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Introduction
Over the last few years, homology detection algorithms have 
evolved rapidly in terms of accuracy and performance. 
Historically, the first relevant milestone in this collection is 
the Smith–Waterman (SW) algorithm.1 By using exhaustive 
dynamic programming (DP) techniques,2 this algorithm calcu-
lates the similarity between two amino acid sequences by a local 
gapped alignment and yields the optimally scoring path in terms 
of the given model. However, their main drawback is that they 
are very computationally expensive, especially when comparing 
large sequences. Heuristic algorithms, such as Basic Local Align-
ment Search Tool (BLAST)3 and FASTA,4 have been developed 
to detect homologies in large sequence databases. These statistical 
models can obtain alignments much more rapidly and often closely 
match alignments that would be generated by DP methods.

As the number of sequences keeps increasing much 
faster than our ability to analyze them, the need for accel-
erating homology detection algorithm is more than ever a 
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central problem in computational biology. Based on the idea 
of accelerating these algorithms, several high-performance 
computing (HPC) hardware have been used to date.

Field-programmable gate array (FPGA) is the first com-
ponent in this collection. By profiling the source code and 
accelerating the most heavily used modules, algorithms such 
as BLAST5–8 and SW9–11 have been accelerated with signifi-
cant speedups. However, FPGA has some hardware limita-
tions. Because the code size is translated into a limited chip 
area, it reduces the number of improved application modules. 
Furthermore, due to the high costs involved, it is not able to 
achieve a good cost-effective performance.

Graphics processing units (GPUs) are the second option 
and the most feasible alternative to FPGA. By refactoring 
the original source code, algorithms such as BLAST12–14 and 
SW15–17 have been accelerated. In contrast to FPGA, there 
is no hardware limitation for GPU, but the computational 
complexity of heuristic models in homology detection 
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algorithms, the handling of the different GPU memories 
(ie, shared or global), and their long latency periods make it 
challenging to achieve a good cost-effective performance.

Currently, there is a new line of research based on detect-
ing remote homology proteins with predictive techniques.44–47 
By using multiple kernel learning models, such as support vector 
machines and learning to rank, all evaluated solutions are able to 
help homology detection algorithms or prefiltering approaches 
in their worst-case scenario, ie, very low sequence similarity 
(,30%). Despite the fact that these learning methods have a 
significant computational overhead, HPC hardware (ie, GPU 
or FPGA) can help to reduce this bad performance effect.

Finally, there is an alternative approach based on pre-
filtering amino acid sequences. The main idea is to quickly 
reduce the number of database sequences to a small fraction 
by removing those sequences considered irrelevant according 
to a given theoretical model.18,19 Our proposed application20 
falls into this category and differs from previous ones in that 
it exploits the massively parallel processing power of GPU 
hardware. Such an approach is really innovative because it 
can be used with any homology detection algorithm and per-
forms daily genomic studies in less time and more accurately 
depending on the algorithm used. Following this reasoning 
and according to recent studies,21 the National Center for 
Biotechnology Information (NCBI) BLAST accuracy, in 
terms of search space, is inversely proportional to the number 
of sequences into the database. It is a very common program-
ming technique to avoid long run execution times for big input 
data. The work proposed in this article uses this novel filtering 
approach in conjunction with GPU hardware. The primary 
result is a GPU-accelerated NCBI BLASTP that achieves a 
very similar result to the original, with 95% accuracy evaluat-
ing 20,000 query sequences20 from different genomes, skewed 
or not, and a factor of 4× improvement in performance. 
Furthermore, since the prefiltering method is completely 
independent of the algorithm search space, users may keep the 
extra output at no cost and impact to performance. Following 
is a summary of the most important points of this work:

1.	 The prefiltering application requires only an off-the-shelf 
GPU hardware; it is likely to be cost-effective and could 
achieve a widespread use.

2.	 The proposed implementation is based on heuristics and 
can be replaced by another filter or statistical model.

3.	 The prefiltering method is completely transparent and 
fully compatible with any homology detection algorithm, 
such as NCBI BLASTP.

All the source code, documentation, and installation 
instructions are freely available in the GitHub repository42 
under MIT license.

