
313Evolutionary Bioinformatics 2016:12

Introduction
Over the last few years, homology detection algorithms have
evolved rapidly in terms of accuracy and performance.
Historically, the first relevant milestone in this collection is
the Smith–Waterman (SW) algorithm.1 By using exhaustive
dynamic programming (DP) techniques,2 this algorithm calcu-
lates the similarity between two amino acid sequences by a local
gapped alignment and yields the optimally scoring path in terms
of the given model. However, their main drawback is that they
are very computationally expensive, especially when comparing
large sequences. Heuristic algorithms, such as Basic Local Align-
ment Search Tool (BLAST)3 and FASTA,4 have been developed
to detect homologies in large sequence databases. These statistical
models can obtain alignments much more rapidly and often closely
match alignments that would be generated by DP methods.

As the number of sequences keeps increasing much
faster than our ability to analyze them, the need for accel-
erating homology detection algorithm is more than ever a

Prefiltering Model for Homology Detection Algorithms
on GPU

Germán Retamosa1, Luis de Pedro1, Ivan González1 and Javier Tamames2

1High Performance Computing and Networking Department, Universidad Autonóma de Madrid, Madrid, Spain. 2National Center for
Biotechnology, CSIC, Madrid, Spain.

Abstract: Homology detection has evolved over the time from heavy algorithms based on dynamic programming approaches to lightweight alternatives
based on different heuristic models. However, the main problem with these algorithms is that they use complex statistical models, which makes it difficult
to achieve a relevant speedup and find exact matches with the original results. Thus, their acceleration is essential. The aim of this article was to prefilter
a sequence database. To make this work, we have implemented a groundbreaking heuristic model based on NVIDIA’s graphics processing units (GPUs)
and multicore processors. Depending on the sensitivity settings, this makes it possible to quickly reduce the sequence database by factors between 50% and
95%, while rejecting no significant sequences. Furthermore, this prefiltering application can be used together with multiple homology detection algorithms
as a part of a next-generation sequencing system. Extensive performance and accuracy tests have been carried out in the Spanish National Centre for
Biotechnology (NCB). The results show that GPU hardware can accelerate the execution times of former homology detection applications, such as National
Centre for Biotechnology Information (NCBI), Basic Local Alignment Search Tool for Proteins (BLASTP), up to a factor of 4.

Keywords: computational biology, next-generation sequencing, parallel programming, performance analysis, NCBI BLAST, NVIDIA CUDA

Key Points:
•	 Owing to the increasing size of the current sequence datasets, filtering approach and high-performance computing (HPC) techniques are the best

solution to process all these information in acceptable processing times.
•	 Graphics processing unit cards and their corresponding programming models are good options to carry out these processing methods.
•	 Combination of filtration models with HPC techniques is able to offer new levels of performance and accuracy in homology detection algorithms such

as National Centre for Biotechnology Information Basic Local Alignment Search Tool.

Citation: Retamosa et al. Prefiltering Model for Homology Detection Algorithms on
GPU. Evolutionary Bioinformatics 2016:12 313–322 doi: 10.4137/EBO.S40877.

TYPE: Original Research

Received: September 05, 2016. ReSubmitted: October 25, 2016. Accepted for
publication: October 26, 2016.

Academic editor: Liuyang Wang, Associate Editor

Peer Review: Six peer reviewers contributed to the peer review report. Reviewers’
reports totaled 1639 words, excluding any confidential comments to the academic editor.

Funding: Authors disclose no external funding sources.

Competing Interests: Authors disclose no potential conflicts of interest.

Correspondence: german.retamosa@uam.es

Copyright: © the authors, publisher and licensee Libertas Academica Limited. This is
an open-access article distributed under the terms of the Creative Commons CC-BY-NC
3.0 License.

�Paper subject to independent expert blind peer review. All editorial decisions made
by independent academic editor. Upon submission manuscript was subject to anti-
plagiarism scanning. Prior to publication all authors have given signed confirmation of
agreement to article publication and compliance with all applicable ethical and legal
requirements, including the accuracy of author and contributor information, disclosure of
competing interests and funding sources, compliance with ethical requirements relating
to human and animal study participants, and compliance with any copyright requirements
of third parties. This journal is a member of the Committee on Publication Ethics (COPE).

�Published by Libertas Academica. Learn more about this journal.

central problem in computational biology. Based on the idea
of accelerating these algorithms, several high-performance
computing (HPC) hardware have been used to date.

Field-programmable gate array (FPGA) is the first com-
ponent in this collection. By profiling the source code and
accelerating the most heavily used modules, algorithms such
as BLAST5–8 and SW9–11 have been accelerated with signifi-
cant speedups. However, FPGA has some hardware limita-
tions. Because the code size is translated into a limited chip
area, it reduces the number of improved application modules.
Furthermore, due to the high costs involved, it is not able to
achieve a good cost-effective performance.

Graphics processing units (GPUs) are the second option
and the most feasible alternative to FPGA. By refactoring
the original source code, algorithms such as BLAST12–14 and
SW15–17 have been accelerated. In contrast to FPGA, there
is no hardware limitation for GPU, but the computational
complexity of heuristic models in homology detection

http://www.la-press.com/journal-evolutionary-bioinformatics-j17
http://www.la-press.com
http://dx.doi.org/10.4137/EBO.S40877
mailto:german.retamosa@uam.es
http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Retamosa et al

314 Evolutionary Bioinformatics 2016:12

algorithms, the handling of the different GPU memories
(ie, shared or global), and their long latency periods make it
challenging to achieve a good cost-effective performance.

Currently, there is a new line of research based on detect-
ing remote homology proteins with predictive techniques.44–47
By using multiple kernel learning models, such as support vector
machines and learning to rank, all evaluated solutions are able to
help homology detection algorithms or prefiltering approaches
in their worst-case scenario, ie, very low sequence similarity
(,30%). Despite the fact that these learning methods have a
significant computational overhead, HPC hardware (ie, GPU
or FPGA) can help to reduce this bad performance effect.

