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Abstract

Erythropoietin (EPO) is a pleiotropic cytokine originally identified for its role in erythropoiesis. In addition, in various
preclinical models EPO exhibited protective activity against tissue injury. There is an urgent need for potent treatments of
autoimmune driven disorders of the peripheral nervous system (PNS), such as the Guillain-Barré syndrome (GBS), a disabling
autoimmune disease associated with relevant morbidity and mortality. To test the therapeutic potential of EPO in
experimental autoimmune neuritis (EAN) - an animal model of human GBS – immunological and clinical effects were
investigated in a preventive and a therapeutic paradigm. Treatment with EPO reduced clinical disease severity and if given
therapeutically also shortened the recovery phase of EAN. Clinical findings were mirrored by decreased inflammation within
the peripheral nerve, and myelin was well maintained in treated animals. In contrast, EPO increased the number of
macrophages especially in later stages of the experimental disease phase. Furthermore, the anti-inflammatory cytokine
transforming growth factor (TGF)-beta was upregulated in the treated cohorts. In vitro experiments revealed less
proliferation of T cells in the presence of EPO and TGF-beta was moderately induced, while the secretion of other cytokines
was almost not altered by EPO. Our data suggest that EPO revealed its beneficial properties by the induction of beneficial
macrophages and the modulation of the immune system towards anti-inflammatory responses in the PNS. Further studies
are warranted to elaborate the clinical usefulness of EPO for treating immune-mediated neuropathies in affected patients.
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Introduction

Acute inflammatory autoimmune diseases of the peripheral

nervous system (PNS) are disabling disorders that - despite

advances in treatments of the last decade [1] – are still

associated with relevant morbidity and mortality [2]. The most

common prototypic acute inflammatory neuropathy is the

Guillain–Barré syndrome (GBS) manifesting as a monophasic

ascending flaccid tetraparesis with minor sensory deficits [3,4].

Understanding of the underlying pathomechanisms is still

incomplete. There is consensus that GBS results from aberrant

cellular and humoral immune responses directed to peripheral

nerve antigens resulting in demyelination and/or axonal

damage of the peripheral nerve.

Most of our immunopathogenic understanding of GBS was

gathered in a well established animal model of this disease,

experimental autoimmune neuritis (EAN). The model mimics

various clinical and paraclinical features of GBS and is inducible

by active immunization with peripheral myelin homogenates,

appropriated antigen peptides or transfer of neuritogenic T cells

[5]. It offers the possibility to study preclinical effects of novel

therapies that may exhibit a clinical benefit in GBS.

Erythropoietin (EPO), known for its role in erythropoiesis,

revealed remarkable tissue protective properties in different

preclinical models [6]. In experimental autoimmune encephalo-

myelitis (EAE) treatment with EPO reduces the clinical score,

reduces the demyelination and protects from axonal loss [7].

Animals with an ischemic stroke developed smaller infarction

zones and reduced inflammation with EPO [8]. Some of these

preclinical findings could even be translated into clinical phase II

studies, in which peripherally administered EPO exhibited

beneficial potential in stroke and patients with MS [9,10].

Thus, we explored the anti-inflammatory and neuroprotective

properties of EPO in autoimmune disorders of the PNS.

Therefore, EPO was applied in EAN in a preventive and a

therapeutic paradigm and the effect on clinical, histological and

immunological measures was assessed.

Results

Effect of EPO on the clinical course of experimental
autoimmune neuritis (EAN)

Treatment of EAN with EPO was studied in two different

paradigms (Fig. 1). In a preventive paradigm (blue line) EPO was
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given from day three after immunization. In a therapeutic

paradigm (red line) the treatment was started when first clinical

symptoms occurred at day 10 post immunisation (p.i). Assessment

of the hematocrit at day 29 p.i. revealed that in both treatment

paradigms EPO exhibited a similar systemic effect, as indicated by

a similar increase in hematocrit values (data not shown).

Compared to PBS injected controls administration of EPO

significantly reduced maximal clinical disease severity of EAN in

both paradigms (Fig. 1 A). When therapy was initiated at the onset

of first clinical symptoms, the duration of the recovery phase was

significantly shortened and the remission phase was accelerated. In

line with the reduced clinical score during the whole disease course

weight loss was less pronounced in the prevention group (Fig. 1B).