The remainder of this article is organized as follows. The 
Background section provides an overview to the reference 
homology detection algorithm, NCBI BLASTP, the HPC 

techniques used with NVIDIA’s GPU and some theoretical 
assumptions about the proposed architecture. The Related 
works section explains some of the most relevant approaches 
that have been investigated to parallelize NCBI BLASTP. 
The Implementation section describes the inner details of the 
filter and its HPC assumptions relative to the original algo-
rithm, and finally, the Evaluation section evaluates the per-
formance and accuracy of the proposed implementation with 
different examples and presents some conclusions about the 
research work carried out in the Conclusions section.

Background
NCBI BLAST. Homology between two amino acid 

sequences is a bidirectional relationship, ie, alignment, 
between their characters without reordering, but with the 
possibility of insertions or deletions. This relationship results 
into an alignment score that is determined a priori by biologi-
cal significance. By using DP techniques, the highest scor-
ing alignment between a query sequence of length m and a 
database sequence of length n can be found in time O(mn). 
However, heuristic algorithms, eg, NCBI BLAST, have par-
tially ignored these kinds of techniques due to the fact that 
they result inefficient in terms of performance when used 
with large databases.

Homology detection applications based on heuristic 
methods are the starting point of most of the HPC genomic 
research. These investigations aim to reduce the execution times 
and increase the accuracy of the algorithms. In particular, due 
to the extended use in different biological fields, our research 
has selected NCBI BLAST as the reference algorithm.

NCBI BLAST is one of the most known and used bio
informatic applications. This algorithm is highly parallelizable22 
and is mainly based on statistical methods with hit-and-extend 
heuristics for proteins and DNA. When executing, it goes 
through the following steps:

1.	 Seeding: identifying high-score matches.
2.	 Extension: extending high-score matches and merging 

nearby extensions.
3.	 Evaluation: evaluating the obtained extensions and 

calculating high-scoring segment pair (HSP) alignments.

As a preliminary phase to stepping up the original 
algorithm, current versions of NCBI BLAST try to filter low-
complexity regions. The problem surrounding these regions 
is that they might give high-score values that confuse NCBI 
BLAST to find significant sequences in the database. Algo-
rithms such as SEG23 for proteins and DUST for nucleotides 
are some examples of existing algorithms that might help to 
solve this problem. Then, NCBI BLAST is structured into the 
following steps:

1.	 For each k-letter, also know as lmer, in the query sequence 
(seeding):
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a.	 Apply reference substitution matrix, such as 
BLOSUM6224,25 or PAM250,26 and list all matching 
words with scores greater than a given user-defined 
significance threshold.

b.	 Organize the remaining high-scoring words into an 
efficient search tree.

2.	 Scan the database sequences for exact matches with the 
remaining high-scoring words (hitting).

3.	 Extend the exact matches to HSP (extension):
a.	 Stretch a longer alignment between the query and 

the database sequence to the left and to the right 
directions and from the position where the exact 
match was found.

4.	 List all the HSPs in the database whose score is higher 
than a specific user-defined cutoff score.

5.	 Evaluate the significance of the HSP score (evaluation). 
This process evaluates the statistical significance of each 
HSP score by exploiting the Gumbel extreme value dis-
tribution and Karlin–Altschul equation.

6.	 Make two or more HSP regions into a longer alignment.
a.	 By using methods such as Poisson (original BLAST) 

and sum of scores (BLAST227 and WU-BLAST28), 
join HSP regions into a longer alignment.

7.	 Report every match whose expected score is lower than a 
user-defined threshold parameter.
General-purpose GPU architecture. GPU is a dedicated 

graphic rendering hardware, which can be found nowadays on 
every personal computer, smartphone and tablet. Thanks to 
its massively parallel architecture, a GPU can run trillions of 
instructions per second for both graphical and non-graphical 
applications. A GPU used for non-graphical applications is 
commonly known as general-purpose graphics processing 
unit (GP-GPU). The performance reached by GP-GPU has 
made this hardware a usual part of HPC clusters. In fact, 
some supercomputer vendors have included GPGPU inside 
their parallel compute blades. Cray XK748 supercomputer is 
an example with NVIDIA’s GPUs.

There are many different GPU architectures and models. 
NVIDIA and AMD are the most popular GPU manufac-
turers. Multiple research and testing have been developed to 
evaluate which technology gives a higher performance.29,30 
Given that NVIDIA’s CUDA language provides, in general, 
greater control than other GPU languages, we have opted to 
use NVIDIA and its CUDA programming technology.