Finally, there is an alternative approach based on pre-
filtering amino acid sequences. The main idea is to quickly
reduce the number of database sequences to a small fraction
by removing those sequences considered irrelevant according
to a given theoretical model.18,19 Our proposed application20
falls into this category and differs from previous ones in that
it exploits the massively parallel processing power of GPU
hardware. Such an approach is really innovative because it
can be used with any homology detection algorithm and per-
forms daily genomic studies in less time and more accurately
depending on the algorithm used. Following this reasoning
and according to recent studies,21 the National Center for
Biotechnology Information (NCBI) BLAST accuracy, in
terms of search space, is inversely proportional to the number
of sequences into the database. It is a very common program-
ming technique to avoid long run execution times for big input
data. The work proposed in this article uses this novel filtering
approach in conjunction with GPU hardware. The primary
result is a GPU-accelerated NCBI BLASTP that achieves a
very similar result to the original, with 95% accuracy evaluat-
ing 20,000 query sequences20 from different genomes, skewed
or not, and a factor of 4× improvement in performance.
Furthermore, since the prefiltering method is completely
independent of the algorithm search space, users may keep the
extra output at no cost and impact to performance. Following
is a summary of the most important points of this work:

1.	 The prefiltering application requires only an off-the-shelf
GPU hardware; it is likely to be cost-effective and could
achieve a widespread use.

2.	 The proposed implementation is based on heuristics and
can be replaced by another filter or statistical model.

3.	 The prefiltering method is completely transparent and
fully compatible with any homology detection algorithm,
such as NCBI BLASTP.

All the source code, documentation, and installation
instructions are freely available in the GitHub repository42
under MIT license.

The remainder of this article is organized as follows. The
Background section provides an overview to the reference
homology detection algorithm, NCBI BLASTP, the HPC

techniques used with NVIDIA’s GPU and some theoretical
assumptions about the proposed architecture. The Related
works section explains some of the most relevant approaches
that have been investigated to parallelize NCBI BLASTP.
The Implementation section describes the inner details of the
filter and its HPC assumptions relative to the original algo-
rithm, and finally, the Evaluation section evaluates the per-
formance and accuracy of the proposed implementation with
different examples and presents some conclusions about the
research work carried out in the Conclusions section.

Background
NCBI BLAST. Homology between two amino acid

sequences is a bidirectional relationship, ie, alignment,
between their characters without reordering, but with the
possibility of insertions or deletions. This relationship results
into an alignment score that is determined a priori by biologi-
cal significance. By using DP techniques, the highest scor-
ing alignment between a query sequence of length m and a
database sequence of length n can be found in time O(mn).
However, heuristic algorithms, eg, NCBI BLAST, have par-
tially ignored these kinds of techniques due to the fact that
they result inefficient in terms of performance when used
with large databases.

Homology detection applications based on heuristic
methods are the starting point of most of the HPC genomic
research. These investigations aim to reduce the execution times
and increase the accuracy of the algorithms. In particular, due
to the extended use in different biological fields, our research
has selected NCBI BLAST as the reference algorithm.

NCBI BLAST is one of the most known and used bio
informatic applications. This algorithm is highly parallelizable22
and is mainly based on statistical methods with hit-and-extend
heuristics for proteins and DNA. When executing, it goes
through the following steps:

1.	 Seeding: identifying high-score matches.
2.	 Extension: extending high-score matches and merging

nearby extensions.
3.	 Evaluation: evaluating the obtained extensions and

calculating high-scoring segment pair (HSP) alignments.

As a preliminary phase to stepping up the original
algorithm, current versions of NCBI BLAST try to filter low-
complexity regions. The problem surrounding these regions
is that they might give high-score values that confuse NCBI
BLAST to find significant sequences in the database. Algo-
rithms such as SEG23 for proteins and DUST for nucleotides
are some examples of existing algorithms that might help to
solve this problem. Then, NCBI BLAST is structured into the
following steps:

1.	 For each k-letter, also know as lmer, in the query sequence
(seeding):

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Prefiltering model for homology detection algorithms on GPU

315Evolutionary Bioinformatics 2016:12

a.	 Apply reference substitution matrix, such as
BLOSUM6224,25 or PAM250,26 and list all matching
words with scores greater than a given user-defined
significance threshold.

b.	 Organize the remaining high-scoring words into an
efficient search tree.

2.	 Scan the database sequences for exact matches with the
remaining high-scoring words (hitting).

3.	 Extend the exact matches to HSP (extension):
a.	 Stretch a longer alignment between the query and

the database sequence to the left and to the right
directions and from the position where the exact
match was found.

4.	 List all the HSPs in the database whose score is higher
than a specific user-defined cutoff score.

5.	 Evaluate the significance of the HSP score (evaluation).
This process evaluates the statistical significance of each
HSP score by exploiting the Gumbel extreme value dis-
tribution and Karlin–Altschul equation.

6.	 Make two or more HSP regions into a longer alignment.
a.	 By using methods such as Poisson (original BLAST)

and sum of scores (BLAST227 and WU-BLAST28),
join HSP regions into a longer alignment.

7.	 Report every match whose expected score is lower than a
user-defined threshold parameter.
General-purpose GPU architecture. GPU is a dedicated

graphic rendering hardware, which can be found nowadays on
every personal computer, smartphone and tablet. Thanks to
its massively parallel architecture, a GPU can run trillions of
instructions per second for both graphical and non-graphical
applications. A GPU used for non-graphical applications is
commonly known as general-purpose graphics processing
unit (GP-GPU). The performance reached by GP-GPU has
made this hardware a usual part of HPC clusters. In fact,
some supercomputer vendors have included GPGPU inside
their parallel compute blades. Cray XK748 supercomputer is
an example with NVIDIA’s GPUs.

There are many different GPU architectures and models.
NVIDIA and AMD are the most popular GPU manufac-
turers. Multiple research and testing have been developed to
evaluate which technology gives a higher performance.29,30
Given that NVIDIA’s CUDA language provides, in general,
greater control than other GPU languages, we have opted to
use NVIDIA and its CUDA programming technology.