Thus, EPO ameliorates the clinical signs of autoimmune

neuropathy even when therapy was started at later time points,

although early treatment has a more prominent effect on disease

severity.

Histological analysis of EPO treatment
To analyze grade and distribution of endoneural inflammatory

infiltrates, sciatic nerve sections were stained for T cells (Fig. 2A–

C) and macrophages (Fig. 2D–F). The number of T cells,

determined by CD3 staining at day 15 and day 29 was markedly

reduced in the treatment group compared to control (Fig. 2G).

The preventive treatment showed an approximately 4-fold

reduction in T cell numbers at the peak of disease (PBS:

28.264.4; prevention: 5.861.1), while in the remission phase

the effect on T cells was less pronounced (PBS: 52.364.1;

prevention: 35.165.3). The therapeutic administration of EPO

reduced the number of T cells at day 15 (19.862.7) as well as at

day 29 (14.861.9). Quantification of T cell staining correlated

with the clinical scores in untreated animals compared to the two

treatment groups. Infiltration was less pronounced in cohorts with

an ameliorated disease. Surprisingly, the CD68 macrophage

staining showed disproportionately higher number of macrophag-

es compared to T cells in EPO-treated animals. The CD68

staining at day 29 displayed a massive induction of macrophages in

the target organ after preventive and therapeutic treatment

(Fig. 2D–F). The striking differences in macrophage number in

the treated and untreated groups were not present in the spleen

(data not shown). Quantification of macrophages confirmed the

significant differences in the EPO-treated groups compared to

controls (Fig. 2 H). Although macrophage numbers were not

prominent at the peak of disease (PBS: 25.266.2; prevention:

10.761.5; therapeutic: 4.960.1), the remission phase was

characterized by a duplication of macrophage numbers under

preventive (PBS: 62.769.1; prevention: 114.367.8) as well as

therapeutic conditions (143.3613.4).

Integrity of myelin was determined in ultrathin sections of the

peripheral nerve. Representative electron micrographs depictured

pathological changes in EAN nerves. Control nerves without EPO

treatment (Fig. 2I,J) showed more demyelinated fibres without

remyelination and axon degeneration. Additionally, more inter-

stitial oedema were present. In contrast, in nerves from EPO-

treated animals more remyelinated fibres and less demyelination

was observable (Fig. 2 K). Pathology, however, exhibited great

intraindividual heterogeneity. To address this variability we

performed quantitative histological analyses and detected an

amelioration of the PNS pathology in EPO-treated animals. The

percentage of demyelinated (Fig. 2 M) and hypomyelinated axons

(data not shown) showed a non-significant trend towards

reduction, while the percentage of degenerating axons was

significantly reduced by preventive EPO treatment (Fig. 2 L).