Typically, GPU devices are external to the microprocessor. 
Microprocessor and GPU connect and communicate through 
Peripheral Component Interconnect Express. This poses that a 
memory copy from the host to the GPU has to be done before 
using the host data. This fact can make a GPU very inefficient if 
the data copy takes much time compared to the processing time. 
The NVIDIA’s GPU architecture consists of a large number of 
cores of stream processors (SPs), grouped into stream multiproces-
sors (SMs). The SPs are small processors able to perform integer 
operations and simple-precision operations. The SM also contains 

double-floating point units, registers, level 1 cache, and a shared 
memory. Each SM shares these resources among its SP cores. 
In a similar way, every SM shares a level 2 cache and the global 
memory between the others SMs. Furthermore, this technology is 
continually evolved. For example, the NVIDIA’s Fermi architec-
ture provides up to 16 SMs, each one with 32 SP cores31 and the 
newer Kepler architecture provides up to 15 SMs, each one with 
192 SP cores and 64 double-precision units.32 Figure 1 shows an 
overall design of a NVIDIA’s GPU architecture.

The CUDA programming model provides the possibility 
of programming parallel functions that will be executed on 
the GPU. Each parallel function is called CUDA kernel. Each 
kernel is a part of the application code, usually written in 
ANSI C, which can be executed in parallel with other kernels. 
The number of parallel executions depends on the required 
resources by the CUDA application and how many of them are 
currently available. Each kernel is launched on a grid. A grid is 
composed of a set of blocks, which can be defined as one, two, 
or three dimensional. In turn, each block is composed of a set 
of threads that can be also defined as one, two, or three dimen-
sional. Each thread runs on an SP processor, and each block 
is executed on an SM. Owing to the architecture previously 
explained, different threads of the same block can share memory 
very efficiently and without having to access global memory.

To obtain a good performance, the programmer must ensure 
that the thread execution may not diverge in excess, as this would 
create serialization of execution between the threads of the same 
block. The programmer must keep in mind the total number of 
threads and their distribution between blocks. The programmer 
should also consider the amount of shared memory used by each 
thread and other possible architectural considerations. Figure 2 
depicts how CUDA is organized. More information about CUDA 
programming model can be found in CUDA reference.33

The OpenCL programming model, as well as CUDA, is 
a low-level extension of C/C++ for heterogeneous computing 
that runs on CUDA-powered GPUs provided by Khronos 
OpenCL Working Group.34 In the same way as CUDA, there 
is a sequential part of the application code, ie, kernel, that 
is executed by all individual threads. This part of the code is 
written using a limited subset of the ANSI C programming 
language on a GPU.

GPUs are specially well suited to address problems that 
can be expressed as data computations in which the same pro-
gram is executed on many elements in parallel. Thus, to achieve 
a reasonable parallel efficiency, memory optimization schemes 
have to be adopted carefully to use the three layers of memory 
hierarchies: register, shared memory, and global memory.

Filtering sequences. According to previous studies,3,4 
some heuristic models are based on filtration. As Equation 1 
depicts, this filtering model is based on the Karlin-Altschul 
formula and its scoring scheme:

	
E Km n

S= ′ ′
expλ

� (1)
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where K is a constant and m′, n′, and λS are the effective 
query length, the effective database sequence length, and the 
normalized score, respectively. First of all and starting from 
analysis of the NCBI BLAST code, the effective length com-
putations are described in more detail in the following points:

1.	 Obtain m value (query length) and n value (database 
sequence length).

2.	 As Equation 2 shows, obtain H value for either ungapped 
or gapped alignment:

	  
H q Sij i j= − ∑∑ λ � (2)

where λ is inversely proportional to the scaling factor and 
qij and Sij are the frequency of pair i, j, and the raw score of 
pair i, j, respectively.
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3.	 As Equation  3  shows, obtain the length adjustment 
variable for either ungapped or gapped alignment:

	
adj K m n

H
=

log( * * ) � (3)

4.	 According to the obtained previous values and as 
Equation 4 shows, compute the effective search space:

	 eff space n nseqs adj m adj_ ( * ) * ( )= − − 	 (4)

where nseqs is the number of database sequences.
5.	 As Equation  5 depicts, compute the raw score corre-

sponding to the user-defined given threshold:

	
S Eval eff space K

=
− −

−
log( ) log( _ ) log( )

λ
	 (5)

where Eval is a user-defined value (10.0 by default). Finally, 
the number of alignments expected is the value of Eval, and 
the smaller the Eval, the greater the significance alignment.