Typically, GPU devices are external to the microprocessor.
Microprocessor and GPU connect and communicate through
Peripheral Component Interconnect Express. This poses that a
memory copy from the host to the GPU has to be done before
using the host data. This fact can make a GPU very inefficient if
the data copy takes much time compared to the processing time.
The NVIDIA’s GPU architecture consists of a large number of
cores of stream processors (SPs), grouped into stream multiproces-
sors (SMs). The SPs are small processors able to perform integer
operations and simple-precision operations. The SM also contains

double-floating point units, registers, level 1 cache, and a shared
memory. Each SM shares these resources among its SP cores.
In a similar way, every SM shares a level 2 cache and the global
memory between the others SMs. Furthermore, this technology is
continually evolved. For example, the NVIDIA’s Fermi architec-
ture provides up to 16 SMs, each one with 32 SP cores31 and the
newer Kepler architecture provides up to 15 SMs, each one with
192 SP cores and 64 double-precision units.32 Figure 1 shows an
overall design of a NVIDIA’s GPU architecture.

The CUDA programming model provides the possibility
of programming parallel functions that will be executed on
the GPU. Each parallel function is called CUDA kernel. Each
kernel is a part of the application code, usually written in
ANSI C, which can be executed in parallel with other kernels.
The number of parallel executions depends on the required
resources by the CUDA application and how many of them are
currently available. Each kernel is launched on a grid. A grid is
composed of a set of blocks, which can be defined as one, two,
or three dimensional. In turn, each block is composed of a set
of threads that can be also defined as one, two, or three dimen-
sional. Each thread runs on an SP processor, and each block
is executed on an SM. Owing to the architecture previously
explained, different threads of the same block can share memory
very efficiently and without having to access global memory.

To obtain a good performance, the programmer must ensure
that the thread execution may not diverge in excess, as this would
create serialization of execution between the threads of the same
block. The programmer must keep in mind the total number of
threads and their distribution between blocks. The programmer
should also consider the amount of shared memory used by each
thread and other possible architectural considerations. Figure 2
depicts how CUDA is organized. More information about CUDA
programming model can be found in CUDA reference.33

The OpenCL programming model, as well as CUDA, is
a low-level extension of C/C++ for heterogeneous computing
that runs on CUDA-powered GPUs provided by Khronos
OpenCL Working Group.34 In the same way as CUDA, there
is a sequential part of the application code, ie, kernel, that
is executed by all individual threads. This part of the code is
written using a limited subset of the ANSI C programming
language on a GPU.

GPUs are specially well suited to address problems that
can be expressed as data computations in which the same pro-
gram is executed on many elements in parallel. Thus, to achieve
a reasonable parallel efficiency, memory optimization schemes
have to be adopted carefully to use the three layers of memory
hierarchies: register, shared memory, and global memory.

Filtering sequences. According to previous studies,3,4
some heuristic models are based on filtration. As Equation 1
depicts, this filtering model is based on the Karlin-Altschul
formula and its scoring scheme:

	
E Km n

S= ′ ′
expλ

� (1)

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Retamosa et al

316 Evolutionary Bioinformatics 2016:12

where K is a constant and m′, n′, and λS are the effective
query length, the effective database sequence length, and the
normalized score, respectively. First of all and starting from
analysis of the NCBI BLAST code, the effective length com-
putations are described in more detail in the following points:

1.	 Obtain m value (query length) and n value (database
sequence length).

2.	 As Equation 2 shows, obtain H value for either ungapped
or gapped alignment:

	
H q Sij i j= − ∑∑ λ � (2)

where λ is inversely proportional to the scaling factor and
qij and Sij are the frequency of pair i, j, and the raw score of
pair i, j, respectively.

Device grid

Thread block

Shared memory

Registers

Thread

Local
memory

Host

Registers

Thread

Local
memory

Thread block

Shared memory

Registers

Thread

Local
memory

Global memory

Constant memory
Texture memory

Registers

Thread

Local
memory

Figure 2. CUDA programming model.

Host

Interface Host interface and work distribution

Device

SM

SP SP

SP SP

SM

SP SP

SP SP

Shared memory
/L1 cache

Shared memory
/L1 cache

L2 cache

Memory

PCIe

Microprocessor

Microprocessor

Host memory

SM = Streaming
 Multiprocessor

SP = Streaming
 Processor

Figure 1. NVIDIA GPU general architecture.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Prefiltering model for homology detection algorithms on GPU

317Evolutionary Bioinformatics 2016:12

3.	 As Equation 3 shows, obtain the length adjustment
variable for either ungapped or gapped alignment:

	
adj K m n

H
=

log(* *) � (3)

4.	 According to the obtained previous values and as
Equation 4 shows, compute the effective search space:

	 eff space n nseqs adj m adj_ (*) * ()= − − 	 (4)

where nseqs is the number of database sequences.
5.	 As Equation 5 depicts, compute the raw score corre-

sponding to the user-defined given threshold:

	
S Eval eff space K

=
− −

−
log() log(_) log()

λ
	 (5)

where Eval is a user-defined value (10.0 by default). Finally,
the number of alignments expected is the value of Eval, and
the smaller the Eval, the greater the significance alignment.

Related Works
As the Background section introduced, many approaches have
been investigated to improve NCBI BLAST in the past with
HPC or theoretical techniques.

On multi-core processing, the NCBI has implemented
a version of BLAST by using POSIX threads,49 also known
as pthreads. This variant has the advantage that it can be
used with commodity hardware in most cases, but according
to Amdahl’s law, once a certain number of cores are met, it
becomes a high-cost hardware solution.

From cluster perspective, there are some parallel imple-
mentations, such as MPIBLAST,35 used into heterogeneous
cluster platforms, also known as Beowulf cluster. Despite
the fact that the speedup tendency growth is in line with the
number of cluster processors, the I/O bottlenecks between
cluster nodes and the horizontal scalability in terms of number
of processors become a high-cost hardware solution.