Proliferation and cytokine profile of EPO treated
lymphocytes in vitro

The disproportionate numbers of infiltrating T lymphocytes

compared to macrophages in the peripheral nerves of EPO-treated

animals prompted us to examine the immunomodulatory effects of

EPO in leukocyte cultures in vitro. Allogenic T cell proliferation of

a mixed leukocyte reaction was strongly reduced to approximately

50 percent at higher concentration of EPO (Fig. 3A). In line with

this observation, the proinflammatory cytokine IFN-gamma was

almost reduced to half in collected cell-supernatants, while the

anti-inflammatory cytokines IL-10 and TGF-beta were slightly

increased after 72 h of T cell proliferation (Fig. 3B). Comparable

results were observed in an antigen specific T cell proliferation and

the concomitant supernatant analysis (data not shown). To analyze

the effect of EPO on macrophages intraperitoneal cells of naı̈ve

rats were cultivated in the presence of EPO and the amount of IL-

Figure 1. Treatment with EPO ameliorates the clinical course of EAN. EAN was induced in female Lewis rats by subcutaneous immunization
with bovine peripheral nerve myelin homogenisates (BPNM, 8 mg/animal) in complete Freud adjuvans. Animals were treated daily with rhEPO (5000
IU/kg) via i.p. injections from day 3 (preven: preventive) or day 10 (therap: therapeutic) after immunization or with vehicle alone (n = 10 per group).
Clinical score ranging from 0 (healthy) to 10 (death) was assigned daily in a blinded fashion. On day 15, five randomly selected animals from each
group were sacrificed for subsequent histological analysis. Both preventive (red triangles) and therapeutic (blue squares) shortened the duration of
severe impairments and disability, while preventive treatment also reduced the maximum EAN severity (A). The preventive treatment also
significantly protects from weight loss (B). Clinical score and weight was assessed at the indicated time points (mean 6 SEM, * p,0.05; ** p,0.01).
doi:10.1371/journal.pone.0026280.g001

EPO in EAN
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Figure 2. Treatment with EPO improves the peripheral nerve histology. Sections of sciatic nerves obtained at day 29 after immunization
were stained for CD3+ T lymphocytes in non-treated (A) and EPO-treated animals (B and C). Scale bar = 50 mm. Immunohistochemistry developed with
3,39-diaminobenzidine as peroxidase substrate. Insets: Higher magnification of stained T cells showing brown DAB staining in close proximity to blue

EPO in EAN
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10 and TGF-beta was assessed (Fig. 3C). In control cultures

modest levels of IL-10 were detected but these were not altered by

EPO. Altogether the cytokines was expressed in low quantities

(below 100 pg/ml). In contrast, a higher TGF-beta level was even

present in unstimulated controls (323.366.8 pg/ml) and this was

further increased by EPO treatment (437.662.6 pg/ml at highest

concentrations of EPO). To validate our findings in intraperitoneal

cells from naı̈ve animals we analyzed peritoneal macrophages

from three rats with clinically active EAN at peak of clinical

disease independently (Fig. 3D). IL-10 levels were either slightly

induced or reduced by EPO in different animals, but in summary

not substantially altered. Again, the high levels of TGF-beta were

further significantly elevated by EPO stimulation to a comparable

amount in all animals. In contrast to T cell proliferation,

proliferation of different macrophage subpopulations was not

influenced by the presence of EPO, even when cells were

prestimulated with IFN-gamma or LPS (data not shown). Taken

together, the stimulation with EPO reduces the proliferation as

well as inflammatory cytokines in vitro, while anti-inflammatory

cytokines were induced to a greater extend.

Detection of TGF-beta in the peripheral inflamed nerve
Staining for TGF-beta in sciatic nerves was performed at day 15

and 29 p.i. to assess the possible mechanisms underlying the

beneficial effect of EPO (Fig. 4A–F).

At the peak of the clinical disease only a few TGF-beta positive cells

were detectable in the sciatic nerve sections of control animals

(Fig. 4A,G; PBS: 92.769.2). However, even at this early time point the

labelled nuclei. Sections of sciatic nerves obtained at day 29 after immunization were also stained for CD68+ macrophages in non-treated (D) and
EPO-treated animals (E and F). Scale bar = 50 mm. Quantitative analysis of d 15 and d 29 revealed the difference in the number of CD3+ T cells (G) and
CD68+ macrophages (H). Brachial plexus from control EAN rats (I and J) and EPO treated EAN rats following the therapeutic paradigm (K) were
dissected at day 29 and epoxin embedded. Ultrathin sections (80 nm) were stained with toluol blue and analyzed in an electron microscope. Stars:
demyelinated axons, number symbols: axon degeneration, arrowheads: remyelinated axons. In control treated EAN rats the nerves have more
demyelinated fibres without remyelination (I) and axon degeneration (J). Remyelinated fibres were more frequent in peripheral nerves from EPO
treated animals (K). Bars = 5 mm. Quantitative analysis of the percentage of degenerated (L) and demyelinated (M) axons of the plexus nerve in the
different groups. preven: preventive; therap: therapeutic. Asterisks indicate significance (mean 6 SEM, * p,0.05; *** p,0.001); student’s t test.
doi:10.1371/journal.pone.0026280.g002

