0.06* 0.07* − 0.32*

Pressure 1.00 0.23* − 0.85* 0.15*

Precipitation 1.00 − 0.14* 0.86*

Temperature 1.00 − 0.49*

Humidity 1.00
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the update iteration of Eqs. (12)–(13). At the same time, the weight posterior mean µ and the covariance matrix 
� change continuously until the convergence condition or the maximum number of iterations is satisfied. In the 
iterative process, new optimal solutions αMP and σ 2

MP will be obtained, and most of the weights will approach 0, 
and the corresponding basis functions will be ignored, which reflects the sparsity of the RVM model, and other 
weights will approach a constant, and the corresponding basis functions are called relevance vectors. The expected 
value y∗ and the noise variance σ 2 (Eqs. (14)–(15)) can be obtained by predicting the relationship between the 
input value x∗ and the output value t∗ of the data set (Eq. (6)), where x∗ is the sample to be predicted, y∗ is the 
mean of the output value t∗.

PCA–RVM model construction. Air quality is affected by a variety of factors, and the relationship between 
the influencing factors is intricate. The variables input to the model have a great relationship with the accuracy 
of prediction. According to the previous correlation analysis, it can be seen that the pollutant concentration 
measured by the miniature air quality detector and the five meteorological parameters are significantly related to 
the air quality, so they all have a certain impact on the air quality. In addition, since the input variables also affect 
each other, if all variables are directly input into the relevance vector machine, some repetitive information will 
be input into the model, which not only makes the training time of the model longer, but also makes the model 
generalization ability deteriorates.

Principal component analysis is a method of data dimensionality reduction and denoising. It converts a series 
of components that are originally related in the system into several uncorrelated components through orthogo-
nal transformation, and this group of components after conversion is called the principal component. Then, 
according to the contribution of each component to the data system, the principal components are recombined 
to highlight the hidden features in the original data to construct a mapping matrix, and then the original data is 
transformed by the mapping matrix to achieve the purpose of  denoising28. The process of principal component 
analysis is generally as follows: (i) Standardize the original data; (ii) Calculate the correlation coefficient matrix 
R; (iii) Calculate the eigenvalues and eigenvectors; (iv) Select p (p ≤ m) principal components and calculate the 
comprehensive evaluation value. In this paper, the principle of extracting the number of principal components 
is that the cumulative contribution rate exceeds 99%.

Figure 4 shows the principal component contribution rate and the principal component cumulative con-
tribution rate after dimension reduction by principal component analysis. It can be seen that the contribution 
rate of the first principal component reaches 29.2%, and the contribution rate of the second, third and fourth 
principal components also exceeds 10% respectively, and the cumulative contribution rate of the first four prin-
cipal components exceeds 70%. In addition, it can be seen from the broken line in the figure that the cumulative 
contribution rate of the first 9 principal components has exceeded 99%, which is in line with the principle of the 
number of extracted principal components. It shows that PCA is effective for dimensionality reduction of air 
quality data, and can provide more reliable input for subsequent prediction.

After the principal component dimension reduction is performed on the original data, the first 9 principal 
components after dimension reduction are used as input independent variables, and the predicted values of six 
types of pollutant concentrations are used as output variables, and the relevance vector machine is used to build 
the air quality prediction model. This combined model is called the PCA–RVM model in this paper. Since the 
construction process of the six types of pollutant prediction models is similar, we take  PM2.5 concentration as 
an example, and other pollutant concentration prediction models can be obtained similarly.

We randomly divided 4135 groups of data, 3000 groups are selected as the training set, and the other 1135 
groups are selected as the test set, and used Matlab2016a for modeling. For the training of the RVM model, 
according to the RVM regression principle, it can be seen that the hyperparameter α and the noise σ 2 are not 
sensitive to the initial value, and the optimal value can be obtained by iterative adaptation. The kernel function of 
the relevance vector machine uses the Gaussian kernel function, because the Gaussian kernel function can obtain 
a very smooth  estimation36,37. The value of the model kernel function width γ is obtained by the grid optimization 
method, the optimization interval is [0.5, 10], and the step size is 0.5. Equation (16) is the expression of Root 
Mean Square Error (RMSE), where yi represents the target value, wi represents the model predicted value. In 
this paper, the RMSE between the target value of the sample training set and the model predicted value is used 
as the objective function for optimization. During the training process, for each parameter value, we train the 
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model 10 times, and average the output values of the 10 training times as the final output of the model. Through 
empirical analysis, when γ = 1.5 is the optimal value, the PCA–RVM air quality prediction model is established.