FPGA variants36,43 provide a high-cost hardware
solutions with a significant performance improvement as
much as 376-fold. However, according to the Background
section, the number of improved application modules depends
on the chip area. This limitation, together with the fact that
FPGA has a very high price tag, means that these solutions
become unaffordable.

GPU represents a balanced solution between cost and
performance. Our research and proposed implementation has
focused on parallelizing BLAST with GPU hardware. At this
point, either Liu et al.13 with CUDA-BLASTP, Vouzis and
Sahinidis14 with GPU-BLAST, or Xiao et al.12 are based on
the parallelization of all compute stages of NCBI BLAST.
Following this reasoning, Liu et al.13 with CUDA-BLASTP
evaluated the performance of their proposed algorithm

with only five query sequences, Vouzis and Sahinidis14 with
GPU-BLAST evaluated their corresponding performance
with 51 query sequences, and Xiao et al.12 used 1,000 query
sequences without any kind of information about their phy-
logeny. In all cases, the number of query sequences and variety
are far from sufficient to get a real performance perspective.
By contrast, the proposed implementation does not develop
a new version of NCBI BLAST and its compute stages to
achieve a performance improvement, but it designs an ad hoc
solution completely independent of future changes in NCBI
BLAST. Furthermore, according to our previous work,20 close
to 20,000 query sequences from different genomes, skewed or
not, and protein families have been evaluated in terms of per-
formance and accuracy.

Implementation
The theoretical model, outlined in the previous section and
described in detail in our previous work,20 introduced the
hit proximity concept. This approach is enough to establish
a strong relationship between hits and the relevance of an
alignment. This model has been designed and implemented
according to a specific architecture, multi-core and multi-
GPU schema, and is divided into two main elements, a lookup
sequence table and a GPU filter implementation.

Database format. The first step in our implementation
is to format the target sequence database. By using custom
lookup tables and linked lists, this process aims to reduce the
computational costs of hitting process to direct access O(1). In
contrast to previous formatting systems with standard lists,
such as NCBI formatdb tool, our proposed formatting model
is based on basic hash functions and multi-core processing.
This performance improvement concerns the inner details of
lookup tables.

As we see in Figure 3, the proposed formatting system
creates a specific set of threads. The total number of
threads depends on the number of physical cores, without
hyperthreading capabilities, within the computer. Each
thread iterates over each sequence, splitting into lmers and
processing the corresponding hash function. These calcu-
lations depend on the sequencing model, ie, proteins and
nucleotides. Equation 6 shows the corresponding hash func-
tion for proteins.

Once the hash index is obtained, each thread checks if
the hash table entry has previous values. If so, it reallocates the
memory space and inserts the sequence number into the corre-
sponding linked list. The decision to use these data structures
for each hash table entry is based on clarity, simplicity and fast
prototyping grounds. All memory allocations are considered
as atomic operations to avoid concurrence problems.

Owing to the fact that GLIBC hash table implementation37
is very complex and hard to integrate, a custom model has
been developed. This implementation is based on a bidi-
mensional dynamic matrix and a custom hash function. As
Equation 6 shows, these calculations depend on the lmer size.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Retamosa et al

318 Evolutionary Bioinformatics 2016:12

The usage of lmer or k-letter term is widely recognized in
computational biology. It means the smallest unit in homol-
ogy detection algorithms that represents a specific number of
residues, usually 3-lmer for proteins to map directly with other
reference applications, such as NCBI BLAST. Consequently,
our proposed database model for proteins, with an alphabet
size of 24 residues, would allocate 243 entries, ie, 55.296 bytes,
in CPU memory.

	 hash value lmer i sequence length i_ ([] *)_ ()∑ − +24 1 	 (6)

To conclude, one of the main advantages of this custom
implementation is the collision prevention between hash
entries. This design assumption improves the performance of
the implementation of the proposed hash table against other
solutions. Other alternatives, such as sequence-order infor-
mation, has been tested and evaluated to achieve a better
performance. However, due to its significant computational
costs and execution time, it has been rejected. Furthermore,
with the aim of reducing the database size, a bit-level com-
pression model has been developed.

Finally, as a result of the formatting process, a binary
database will be returned for further filtering analysis.

Filtering model. The filtering model, shown in Figure 4,
consists of four compute stages. The processing policy consists
of a preformatted database and a set of query sequences that
are transferred to the GPU global memory. On the one hand,
the preformatted database consists of a precalculated lookup
table with database sequence information. On the other hand,
the set of query sequences is a precalculated sequence stream
with a variable size. Each query sequence is split into lmers
and grouped into multiple blocks of threads, known as CUDA
warps. Focusing on CUDA warp splitting implementation,
zero padding has a great relevance because it is essential for
avoiding divergence into the hitting policy.

According to the upper section of Figure 4, each thread
is responsible of hitting its assigned lmer. Such a process starts

indexing the query sequence lmer according to the same hash
function used in the formatting database section. Then, each
thread writes 1 into the database stream if the corresponding
lmer exists in the database sequence. Generally speaking, this
database stream is to be understood as a bidimensional matrix
where rows represent all database sequences and columns rep-
resent each different lmers.

Once all threads have finished their jobs and have been
synchronized by using CUDA barriers, the two-step reduction
process begins. The first step, shown in Figure 5, is based on all
the threads working together in blocks, and according to the
CUDA warp size, to obtain the sum of the items contained on
their corresponding CUDA warp.38 At this point, it is impor-
tant to consider the division policy by CUDA warps because
it is the only way to guarantee a full parallelization between
threads and thus reduce the divergence between them.

Finally, once all existing CUDA warps have finished,
the second step comes on the scene to obtain the minimum
score or likelihood percentage. Then, it returns the evaluated
sequence, in FASTA format, to CPU if it overcomes the bias
introduced by parameter.

Additional considerations. There are some architectural
considerations implemented to achieve the highest perfor-
mance on NVIDIA’s GPU and CUDA.