Related Works
As the Background section introduced, many approaches have 
been investigated to improve NCBI BLAST in the past with 
HPC or theoretical techniques.

On multi-core processing, the NCBI has implemented 
a version of BLAST by using POSIX threads,49 also known 
as pthreads. This variant has the advantage that it can be 
used with commodity hardware in most cases, but according 
to Amdahl’s law, once a certain number of cores are met, it 
becomes a high-cost hardware solution.

From cluster perspective, there are some parallel imple-
mentations, such as MPIBLAST,35 used into heterogeneous 
cluster platforms, also known as Beowulf cluster. Despite 
the fact that the speedup tendency growth is in line with the 
number of cluster processors, the I/O bottlenecks between 
cluster nodes and the horizontal scalability in terms of number 
of processors become a high-cost hardware solution.

FPGA variants36,43 provide a high-cost hardware 
solutions with a significant performance improvement as 
much as 376-fold. However, according to the Background 
section, the number of improved application modules depends 
on the chip area. This limitation, together with the fact that 
FPGA has a very high price tag, means that these solutions 
become unaffordable.

GPU represents a balanced solution between cost and 
performance. Our research and proposed implementation has 
focused on parallelizing BLAST with GPU hardware. At this 
point, either Liu et al.13 with CUDA-BLASTP, Vouzis and 
Sahinidis14 with GPU-BLAST, or Xiao et al.12 are based on 
the parallelization of all compute stages of NCBI BLAST. 
Following this reasoning, Liu et al.13 with CUDA-BLASTP 
evaluated the performance of their proposed algorithm 

with only five query sequences, Vouzis and Sahinidis14 with  
GPU-BLAST evaluated their corresponding performance 
with 51 query sequences, and Xiao et al.12 used 1,000 query 
sequences without any kind of information about their phy-
logeny. In all cases, the number of query sequences and variety 
are far from sufficient to get a real performance perspective. 
By contrast, the proposed implementation does not develop 
a new version of NCBI BLAST and its compute stages to 
achieve a performance improvement, but it designs an ad hoc 
solution completely independent of future changes in NCBI 
BLAST. Furthermore, according to our previous work,20 close 
to 20,000 query sequences from different genomes, skewed or 
not, and protein families have been evaluated in terms of per-
formance and accuracy.

Implementation
The theoretical model, outlined in the previous section and 
described in detail in our previous work,20 introduced the 
hit proximity concept. This approach is enough to establish 
a strong relationship between hits and the relevance of an 
alignment. This model has been designed and implemented 
according to a specific architecture, multi-core and multi-
GPU schema, and is divided into two main elements, a lookup 
sequence table and a GPU filter implementation.

Database format. The first step in our implementation 
is to format the target sequence database. By using custom 
lookup tables and linked lists, this process aims to reduce the 
computational costs of hitting process to direct access O(1). In 
contrast to previous formatting systems with standard lists, 
such as NCBI formatdb tool, our proposed formatting model 
is based on basic hash functions and multi-core processing. 
This performance improvement concerns the inner details of 
lookup tables.

As we see in Figure 3, the proposed formatting system 
creates a specific set of threads. The total number of 
threads depends on the number of physical cores, without 
hyperthreading capabilities, within the computer. Each 
thread iterates over each sequence, splitting into lmers and 
processing the corresponding hash function. These calcu-
lations depend on the sequencing model, ie, proteins and 
nucleotides. Equation 6 shows the corresponding hash func-
tion for proteins.

Once the hash index is obtained, each thread checks if 
the hash table entry has previous values. If so, it reallocates the 
memory space and inserts the sequence number into the corre-
sponding linked list. The decision to use these data structures 
for each hash table entry is based on clarity, simplicity and fast 
prototyping grounds. All memory allocations are considered 
as atomic operations to avoid concurrence problems.