PCA–RVM–NAR model construction. The PCA–RVM model can be used to calibrate the miniature 
air quality detector data. It can be seen from Fig. 5 that the residual of the  PM2.5’s PCA–RVM model is greatly 
improved compared to the residual of the self-built point, whether it is the training set or the test set. In the train-
ing set, the residual of the model is concentrated in [− 10, 10], and the absolute value of the maximum residual is 
32.06 μg/m3, while the residual of the self-built point is concentrated in [− 40, 20], and the absolute value of the 
maximum residual is 110.44 μg/m3. In the test set, the residual of the model is concentrated in [− 20, 20], and the 
absolute value of the maximum residual is 67.2 μg/m3, while the residual of the self-built point is concentrated in 
[− 50, 25], and the absolute value of the maximum residual is 90 μg/m3. The PCA–RVM model performs well in 
both the training set and the test set, indicating that the generalization ability of the model is good.

Although the  PM2.5 concentration prediction effect of the PCA–RVM model is good, a set of time series 
residual data is obtained, and some residuals in the model are still high. Autoregressive integrated moving aver-
age model and NAR neural network model are commonly used to deal with time series data. This paper uses a 
NAR neural network to further mine the residual information.

The NAR neural network belongs to the dynamic neural network and can be expressed by Eq. (17), where y(t) 
is the output value at the current moment, y(t − 1), y(t − 2), . . . , y(t − d) are the output value at the historical 
moment, and d is the delay order. NAR neural network consists of input layer, hidden layer and output  layer38. 
For the selection of the number of neurons in the hidden layer and the order of input delay, we also use grid 
optimization to optimize in [5, 15] × [1, 5]. The training function of the NAR neural network adopts the default 
Levenberg–Marquardt (LM) algorithm in the Neural Net Time Series in Matlab. The core idea of the LM algo-
rithm is to use the Jacobian matrix to replace the solution of the positive definite matrix in the gradient learning 
algorithm to optimize the operation efficiency of the training network. For the objective function, RMSE is also 
chosen as the objective function, and the final output is also obtained by averaging 10 times of training. After 
optimization, it is found that the optimal value is when the number of neurons in the hidden layer is 9 and the 
delay order is 3. The structure of the NAR neural network is shown in Fig. 6, where w is the weight of the neural 
network model, and b is the threshold of the neural network model. The PCA–RVM–NAR air quality prediction 
model has now been constructed.

(16)RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − wi)2

Figure 4.  The principal component contribution rate and the cumulative contribution rate of the self-built 
point measurement data.
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Figure 7 shows the measured value of  PM2.5 concentration at the national control point and the predicted 
value of PCA–RVM–NAR combined model. It can be seen that the change trend of the two is consistent, and the 
correlation coefficient between the measured value of the national control point and the predicted value of the 
PCA–RVM–NAR model is greater than 0.95 in both the training set and the test set. Both models in the training 
set and the test set passed the significance test at the significance level of 0.01. The regression coefficients in the 
two regression models are also close to 1, indicating that the PCA–RVM–NAR model is more accurate in  PM2.5 
concentration prediction.

Residual analysis is also a necessary step in statistical  modeling12,15. It can be seen from the residual analy-
sis diagram in Fig. 8 that most of the residuals of the PCA–RVM–NAR model are concentrated in [− 10, 10], 
and the residuals are evenly distributed near the zero point. The absolute values of residuals at the 172nd and 
1481st sample points are larger than 50 μg/m3. We checked the corresponding data, and the  PM2.5 concentration 
measured at the national control point has changed greatly at this moment, indicating that the measurement 
residual of the model will increase when the pollutant concentration changes rapidly. In order to better display 
the residual characteristics of the model, this paper deletes these two points and draws a residual histogram. 
From the histogram we can see that the residuals are roughly normally distributed. A total of 3981 sets of data 
residuals are located in [− 10,10], exceeding 96.2%, and only 27 sets of residuals whose absolute value exceeds 

(17)y(t) = f (y(t − 1), y(t − 2), . . . , y(t − d))

Figure 5.  Comparison of  PM2.5’s PCA–RVM model residuals and self-built point residuals. The comparison of 
the training set is on the left, and the comparison of the test set is on the right.