The first assumption is the processing policy. Data trans-
fer overhead between GPU and CPU is one of the main
bottlenecks in parallel applications and specially in those
algorithms with huge data transfer.39 In order to reduce the
I/O overhead, the GPU global memory is split into two
sections. While the first section has processing data, the
second section is filled by using CUDA streams40 and asyn-
chronous memory transactions. This feature is available since
NVIDIA’s Fermi architecture development. Therefore and
according to Figure 6, the proposed processing policy reduces
the data transfer overhead to just the first transfer.

The second consideration into the model definition is
the hitting policy. This policy involves two main problems:

AAA

AAB

AAC

HASH
FN

LMER
SEQUENCE

SEQ.1

SEQ.12

NULL

SEQ. 5

SEQ. 40

SEQ. 9

SEQ. 87

SEQ. 87

SEQ. 92

SEQ. 90 SEQ. 93 SEQ. 99

ZZZ SEQ.1 SEQ.12 SEQ. 99

...

...

...

...

...

...

...

...

...

...

Figure 3. Hashing database sequence architecture.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Prefiltering model for homology detection algorithms on GPU

319Evolutionary Bioinformatics 2016:12

coalescence and divergence. On the one hand, to solve these
coalescence problems, it is necessary to establish contiguous
memory access by GPU threads and minimize the overhead
caused by L1 and L2 cache memory misses. As Figure 4 shows,
either memory access or cache memory misses are designed to
reduce this problem. On the other hand, the minimization of
divergence, ie, the effect caused by GPU threads finishing their
assigned jobs in different execution times, has been achieved
according to the hitting process and only those threads with
zero padding data generate a little divergence into the global
execution time.

QUERY DATABASE STREAM

SUBJECT DATABASE STREAM

SCORE SUBJECT STREAM

THRESHOLD
FILTERING

RELEVANT SEQUENCES

SCORE
REDUCTION

SPLITTING

INDEXING

HITTING

CUDA WARP 1 CUDA WARP 2 CUDA WARP 3

LMER
1,1

HASH

THREAD
1

THREAD
2

THREAD
3

THREAD
4

THREAD
5

THREAD
6

THREAD
7

THREAD
8

THREAD
9

THREAD
10

THREAD
11

THREAD
12

LMER
1,2

LMER
1,3

LMER
1,4

LMER
1,5

LMER
1,6

0 0
LMER

2,1
LMER

2,2
LMER

2,3
0

HASH HASH HASH HASH HASH

DATABASE
LOOKUP TABE

GPU CONTEXT

CPU CONTEXT

HASH HASH HASH HASH HASH HASH

Figure 4. GPU filtering model.

AAA

1

... ZZZ

1 2

0 1 1 1

1

4

4

0

Figure 5. CUDA reduction model.

DATA TRANSFER FROM CPU TO GPU

A

B

GPU

CPU

GPU

CPU

GPU PROCESSING

Without processing policy (serial data transfer)

With processing policy (data transfer overlapping)

Figure 6. Processing policy comparison.

The third consideration to take into account, specially
for huge datasets, is the architectural decision to use global
memory instead of shared, constant or texture memory. This
decision is mainly due to a number of capacity planning
constraints, such as memory size and CPU–GPU data trans-
fer overhead.

Evaluation
This section validates the proposed implementation into
two different ways: performance and accuracy. It completes
our previous evaluation work20 that evaluated the following
genomes: Anaplasma marginale genome with 9,000 sequences,
Escherichia coli genome with 5,000 sequences, Buchnera aphidi-
cola genome with 1,000 sequences, and Pseudomonas putida

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Retamosa et al

320 Evolutionary Bioinformatics 2016:12

genome with 1,000 sequences. These genomes were executed
with non-redundant database from NCBI.

The accuracy test consists of a fine-grained validation
procedure that aims to determine that the obtained results are
correct. Once this validation is obtained, we can certify the
compatibility of the proposed methodology with other refer-
ence applications. As a result, these tests conclude with high
accuracy levels in the experiments performed:

•	 Between 70% and 80% for sequence exact matches.
•	 Close to 100% for inclusion of sequences.

On the other hand, performance tests are part of the
second stage of this evaluation process, which aims to mix the
obtained accuracy levels in the previous phase with good per-
formance in terms of execution time. These tests have been
implemented with the NVIDIA’s GPU card NVIDIA Tesla
K40c. This card is a single GPU from Kepler architecture with
876 MHz of GPU clock rate, 12 GB GDDR5 device memory,
and 2,880 CUDA cores.

This GPU card is installed into an HPC hardware archi-
tecture with an Intel Xeon E5-2630 processor, PCI Express 3.0
connections, and 31 GB RAM. This processor is composed of
six non-uniform memory access nodes with 12 physical cores and
hyperthreading enabled, ie, 24 real cores visible for the operating
system. Furthermore, these cards run into a GNU/Linux Fedora
18 (x86_64) system with kernel version 3.11.10-100, CUDA
version and runtime 6.0, and CUDA compute capability 3.5.

The sequence database used for these tests is the full
GenBank Nonredundant Protein Database, which contains
3,163,461,953 amino acids in 9,230,955 sequences. The
comparison between query datasets and sequence database has
focused into two different families, polyprotein viruses and pro-
teobacteria. The reason for selecting these families is because

their sequences has appropriate sizes, ie, long lengths, to carry
out the worst-case scenarios for GPU memory management.

Table 1 shows that the proposed methodology reaches a
notable performance improvement with maximum speedup of
4×. This speedup has been reached by comparing the execution
time of NCBI formatdb tool and NCBI BLASTP to our pro-
posed preformatting and prefiltering model, NCBI formatdb tool
and NCBI BLASTP and BLAST Time and BLAST Time +
Prefilter Time, respectively. These performance enhancements
confirm the use of the proposed filtering model as a tool for
analyzing sequences faster than reference algorithms. However,
these results and their corresponding performances are depen-
dent on the molecular phylogeny of each sequence. Therefore,
future works are based on extending the evaluation stage for
more sequence families and provide a good basis to establish
relationships between filtering models and phylogenetics.