Figure 3. EPO reduces the inflammatory profile of macrophages in vitro. Splenocytes from Lewis rats were cultivated with irradiated
allogenic Wistar splenocytes and T cell proliferation was measured by 3H-thymidine incorporation in the presence of increasing concentrations of EPO
(0–200 IU/ml) in quadruplicates. One representative experiment is depicted out of three (A). Supernatants of the proliferation were collected after
72 hours and levels of IFN-gamma, IL-10 and TGF-beta were determined using ELISA (B). Peritoneal macrophages from 2 naı̈ve rats were plated in
triplicates in the presence of EPO (0–200 IU/ml) and cytokines were measured via ELISA. Depicted is one representative experiment out of three (C).
Peritoneal macrophages from EAN rats at the peak of the disease were cultivated with EPO (0–100 IU/ml) and cytokines were measured. Dots
represent mean cytokine levels of single animals determined in duplicates (D). Asterisks indicate significance (mean 6 SEM, * p,0.05; ** p,0.01;
*** p,0.001); student’s t test.
doi:10.1371/journal.pone.0026280.g003

EPO in EAN
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number of TGF-beta positive cells was significantly increased to two

folds in EPO-treatment groups (Fig. 4 B,C,G, prevention:

175.3620.8; therapeutic: 187.1613.1). In the remission phase at

day 29 p.i., numbers of TGF-beta positive cells were increased in all

three groups. While in control and preventive regimens a comparable

amount of cytokine positive cells were counted at day 29 p.i. (PBS:

427.0638.2; prevention: 378.2635.2) the increase in the therapeutic

group was not as prominent (270.3632.1). Costaining of TGF-beta

and CD3 (Fig. 4H) or CD68 (Fig. 4I) showed colocalisation of TGF-

beta with some CD3+ T lymphocytes. However, most of the TGF-

beta staining colocalized with CD68+ cells, indicating that macro-

phages are the major source of TGF-beta.

Discussion

Erythroid precursors were believed to be the only cells

responsive to EPO, however, an emerging body of evidence

reports the EPO receptor (EPOR) to be expressed on a number of

different cell types. In contrast to erythrocytes using an EPOR

homodimer, in non erythroid tissues the binding of EPO assembles

a heteroreceptor complex composed of EPOR and the common

beta chain which is also used by other cytokine and growth factor

receptors [11]. Hereby, EPO exerts antiapoptotic and proliferative

effects on cells of various tissues including the nervous system,

kidney, heart and liver (Shaheen and Broxmeyer, 2009). Most

Figure 4. Treatment with EPO induces TGF-beta in the peripheral nerve. Sciatic nerves of untreated and EPO treated animals in a preventive
and therapeutic paradigm were dissected at day 15 and day 29 and stained for TGF-beta. While only few cells were positive in the untreated EAN
animals (A), preventive (B) and therapeutic (C) treatment with EPO revealed more TGF-beta positive cells in sciatic nerves. TGF-beta staining was even
enhanced in the remission phase (D–F). Scale bar = 50 mm TGF beta positive were counted at d 15 and d 29 for quantitative analysis (G). Asterisks
indicate significance (mean 6 SEM, * p,0.05; *** p,0.001) student’s t test. preven: preventive; therap: therapeutic. Sciatic nerves dissected at d 29 of
therapeutically treated animals were stained for TGF-beta (green) and CD3 (red, H) and CD68 (red, I). White triangles indicate costained cells. Nuclei
are visualized using DAPI. Scale bar = 50 mm.
doi:10.1371/journal.pone.0026280.g004
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interestingly, also immune cells express the EPOR [11,12]. These

findings opened a new avenue of research, specifically under the

concept of neuroprotection. The neuroprotective capacity of EPO

has been demonstrated in various animal models affecting the

nervous system, including stroke (hypoxia/ischemia), spinal cord

injury, experimental autoimmune encephalomyelitis (EAE), but

also models affecting the peripheral nerve, such as peripheral

nerve crush injury [4,13–16]. In the present study we studied the

effect in an animal model for immune-mediated PNS diseases -

EAN. We demonstrate that EPO reduces clinical disease severity

and improves clinical recovery after an immune-mediated hit

against the peripheral nerve.