Figure 6.  The frame structure of the PCA–RVM–NAR model, where the input is the residual of the PCA–RVM 
model. This network has 1 inputs, 1 hidden layer with 9 hidden neurons, 3 input delay orders, and 1 linear 
output layer leading to 1 output.
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20, do not exceed 0.5% of the total. In addition, 91.3% of the data prediction residuals are within 20%, and 73.3% 
of the data prediction residuals are within 10%.

Discussion
The PCA–RVM–NAR combination model can calibrate the  PM2.5 measurement concentration of the miniature 
air quality detector, and has achieved good results. In addition, multiple linear regression model, Support Vector 
Regression machine (SVR), Multilayer Perceptron neural networks (MLP) and Nonlinear Autoregressive models 
with Exogenous Inputs (NARX) can also calibrate the  PM2.5 measurement concentration of the miniature air 
quality  detector39–41. In order to visually compare the calibration effects of various models, Taylor diagram is 
used in this paper to compare them.

Taylor diagram is a visual chart that can simultaneously represent three indicators of correlation coefficient, 
standard deviation and centered root mean square difference. The scatter points in the Taylor diagram represent 
different models, the radial line represents the correlation coefficient, the horizontal and vertical axes represent 
the standard deviation, and the dashed line represents the centered root mean square difference. Equation (1), 
Eqs. (18)–(19) are their expressions, where yi represents the true value, wi represents the model predicted value, y 
represents the mean value of y , and w represents the mean value of w . Taylor diagram can compare the relation-
ship between model indicators from multiple perspectives and dimensions. It can be seen from Fig. 9 that the 
distance between the self-built point and the observation point (national control point) is the farthest, indicat-
ing that the  PM2.5 measurement accuracy of the self-built point is the lowest, and the measurement value of the 
self-built point needs to be calibrated. Multiple linear regression model, multilayer perceptron neural network 
and NARX neural network can calibrate the  PM2.5 measurement accuracy of self-built point, but the calibration 

Figure 7.  The prediction effect of  PM2.5’s PCA–RVM–NAR model on the training set and test set.

Figure 8.  Residual test of  PM2.5’s PCA–RVM–NAR model. The residual plot of the PCA–RVM–NAR model is 
seen on the left. The histogram of the residuals is seen on the right.
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accuracy needs to be improved. The calibration effect of the support vector machine and the PCA–RVM model 
is better, but in general, the PCA–RVM–NAR combined model given in this paper performs the best in the 
calibration of  PM2.5 measurement accuracy.

In order to comprehensively compare the accuracy of the PCA–RVM–NAR model with other commonly used 
air quality prediction models, four commonly used indicators are used to compare the models in this  paper32,39. 
These four indicators include Root Mean Square Error, Goodness of fit  (R2), Mean Absolute Error (MAE) and 
relative Mean Absolute Percent Error (MAPE). Equation (16), Eqs. (20)–(22) are their expressions, where yi rep-
resents the measured values of six types of pollutants in the national control point, and wi represents the predicted 
values of various prediction models. The comparison of each indicator of two dusts and four gases is shown in 
Tables 3, 4, 5 and 6. It can be seen that the error of the self-built point is not only the largest in the  PM2.5 meas-
urement concentration, but also the largest in other pollutants. It should be noted that the  R2 of some pollutants 
is negative, which is caused by the large measurement error of the self-built point. This indicator is eliminated 
when the calculation model improves the measurement accuracy. The support vector regression machine is 
obviously better than the MLR, MLP and NARX models in each evaluation index value, which shows that the 
SVR is more suitable for the calibration of the monitoring data of the miniature air quality detector. The perfor-
mance of correlation vector machine is better than that of support vector regression machine in each evaluation 
indicator, and the PCA–RVM–NAR model proposed in this paper has the best performance in four indicators 
of six pollutants. The PCA–RVM–NAR model has the lowest improvement in the measurement accuracy of the 

(18)σ =

√

√

√

√

1

n

n
∑

i=1

(wi − w)2

(19)E′ =

√

√

√

√

1

n

n
∑

i=1

[(yi − y)− (wi − w)]2

Figure 9.  Taylor diagrams of the predicted  PM2.5 concentration for the six models and the measured value of 
the self-built point, where SBP represents the self-built point.
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miniature air quality detector is the RMSE of  PM2.5. The measurement accuracy of this detector improves of the 
77.8% considering the self-built point (RMSE = 22.436) and the PCA–RVM–NAR model (RMSE = 4.97). The 
PCA–RVM–NAR model has the highest improvement in the measurement accuracy of the miniature air quality 
detector is the MAPE of  NO2. The measurement accuracy of this detector improves of the 93.9% considering the 
self-built point (MAPE = 2.129) and the PCA–RVM–NAR model (MAPE = 0.13).