Table 2 shows the relevance of the proposed implementa-
tion as a sequence trimmer application. This process aims to
discard those database sequences with a likelihood percentage
less than a certain threshold, ie, likelihood filter threshold.
Thanks to that, it is able to help other reference applications
to accelerate their algorithms without reimplementing their
compute stages.

However, according to Amdahl’s law, the proposed
model performance is directly related to the likelihood filter
threshold. This input parameter determines the number of
sequences that the reference application will analyze. In
particular, the evaluation stage is divided into two different
scenarios. On the one hand, best-case scenarios define a high
likelihood filtering threshold, ie, 95%, discarding a minimum
of 90% of subject database sequences and obtaining a 4x
speedup. On the other hand, worst-case scenarios define a low
likelihood filtering threshold, ie, 60%, discarding a minimum
of 50% of subject database and obtaining a 2× speedup.

Table 1. Performance comparison.

Subject
Database

Query
Sequence

Query
Sequence
Length

Query Family Likelihood
Filter
Threshold

BLAST Time BLAST Time +
Prefilter
Time

Speedup

nr BAK61626.1 3161 PolyProtein Virus 95% 779 seconds 243 seconds 3.21

nr BAK61626.1 3161 PolyProtein Virus 60% 779 seconds 325 seconds 2.40

nr ABD34305.1 743 PolyProtein Virus 95% 548 seconds 156 seconds 3.51

nr ABD34305.1 743 PolyProtein Virus 60% 548 seconds 256 seconds 2.14

nr AAA45466.1 2225 PolyProtein Virus 95% 700 seconds 199 seconds 3.52

nr AAA45466.1 2225 PolyProtein Virus 60% 700 seconds 311 seconds 2.25

nr AHW02111.1 2435 Proteobacteria 95% 718 seconds 175 seconds 4.10

nr AHW02111.1 2435 Proteobacteria 60% 718 seconds 311 seconds 2.31

nr AAD11553.1 542 Proteobacteria 95% 522 seconds 150 seconds 3.48

nr AAD11553.1 542 Proteobacteria 60% 522 seconds 188 seconds 2.78

nr AAO08121.1 1976 Proteobacteria 95% 696 seconds 173 seconds 4.02

nr AAO08121.1 1976 Proteobacteria 60% 696 seconds 307 seconds 2.27

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Prefiltering model for homology detection algorithms on GPU

321Evolutionary Bioinformatics 2016:12

During these tests, the average temperature of both GPUs
was never .55 °C. According to Hong and Kim,41 the obtained
value followed a standard value. It demonstrates that the pro-
posed implementation can achieve energy savings by using a
minimal number of GPU cores and a less intensive utilization.

Future works are focused on conducting the same kind
of tests with NVIDIA’s GTX Titan GPU card. This card
is a single GPU from Kepler architecture with 837 MHz of
GPU clock rate, 6 GB GDDR5 device memory, and 2,688
CUDA cores. Our assumption is that this kind of GPU cards
could provide similar performance results as NVIDIA Tesla
K40c but with a significant budgetary savings. Unlike other
related research works, this comparison can provide an added
value to the current research, offering a different perspective
in terms of commodity hardware and HPC in biomedical and
biological scenarios.

Conclusions
Next-generation sequencing systems are revolutionizing
homology detection algorithms such as NCBI BLAST. Novel
statistical and numerical methodologies have been imple-
mented for improving these algorithms in terms of perfor-
mance and accuracy.

The highly parallelizable architecture of NVIDIA’s GPU
and CUDA has achieved a massive sequence analysis with low
cost using commodity hardware and improvements up to four
times faster than standard algorithms.

Unlike other existing solutions based on GPU or
FPGA,12–14 the proposed implementation is completely
independent of the original algorithm because it is not based
on a new implementation of all compute stages. As a result, the
proposed ad hoc solution gives a significant flexibility because
it can be connected to new releases of the reference algorithm
or even with other similar applications.

Table 2. Filtering comparison.

Subject
Database

Query
Sequence

Query Family Likelihood
Filter
Threshold

Filtering
Percentage

Speedup

nr BAK61626.1 PolyProtein Virus 95% 91.30% 3.21

nr BAK61626.1 PolyProtein Virus 60% 83.79% 2.40

nr ABD34305.1 PolyProtein Virus 95% 98.20% 3.51

nr ABD34305.1 PolyProtein Virus 60% 87.17% 2.14

nr AAA45466.1 PolyProtein Virus 95% 95.10% 3.52

nr AAA45466.1 PolyProtein Virus 60% 83.83% 2.25

nr AHW02111.1 Proteobacteria 95% 97.20% 4.10

nr AHW02111.1 Proteobacteria 60% 83.98% 2.31

nr AAD11553.1 Proteobacteria 95% 98.64% 3.48

nr AAD11553.1 Proteobacteria 60% 51.39% 2.78

nr AAO08121.1 Proteobacteria 95% 97.35% 4.02

nr AAO08121.1 Proteobacteria 60% 84.04% 2.27

Several sets of experiments, from different protein families,
have been conducted to evaluate and validate the proposed
filtering model. As a conclusion, this approach can reduce
execution times of sequencing algorithms using commodity
hardware and, depending on the algorithm used, improve
their accuracy.

Biography
Germán Retamosa received his M.Sc. degree in Computer
Science and Telecommunications from Universidad Autónoma
de Madrid, Spain, in 2009 and is currently finishing his Ph.D.
in Computer Science and Telecommunications, specializing
into biotechnology and networking research areas.

Luis de Pedro completed his M.Sc. and Ph.D. degrees in
Telecommunications Engineering at Universidad Politécnica
de Madrid, Spain. He is a part-time associate professor at
Universidad Autónoma de Madrid, Spain, and his research
interests are focused on the performance application analysis.