Owing to the fact that GLIBC hash table implementation37 
is very complex and hard to integrate, a custom model has 
been developed. This implementation is based on a bidi-
mensional dynamic matrix and a custom hash function. As 
Equation 6 shows, these calculations depend on the lmer size. 
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The usage of lmer or k-letter term is widely recognized in 
computational biology. It means the smallest unit in homol-
ogy detection algorithms that represents a specific number of 
residues, usually 3-lmer for proteins to map directly with other 
reference applications, such as NCBI BLAST. Consequently, 
our proposed database model for proteins, with an alphabet 
size of 24 residues, would allocate 243 entries, ie, 55.296 bytes, 
in CPU memory.

	 hash value lmer i sequence length i_ ( [ ] * )_ ( )∑ − +24 1 	 (6)

To conclude, one of the main advantages of this custom 
implementation is the collision prevention between hash 
entries. This design assumption improves the performance of 
the implementation of the proposed hash table against other 
solutions. Other alternatives, such as sequence-order infor-
mation, has been tested and evaluated to achieve a better 
performance. However, due to its significant computational 
costs and execution time, it has been rejected. Furthermore, 
with the aim of reducing the database size, a bit-level com-
pression model has been developed.

Finally, as a result of the formatting process, a binary 
database will be returned for further filtering analysis.

Filtering model. The filtering model, shown in Figure 4, 
consists of four compute stages. The processing policy consists 
of a preformatted database and a set of query sequences that 
are transferred to the GPU global memory. On the one hand, 
the preformatted database consists of a precalculated lookup 
table with database sequence information. On the other hand, 
the set of query sequences is a precalculated sequence stream 
with a variable size. Each query sequence is split into lmers 
and grouped into multiple blocks of threads, known as CUDA 
warps. Focusing on CUDA warp splitting implementation, 
zero padding has a great relevance because it is essential for 
avoiding divergence into the hitting policy.

According to the upper section of Figure 4, each thread 
is responsible of hitting its assigned lmer. Such a process starts 

indexing the query sequence lmer according to the same hash 
function used in the formatting database section. Then, each 
thread writes 1 into the database stream if the corresponding 
lmer exists in the database sequence. Generally speaking, this 
database stream is to be understood as a bidimensional matrix 
where rows represent all database sequences and columns rep-
resent each different lmers.

Once all threads have finished their jobs and have been 
synchronized by using CUDA barriers, the two-step reduction 
process begins. The first step, shown in Figure 5, is based on all 
the threads working together in blocks, and according to the 
CUDA warp size, to obtain the sum of the items contained on 
their corresponding CUDA warp.38 At this point, it is impor-
tant to consider the division policy by CUDA warps because 
it is the only way to guarantee a full parallelization between 
threads and thus reduce the divergence between them.

Finally, once all existing CUDA warps have finished, 
the second step comes on the scene to obtain the minimum 
score or likelihood percentage. Then, it returns the evaluated 
sequence, in FASTA format, to CPU if it overcomes the bias 
introduced by parameter.

Additional considerations. There are some architectural 
considerations implemented to achieve the highest perfor-
mance on NVIDIA’s GPU and CUDA.

The first assumption is the processing policy. Data trans-
fer overhead between GPU and CPU is one of the main 
bottlenecks in parallel applications and specially in those 
algorithms with huge data transfer.39 In order to reduce the 
I/O overhead, the GPU global memory is split into two 
sections. While the first section has processing data, the 
second section is filled by using CUDA streams40 and asyn-
chronous memory transactions. This feature is available since 
NVIDIA’s Fermi architecture development. Therefore and 
according to Figure 6, the proposed processing policy reduces 
the data transfer overhead to just the first transfer.

The second consideration into the model definition is 
the hitting policy. This policy involves two main problems: 
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coalescence and divergence. On the one hand, to solve these 
coalescence problems, it is necessary to establish contiguous 
memory access by GPU threads and minimize the overhead 
caused by L1 and L2 cache memory misses. As Figure 4 shows, 
either memory access or cache memory misses are designed to 
reduce this problem. On the other hand, the minimization of 
divergence, ie, the effect caused by GPU threads finishing their 
assigned jobs in different execution times, has been achieved 
according to the hitting process and only those threads with 
zero padding data generate a little divergence into the global 
execution time.
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The third consideration to take into account, specially 
for huge datasets, is the architectural decision to use global 
memory instead of shared, constant or texture memory. This 
decision is mainly due to a number of capacity planning 
constraints, such as memory size and CPU–GPU data trans-
fer overhead.