Studies in the central nervous system pointed out that in

addition to its neuroprotective properties EPO exhibits immuno-

modulatory effects. However, it remains elusive at present to

which extend EPO exhibits its immunomodulatory capacity on

different immune cells. In a recent study in autoimmune model of

colitis and the systemic infection with salmonella treatment with

EPO concordantly reduced the activation of NF-kappaB and

thereby reduced the immune activation [17]. In our study in EAN

we demonstrate that EPO induces a reduction of peripheral nerve

specific autoimmune reactivity translating into preservation of

myelin and axon integrity and reduced cellular infiltration of the

PNS. This reduced cellular infiltration of the peripheral nerve was

found to be restricted to T cell infiltration, whereas the number of

macrophage found within the peripheral nerve was even increased

after treatment with EPO. These macrophages were found to

express the anti-inflammatory cytokine TGF-beta pointing to a

beneficial phenotype of these macrophages, so called M2

macrophages [18].

An obvious question that arises out of this observation is

whether EPO induces its effect via mechanisms influencing T cells

or via a direct effect on macrophages. Macrophages represent the

predominant cell population in the diseased peripheral nerve and

can be localized in spinal roots as well as in the more distal

segments of nerves. They play a key role as antigen presenting cells

and act as effectors destroying myelin [19,20]. The fundamental

need for macrophages in the pathogenesis of the disease - both in

the induction and effector stage - was demonstrated by depletion

experiments: Macrophage elimination prevented all clinical,

electrophysiological, and histological signs of EAN [21,22]. On

the other hand, macrophages are also essential for clearing myelin

and axonal debris in the recovery phase of EAN and contribute to

the induction of neurotrophic factors [20]. Our data are in line

with the findings by Nairz, et al [17]: In their study EPO reduced

the production of nitrite oxide (NO) and the pro-inflammatory

cytokine TNF-alpha by blocking the transcription factor nuclear

factor (NF)-kappaB in thioglycolate induced macrophages. These

changes in the macrophage phenotype translated into an impact in

clinical disease severity in the colitis model studied, fully in line

with our findings in autoimmune neuritis. Clearly, future studies

are warranted to dissect the influence of other cell types of the

immune system such as B cells and dendritic cells, to evaluate to

what extent EPO also determines their immunomodulatory

function.

Surprisingly, the number of macrophages within the peripheral

nerve increased significantly. This observation is in contrast to the

overall reduced infiltration of T cells. It remains elusive at present

whether this increase in number is predominantly driven by the

recruitment of macrophages from the peripheral immune system

or if this represents a dramatic proliferation of endogenous

macrophages [23]. However, given the kinetics with highest

numbers of macrophages during the recovery phase of the disease

an increase in the recruitment of peripheral macrophages appears

most likely. Furthermore, the comparable number of macrophages

in the spleen with and without EPO at day 15 and 29 and the fact

that we did not observe a proliferative effect of EPO on peritoneal

macrophages or bone marrow derived macrophages (data not

shown) underline that conclusion.

In the present study we could demonstrate that EPO drives

macrophages to an anti-inflammatory phenotype. Macrophages

produced significantly higher levels of the anti-inflammatory

cytokine TGF-beta and we were able to corroborate this

observation in vivo as well as in vitro. Interestingly, these findings

could also be validated in peritoneal macrophages derived from

EAN animals at the peak of the disease. In the present study,

macrophages were obtained from an inflammatory milieu but still

comprise the tendency to increase TGF-beta production after

EPO stimulation.

TGF-beta is a cytokine modulating immune responses by

dampening of the innate immune reaction, but also irreplaceable

interfering with the in vitro genesis of regulatory T cells (Tregs),

another key factor limiting an overreacting immune response.

Active TGF-beta is necessary for Tregs to mediate their

immunosuppressive properties [24,25]. Given the importance in

mediating peripheral tolerance it is consequential that blocking of

TGF-beta worsens the clinical outcome in various models for

autoimmunity like experimental autoimmune encephalitis, colla-

gen induced arthritis and the non obese diabetic mice (NOD)

[24,26–28].