Ivan González received his M.Sc. degree in Computer
Engineering in 2000 and his Ph.D. degree in Computer
Engineering in 2006, both from Universidad Autonoma
de Madrid, Spain. His research interests are focused on
HPC applications.

Javier Tamames received his Ph.D. degree in Chemical
Science and is a senior scientist at the National Center of
Biotechnology, CSIC, Madrid, Spain.

Author Contributions
Conceived and designed the experiments: GR, JT. Analyzed
the data: GR. Wrote the first draft of the manuscript: GR.
Contributed to the writing of the manuscript: LdP, IG.
Agree with manuscript results and conclusions: LdP, IG, JT,
GR. Jointly developed the structure and arguments for the
paper: LdP, JT, GR. Made critical revisions and approved

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Retamosa et al

322 Evolutionary Bioinformatics 2016:12

final version: LdP. All authors reviewed and approved of the
final manuscript.

References
	 1.	 Smith T, Waterman M. Identification of common molecular subsequences. J Mol

Biol. 1981;147:195–7.
	 2.	 Sniedovich M. Dynamic Programming. New York, NY: Marcel Dekker; 1992.
	 3.	 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment

search tool. J Mol Biol. 1990;215:403–10.
	 4.	 Pearson WR. Flexible sequence similarity searching with the FASTA3 program

package. Methods Mol Biol. 2000;132:185–219.
	 5.	 Jacob A, Lancaster J, Buhler J, et al. Mercury BLASTP: accelerating protein

sequence alignment. ACM Transactions on Reconfigurable Technology and Systems.
New York, NY, USA (http://dl.acm.org/citation.cfm?id=1371581). Vol 1, Issue 2.
2008.

	 6.	 Lavenier D, Xinchun L, Georges G. Seed-based genomic sequence comparison
using a FGPA/FLASH accelerator. Proc. IEEE Conference on Field Programmable
Technology. Bangkok, Thailand. IEEE. 2006:41–8.

	 7.	 Muriki K, Underwood K, Sass R. RC-BLAST: towards an open source hard-
ware implementation. Proc. Int Work High Performance Computational Biology.
Anchorage, Alaska, USA. 2005.

	 8.	 Sotiriades E, Dollas A. A general reconfigurable architecture for the BLAST
algorithm. J VLSI Sig Process. 2007;48:189–208.

	 9.	 Li I, Shum W, Truong K. 160-fold acceleration of the Smith-Waterman
algorithm using a field programmable gate array (FPGA). BMC Bioinformatics.
2007;8:18.

	 10.	 Jiang X, Liu X, Xu L, et al. A reconfigurable accelerator for smith-waterman
algorithm. IEEE Trans Circuits Syst. 2007;54:1077–81.

	 11.	 Allred J, Coyne J, Lynch W, et al. Smith-waterman implementation on a FSB-
FPGA module using the intel accelerator abstraction layer. International Parallel
and Distributed Processing Symposium. 2009:1–4.

	 12.	 Xiao S, Lin H, Feng W. Accelerating protein sequence search in a heterogeneous
computing system. IEEE International Parallel & Distributed Processing Sympo-
sium (IPDPS). Denver, Colorado, USA. 2011.

	 13.	 Liu W, Schmidt B, Mueller-Wittig W. CUDA-BLASTP: accelerating BLASTP
on CUDA-enabled graphics hardware. IEEE/ACM Trans Comput Biol Bioin-
format. 2011. Vol 8, Issue 6. November 2011:1678–1684. (http://dl.acm.org/
citation.cfm?id=2052089).

	 14.	 Vouzis PD, Sahinidis NV. GPU-BLAST: using graphics processors to accelerate
protein sequence alignment. Bioinformatics. 2011;27(2):182–8. (Open Access).

	 15.	 Manavski SA, Valle G. CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics.
2008;9(suppl 2):S10.

	 16.	 Liu Y, Maskell DL, Schmidt B. CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units. BMC
Res Notes. 2009;2:73.

	 17.	 Liu Y, Schmidt B, Maskell DL. CUDASW++2.0: enhanced Smith-Waterman
protein database search on CUDA-enabled GPUs based on SIMT and virtual-
ized SIMD abstractions. BMC Res Notes. 2010;3:93.

	 18.	 Nordin M, Rahman A, Yazid M, et al. A filtering algorithm for efficient retriev-
ing of DNA sequence. Int J Comput Theory Eng. 2009;1(2):1793–8201.

	 19.	 Afratis E, Sotiriades G, Chrysos S, et al. A rate-based prefiltering approach to
BLAST acceleration. Proc. IEEE Conference on Field Programmable Logic and
Applications. Heidelberg, Germany. 2008.

	 20.	 Retamosa G, de Pedro L, Gonzalez I, et al. High performance genomic sequenc-
ing: a filtered approach. 8th International Conference on Practical Applications of
Computational Biology and Bioinformatics. Salamanca, SPAIN. 2014.

	 21.	 Park J, Qiu Y, Herbordt M. CAAD BLASTn: accelerated NCBI BLASTn with
FPGA prefiltering. Proceedings of the IEEE International Symposium on Circuits
and Systems. TBD; 2010.

	 22.	 Korf I, Yandell M, Bedell J. BLAST. O’Reilly Media; 2003. ISBN: 978-0-596-
00299-2.

	 23.	 Wootton JC, Federhen S. Statistics of local complexity in amino acid sequences
and sequence databases. In Comput Chem. 1993;17:149–63.

	 24.	 Karlin S, Altschul SF. Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes. Proc Natl Acad
Sci U S A. 1990;87:2264–8.

	 25.	 Altschul SF. Amino acid substitution matrices from an information theoretic
perspective. J Mol Biol. 1991;219:555–65.

	 26.	 Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks.
Proc Natl Acad Sci U S A. 1992;89:10915–9.

	 27.	 Tatusova TA, Madden TL. BLAST 2 sequences, a new tool for comparing
protein and nucleotide sequences. FEMS Microbiol Lett. 1999;174:247–50.