(20)R2 = 1−

∑n
i=1(yi − wi)

2

∑n
i=1(yi − y)2

Table 3.  The RMSE of self-built point and various air quality prediction models, in which national control 
point is used as comparison object.

Input variable Self-built point PCA–RVM PCA–RVM–NAR MLR SVR MLP NARX

PM2.5 22.436 5.873 4.970 10.149 8.649 10.777 8.800

PM10 66.263 10.605 7.740 20.050 11.656 19.126 13.911

CO 0.679 0.131 0.085 0.344 0.175 0.304 0.158

NO2 37.183 6.597 5.049 16.653 7.725 13.216 8.081

SO2 26.24 4.018 2.843 15.305 4.116 9.984 5.104

O3 45.673 8.669 6.627 21.451 11.304 18.603 12.477

Table 4.  The  R2 of self-built point and various air quality prediction models, in which national control point is 
used as comparison object.

Input variable Self-built point PCA–RVM PCA–RVM–NAR MLR SVR MLP NARX

PM2.5 0.551 0.969 0.978 0.908 0.933 0.907 0.931

PM10 − 1.076 0.947 0.972 0.810 0.938 0.827 0.909

CO − 0.929 0.929 0.970 0.506 0.872 0.708 0.895

NO2 − 1.333 0.927 0.957 0.532 0.899 0.752 0.890

SO2 − 0.726 0.960 0.980 0.413 0.958 0.786 0.935

O3 0.094 0.967 0.981 0.800 0.945 0.864 0.932

Table 5.  The MAE of self-built point and various air quality prediction models, in which national control 
point is used as comparison object.

Input variable Self-built point PCA–RVM PCA–RVM–NAR MLR SVR MLP NARX

PM2.5 18.181 4.032 3.430 7.042 5.821 7.763 6.070

PM10 50.151 6.958 4.877 13.689 7.080 13.184 9.218

CO 0.549 0.089 0.058 0.263 0.110 0.237 0.100

NO2 29.838 4.189 3.144 12.641 4.658 9.991 4.924

SO2 12.867 2.090 1.459 10.206 2.116 7.246 2.684

O3 36.63 5.702 4.266 16.582 7.647 14.396 7.948

Table 6.  The MAPE of self-built point and various air quality prediction models, in which national control 
point is used as comparison object.

Input variable Self-built point PCA–RVM PCA–RVM–NAR MLR SVR MLP NARX

PM2.5 0.447 0.104 0.083 0.166 0.133 0.185 0.151

PM10 0.887 0.118 0.086 0.221 0.107 0.210 0.147

CO 0.478 0.097 0.058 0.319 0.112 0.283 0.096

NO2 2.129 0.173 0.130 0.639 0.170 0.471 0.1816

SO2 0.685 0.134 0.090 0.741 0.131 0.530 0.161

O3 4.322 0.294 0.290 1.261 0.373 1.002 0.428
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Conclusions
Air quality is related to the quality of human  life3,4. The main pollutants affecting air quality are  PM2.5,  PM10, 
CO,  NO2,  SO2 and  O3. Real-time monitoring of pollutant concentrations is of great help for the government 
and relevant departments to take corresponding measures to pollution sources. The development of miniature 
air quality detectors is very helpful for human beings to monitor air quality in real time and grid. However, due 
to various reasons, the measurement accuracy of the miniature air quality detector needs to be improved. The 
PCA–RVM–NAR model proposed in this study successfully improved the measurement accuracy of the min-
iature air quality detector by 77.8–93.9%. In addition, the PCA–RVM–NAR model performs very well on both 
the training set and the test set, indicating that it has a strong generalization ability. It uses a total of 4135 sets of 
data, and the data of four seasons are covered in the model, which also shows that the model has good stability. 
However, air quality is affected by many factors. The PCA–RVM–NAR model does not consider other external 
factors when it is established. Future work can try to introduce more external factors to improve the accuracy 
of the model. In addition, the climate in different regions is different, and the suitability of the model in other 
regions also needs further verification.

Data availability
The data that support the findings of this study are available from the corresponding author B.L. upon reason-
able request.
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