Macrophages as well as T cells are capable of producing TGF-

beta [29,30], as it has also been demonstrated in the context of

EAN before [31]. In our study we could localize anti-TGF-beta

staining to CD3 as well as CD68 positive cells, however, overall

macrophages were identified as the main source of this anti-

inflammatory cytokine within the inflamed peripheral nerve.

While EPO obviously had a significant impact on TGF-beta

expression within the peripheral nerve, our in vitro studies

revealed only a small increase in the overall amount of TGF-

beta production by macrophages when measured by ELISA. A

possible explanation for this discrepancy could be the short

range of operation for cytokines like TGF-beta. In vitro

experiments do not account for the local effects that cytokines

have in the target organ. Even a small amount of cytokine

locally may be sufficient to protect the nerve from massive

inflammatory infiltration.

Taken together it is most likely that the local increase of TGF-

beta represents an anti-inflammatory milieu protecting the PNS of

EPO treated animals; it correlates with the beneficial outcome

considering clinical course and the preserved myelin integrity. Our

data do not support any concept of a direct neuroprotective effect

of EPO in EAN, however, our model system is clearly

inflammatory driven and inadequate to be used as a model to

study neurodegeneration. Future studies are clearly warranted to

unravel the potential of EPO as an interesting candidate in

treating autoimmune diseases of the PNS.

Materials and Methods

Induction of experimental autoimmune neuritis
Animal experimentation was approved by local state authorities

(Landesamt fuer Natur, Umwelt und Verbraucherschutz Nordr-

hein-Westfalen) under the approvalreference number 84-

02.04.2011.A112. EAN was induced as previously described

[32]. Briefly, female Lewis rats (8 weeks, Charles River

Laboratories) received subcutaneous injections (200 ml) at the

back of 6 mg of bovine peripheral nerve myelin (BPNM)

generated as previously described [33] in 100 ml PBS emulsified

EPO in EAN
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with 100 ml complete Freund’s adjuvant (CFA, Difco) containing

1 mg/ml heat inactivated Mycobacterium tuberculosis (H37Ra).

A modified EAN score [34] was applied: 0 no impairments, 1

reduced tone of the tail, 2 limp tail, 3 absent righting reflex, 4 gait

ataxia, 5 mild paraparesis, 6 moderate paraparesis, 7 severe

paraparesis or paraplegia, 8 tetraparesis, 9 moribund, 10 death

due to neuropathy.

EPO treatment
EPO (Epoetin Alfa, Ratiopharm, Germany) in 2,000 U/ml vial

stock was used for treatment. Administration of EPO was either

starting at day 3 after immunization (preventive) or starting at day

10 after immunization (therapeutic). Animals were treated daily

with intraperitoneal (i.p.) EPO at a dose of 5000 IU/kg/day, as

established before [7] or as controls with an equal volume of PBS.

Histology
At peak of clinical disease activity, day 15 post immunization

(p.i.), and at day 29 p.i. a randomly chosen half of all experimental

groups of animals was sacrificed and perfused with PBS followed

by 4% paraformaldehyd. Spleens and sciatic nerves were

dissected, post-fixed with paraformaldehyd overnight and paraffin

embedded. 10 mm sections (standard microtome HM355S,

Microm, Walldorf, Germany) were costained with haematoxy-

lin/eosin (HE) and rabbit anti-CD3 antibody (DAKO, Glostrup,

Denmark) or mouse anti-CD68 antibody (Serotec, Duesseldorf,

Germany) using matching biotinylated secondary antibodies

(Vector, Peterborough, UK) followed by an avidin-biotin-horse-

radish peroxidise complex (DAB Kit, DAKO) using 3,39-

diaminobenzidine (DAB) as peroxidise substrate according to

manufacturer’s instructions. Transforming growth factor (TGF)-

beta staining (rabbit anti-TGF-beta antibody, Santa Cruz,

Heidelberg, Germany) was performed without HE staining. For

fluorescent staining FITC and Alexa Flour 633 conjugated

secondary antibodies were applied (Invitrogen, Darmstadt,

Germany) and slices were covered using Vectashield (Vector)

mounting medium with or without 4,69diamidino-2-phenylindole

(DAPI). For quantitative analysis of positive cells infiltrating the

nerve three entire nerve longitudinal sections from each animal

were photographed with a high magnification (Axioplan 2, Zeiss),

the area covered by the tissue was determined and the number of

positive cells per mm2 was counted using ImageJ software (v1.44,

NIH).