Evaluation
This section validates the proposed implementation into 
two different ways: performance and accuracy. It completes 
our previous evaluation work20 that evaluated the following 
genomes: Anaplasma marginale genome with 9,000 sequences, 
Escherichia coli genome with 5,000 sequences, Buchnera aphidi-
cola genome with 1,000  sequences, and Pseudomonas putida 
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genome with 1,000 sequences. These genomes were executed 
with non-redundant database from NCBI.

The accuracy test consists of a fine-grained validation 
procedure that aims to determine that the obtained results are 
correct. Once this validation is obtained, we can certify the 
compatibility of the proposed methodology with other refer-
ence applications. As a result, these tests conclude with high 
accuracy levels in the experiments performed:

•	 Between 70% and 80% for sequence exact matches.
•	 Close to 100% for inclusion of sequences.

On the other hand, performance tests are part of the 
second stage of this evaluation process, which aims to mix the 
obtained accuracy levels in the previous phase with good per-
formance in terms of execution time. These tests have been 
implemented with the NVIDIA’s GPU card NVIDIA Tesla 
K40c. This card is a single GPU from Kepler architecture with 
876 MHz of GPU clock rate, 12 GB GDDR5 device memory, 
and 2,880 CUDA cores.

This GPU card is installed into an HPC hardware archi-
tecture with an Intel Xeon E5-2630 processor, PCI Express 3.0 
connections, and 31 GB RAM. This processor is composed of 
six non-uniform memory access nodes with 12 physical cores and 
hyperthreading enabled, ie, 24 real cores visible for the operating 
system. Furthermore, these cards run into a GNU/Linux Fedora 
18 (x86_64) system with kernel version 3.11.10-100, CUDA 
version and runtime 6.0, and CUDA compute capability 3.5.

The sequence database used for these tests is the full 
GenBank Nonredundant Protein Database, which contains 
3,163,461,953 amino acids in 9,230,955  sequences. The 
comparison between query datasets and sequence database has 
focused into two different families, polyprotein viruses and pro-
teobacteria. The reason for selecting these families is because 

their sequences has appropriate sizes, ie, long lengths, to carry 
out the worst-case scenarios for GPU memory management.

Table 1 shows that the proposed methodology reaches a 
notable performance improvement with maximum speedup of 
4×. This speedup has been reached by comparing the execution 
time of NCBI formatdb tool and NCBI BLASTP to our pro-
posed preformatting and prefiltering model, NCBI formatdb tool 
and NCBI BLASTP and BLAST Time and BLAST Time + 
Prefilter Time, respectively. These performance enhancements 
confirm the use of the proposed filtering model as a tool for 
analyzing sequences faster than reference algorithms. However, 
these results and their corresponding performances are depen-
dent on the molecular phylogeny of each sequence. Therefore, 
future works are based on extending the evaluation stage for 
more sequence families and provide a good basis to establish 
relationships between filtering models and phylogenetics.

Table 2 shows the relevance of the proposed implementa-
tion as a sequence trimmer application. This process aims to 
discard those database sequences with a likelihood percentage 
less than a certain threshold, ie, likelihood filter threshold. 
Thanks to that, it is able to help other reference applications 
to accelerate their algorithms without reimplementing their 
compute stages.

However, according to Amdahl’s law, the proposed 
model performance is directly related to the likelihood filter 
threshold. This input parameter determines the number of 
sequences that the reference application will analyze. In 
particular, the evaluation stage is divided into two different 
scenarios. On the one hand, best-case scenarios define a high 
likelihood filtering threshold, ie, 95%, discarding a minimum 
of 90% of subject database sequences and obtaining a 4x 
speedup. On the other hand, worst-case scenarios define a low 
likelihood filtering threshold, ie, 60%, discarding a minimum 
of 50% of subject database and obtaining a 2× speedup.

Table 1. Performance comparison.