	 28.	 Chao KM, Pearson WR, Miller W. Aligning two sequences within a specified
diagonal band. Comput Appl Biosci. 1992;8:481–7.

	 29.	 Karimi K, Dickson NG, Hamze F. A performance comparison of CUDA and
OpenCL. arXiv preprint (2010) arXiv:10052581. 2010.

	 30.	 Fang J, Varbanescu AL, Sips H. A comprehensive performance comparison of
CUDA and OpenCL. Proceedings of Parallel Processing. Taipei, Taiwan. IEEE.
2011:216–25.

	 31.	 NVidia Corporation. NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi. Available at: http://www.nvidia.com/content/PDF/fermi-white-papers/
NVIDIA-Fermi-Compute-Architecture-Whitepaper.pdf. 2010.

	 32.	 NVidia Corporation. NVidia’s Next Generation CUDA Compute Architecture:
Kepler GK110, v1.0. 2014. Available at: http://www.nvidia.es/content/PDF/
kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

	 33.	 NVidia Corporation. NVidia’s CUDA Programming Guide, V3.0. 2010. Avail-
able at: http://developer.download.nvidia.com/compute/cuda/3–1/toolkit/docs/
NVIDIA-CUDA-C-ProgrammingGuide−3.1.pdf.

	 34.	 Khronos OpenCL Working Group. The OpenCL Specification. 2008. Available at:
http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf.

	 35.	 Darling A, Carey L, Feng WC. The design, implementation, and evaluation
of mpiBLAST. Proceedings of ClusterWorld. San Jose, California, USA (http://
citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.3974) 2003.

	 36.	 Mahram A, Herbordt MC. Fast and accurate NCBI BLASTP: acceleration with
multiphase FPGA-based prefiltering. Proceedings of the 24th ACM International
Conference on Supercomputing. Tsukuba, Ibaraki, Japan. ACM. 2010:73–82.

	 37.	 Pennington H. GTK+/GNOME Application Development. New Riders Publish-
ing; 1999.

	 38.	 Harris M. Optimizing parallel reduction in CUDA. NVIDIA Developer
Technology. 2007;2:45.

	 39.	 Ahmed F, Quirem S, Lee BK, et al. A study of CUDA acceleration and impact
of data transfer overhead in heterogeneous environment. Proc. 7th Intl. Workshop
on Unique Chips and Systems UCAS-7. 2012.

	 40.	 Rennich S. CUDA C/C++ Streams and Concurrency. 2011. Available at: http://
on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAnd-
ConcurrencyWebinar.pdf.

	 41.	 Hong S, Kim H. An Integrated GPU power and performance model. Inter-
national Symposium on Computer Architecture. Saint-Malo, France. ACM.
2010:280–9.

	 42.	 Prefilter BLAST. Available at: https://github.com/gretamosa/prefilter-blast.
0000. 2016.

	 43.	 Leonidas B, Ion M, Russell S, Jianxin W. Improvement of BLASTp on the
FPGA-based high-performance computer RIVYERA. Bioinformatics Research
and Applications. Vol 7292. Berlin, Heidelberg: Springer; 2012:275–86. http://
link.springer.com/chapter/10.1007%2F978-3-642-30191-9_26.

	 44.	 Chen J, Long R, Wang XL, Liu B, Chou KC. dRHP-PseRA: detecting remote
homology proteins using profile-based pseudo protein sequence and rank
aggregation. Sci Rep. 2016;6:32333.

	 45.	 Liu B, Chen J, Wang X. Application of learning to rank to protein remote homol-
ogy detection. Bioinformatics. 2015;31(21):3492–8.

	 46.	 Liu B, Chen J, Wang X. Protein remote homology detection by combining
Chou’s distance-pair pseudo amino acid composition and principal component
analysis. Mol Genet Genomics. 2015;290(5):1919–31.

	 47.	 Liu B, Xu J, Zou Q , Xu R, Wang X, Chen Q. Using distances between
Top-n-gram and residue pairs for protein remote homology detection. BMC
Bioinformatics. 2014;15(2):1.

	 48.	 Klein MD, Stone JE. Unlocking the full potential of the Cray XK7 accelera-
tor. Cray User Group Conf. https://www.researchgate.net/profile/John_Stone13/
publication/263464133_Unlocking_the_Full_Potential_of_the_Cray_XK7_
Accelerator/links/547562d40cf2778985aecbd4.pdf. 2014.

	 49.	 NCBI BLAST. Available at: https://blast.ncbi.nlm.nih.gov/Blast.cgi. 0000.
2016.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17
New York, NY, USA (http://dl.acm.org/citation.cfm?id=1371581)
http://dl.acm.org/citation.cfm?id=2052089
http://dl.acm.org/citation.cfm?id=2052089
http://www.nvidia.com/content/PDF/fermi-white-papers/NVIDIA-Fermi-Compute-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi-white-papers/NVIDIA-Fermi-Compute-Architecture-Whitepaper.pdf
http://www.nvidia.es/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.es/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.3974
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.3974
http://on-demand.gputechconf.com/gtc- express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtc- express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtc- express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
https://github.com/gretamosa/prefilter-blast. 0000
https://github.com/gretamosa/prefilter-blast. 0000
http://link.springer.com/chapter/10.1007%2F978-3-642-30191-9_26
http://link.springer.com/chapter/10.1007%2F978-3-642-30191-9_26
https://www.researchgate.net/profile/John_Stone13/publication/263464133_Unlocking_the_Full_Potential_of_the_Cray_XK7_Accelerator/links/547562d40cf2778985aecbd4.pdf
https://www.researchgate.net/profile/John_Stone13/publication/263464133_Unlocking_the_Full_Potential_of_the_Cray_XK7_Accelerator/links/547562d40cf2778985aecbd4.pdf
https://www.researchgate.net/profile/John_Stone13/publication/263464133_Unlocking_the_Full_Potential_of_the_Cray_XK7_Accelerator/links/547562d40cf2778985aecbd4.pdf
https://blast.ncbi.nlm.nih.gov/Blast.cgi. 0000