For morphological studies and analysis of axonal degeneration

the brachial plexus was dissected from perfused animals (n = 5

per group), post-fixed in 4% paraformaldehyd over night and

embedded in epoxy resin, as previously described [35].

Toluidine blue stained semi-thin (1 mm) and ultrathin (200 nm)

sections were examined by light and electron microscopy,

respectively. For statistical analysis of axonal pathology, semi-

thin sections of plexus nerves were photographed and the

photographs were photomerged using Photoshop CS3 (Adobe).

The total number of normally myelinated, hypomyelinated, fully

demyelinated and degenerating axons was manually counted by

an investigator blinded towards previous treatment using the

CellCounter plugin of ImageJ. Each individual axon was

manually marked and automatically counted. Physiologically

unmyelinated axons (diameter ,1 mm) and Remak-bundle fibres

were not included. Degenerating axons were morphologically

defined as axonal remnants with partially intact Schwann cell

ensheathment, but with lost axonal interior structure. The

percentage of intact and abnormal axons was calculated and

compared between groups.

T cell proliferation assay
Spleens of rats were dissected under sterile conditions and

passed through a 40 mm cell strainer followed by ammonium

chloride based erythrocyte lysis (BD Bioscience, Heidelberg,

Germany). Derived splenocytes were cultured in flat bottom 96-

well plates in standard T cell medium (IMDM with 5% FCS,

2 mM L-glutamine and 50 mM 2-ME, Invitrogen). Responder

cells from Lewis rats (16105/well) were cocultured with irradiated

(1000 rad) allogenic splenocytes of Wistar rats as stimulator cells

(16105/well). EPO was added during the culture period with

increasing concentration from 0.3 to 200 IU/ml. For antigen

specific T cell proliferation spleens of EAN rats were dissected at

day 15 p.i. under sterile conditions cultivated as described above in

the presence of BPNM (10 mg/ml). T cell proliferation was

measured via [3H] thymidine incorporation during the last 24 h of

a four day incubation. Liquid scintillation counting (Beta-

Plate1205, Perkin Elmer, Rodgau, Germany) given as counts per

minute (cpm) of quadruplicate test cultures 6 SEM was measured.

Stimulation index was calculated as ratio of the cpm at the

indicated EPO concentrations to the proliferation of cells in the

absence of EPO.

Macrophage culture
Peritoneal macrophages were prepared as described previously

[36]. Briefly, 2–3 month old Lewis rats were injected i.p. with ice-

cold PBS and fluids were recollected. Macrophages were isolated

from untreated rats as well as EAN rats at day 15. Obtained cells

(26104) were cultivated in 96-well plates for 48 hours with

DMEM (10% FCS, 2 mM L-glutamine, 100 U/ml Penicillin und

100 mg/ml Streptomycin) with increasing concentrations of EPO

(0–200 IU/ml).

Cytokine quantification
Supernatants were collected from T cell proliferation assays

after 72 hours or from macrophage cultures after 48 hours.

Interleukin (IL)-10 and interferon (IFN)-gamma enzyme linked

immunosorbant assays (ELISA) were performed due to the

manufacturer’s protocol (BD Bioscience). TGF-beta ELISA was

derived from R&D Systems (Wiesbaden, Germany). In all

analyzed samples latent TGF-beta was activated according to

the manufacturers’ protocol. Supernatants as well as standard

curve were measured in duplicates on a Rainbow Photometer

(Tecan, Crailsheim, Germany) using easyWIN software. Concen-

trations are given as mean 6 SEM.

Data analysis
Data were statistically analyzed using GraphPadPrism 5.0

(GraphPad Software). The Wilcoxon-Mann-Whitney was used to

test for statistically significant differences in clinical score values.

Student’s t-test for unrelated samples was used to test for

statistically significant differences in all other analyses. Differences

were considered significant at p-values,0.05.
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