Subject 
Database

Query  
Sequence

Query 
Sequence 
Length

Query Family Likelihood  
Filter 
Threshold

BLAST Time BLAST Time + 
Prefilter  
Time

Speedup

nr BAK61626.1 3161 PolyProtein Virus 95% 779 seconds 243 seconds 3.21

nr BAK61626.1 3161 PolyProtein Virus 60% 779 seconds 325 seconds 2.40

nr ABD34305.1 743 PolyProtein Virus 95% 548 seconds 156 seconds 3.51

nr ABD34305.1 743 PolyProtein Virus 60% 548 seconds 256 seconds 2.14

nr AAA45466.1 2225 PolyProtein Virus 95% 700 seconds 199 seconds 3.52

nr AAA45466.1 2225 PolyProtein Virus 60% 700 seconds 311 seconds 2.25

nr AHW02111.1 2435 Proteobacteria 95% 718 seconds 175 seconds 4.10

nr AHW02111.1 2435 Proteobacteria 60% 718 seconds 311 seconds 2.31

nr AAD11553.1 542 Proteobacteria 95% 522 seconds 150 seconds 3.48

nr AAD11553.1 542 Proteobacteria 60% 522 seconds 188 seconds 2.78

nr AAO08121.1 1976 Proteobacteria 95% 696 seconds 173 seconds 4.02

nr AAO08121.1 1976 Proteobacteria 60% 696 seconds 307 seconds 2.27
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During these tests, the average temperature of both GPUs 
was never .55 °C. According to Hong and Kim,41 the obtained 
value followed a standard value. It demonstrates that the pro-
posed implementation can achieve energy savings by using a 
minimal number of GPU cores and a less intensive utilization.

Future works are focused on conducting the same kind 
of tests with NVIDIA’s GTX Titan GPU card. This card 
is a single GPU from Kepler architecture with 837 MHz of 
GPU clock rate, 6 GB GDDR5 device memory, and 2,688 
CUDA cores. Our assumption is that this kind of GPU cards 
could provide similar performance results as NVIDIA Tesla 
K40c but with a significant budgetary savings. Unlike other 
related research works, this comparison can provide an added 
value to the current research, offering a different perspective 
in terms of commodity hardware and HPC in biomedical and 
biological scenarios.

Conclusions
Next-generation sequencing systems are revolutionizing 
homology detection algorithms such as NCBI BLAST. Novel 
statistical and numerical methodologies have been imple-
mented for improving these algorithms in terms of perfor-
mance and accuracy.

The highly parallelizable architecture of NVIDIA’s GPU 
and CUDA has achieved a massive sequence analysis with low 
cost using commodity hardware and improvements up to four 
times faster than standard algorithms.

Unlike other existing solutions based on GPU or 
FPGA,12–14 the proposed implementation is completely 
independent of the original algorithm because it is not based 
on a new implementation of all compute stages. As a result, the 
proposed ad hoc solution gives a significant flexibility because 
it can be connected to new releases of the reference algorithm 
or even with other similar applications.

Table 2. Filtering comparison.

Subject  
Database

Query  
Sequence

Query Family Likelihood  
Filter  
Threshold

Filtering  
Percentage

Speedup

nr BAK61626.1 PolyProtein Virus 95% 91.30% 3.21

nr BAK61626.1 PolyProtein Virus 60% 83.79% 2.40

nr ABD34305.1 PolyProtein Virus 95% 98.20% 3.51

nr ABD34305.1 PolyProtein Virus 60% 87.17% 2.14

nr AAA45466.1 PolyProtein Virus 95% 95.10% 3.52

nr AAA45466.1 PolyProtein Virus 60% 83.83% 2.25

nr AHW02111.1 Proteobacteria 95% 97.20% 4.10

nr AHW02111.1 Proteobacteria 60% 83.98% 2.31

nr AAD11553.1 Proteobacteria 95% 98.64% 3.48

nr AAD11553.1 Proteobacteria 60% 51.39% 2.78

nr AAO08121.1 Proteobacteria 95% 97.35% 4.02

nr AAO08121.1 Proteobacteria 60% 84.04% 2.27
 

Several sets of experiments, from different protein families, 
have been conducted to evaluate and validate the proposed 
filtering model. As a conclusion, this approach can reduce 
execution times of sequencing algorithms using commodity 
hardware and, depending on the algorithm used, improve 
their accuracy.
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