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Abstract

Discovering regulatory interactions between genes that specify the behavioral properties of

cells remains an important challenge. We used the dynamics of transcriptional changes

resolved by PRO-seq to identify a regulatory network responsible for endocrine resistance

in breast cancer. We show that GDNF leads to endocrine resistance by switching the active

state in a bi-stable feedback loop between GDNF, EGR1, and the master transcription factor

ERα. GDNF stimulates MAP kinase, activating the transcription factors SRF and AP-1. SRF

initiates an immediate transcriptional response, activating EGR1 and suppressing ERα.

Newly translated EGR1 protein activates endogenous GDNF, leading to constitutive GDNF

and EGR1 up-regulation, and the sustained down-regulation of ERα. Endocrine resistant

MCF-7 cells are constitutively in the GDNF-high/ ERα-low state, suggesting that the state in

the bi-stable feedback loop may provide a ‘memory’ of endocrine resistance. Thus, we iden-

tified a regulatory network switch that contributes to drug resistance in breast cancer.

Introduction

Discovering the molecular basis by which cells specialize in diverse morphological or behavioral

phenotypes remains a central challenge in biomedical research. It was nearly 80 years ago now that

Conrad Waddington first recognized that cells carry a layer of information independent of their

genome sequence that governs cellular behavior and morphology [1,2]. This layer of so-called “epi-

genetic” information has more recently been interpreted as capturing the abundance of mRNA

and proteins, as well as the way that these particles interact (reviewed in: [3]). DNA sequence plays

a critical role in shaping the interactions between these mRNA and protein factors. Together these

sources of information govern how cells interact with their environment, adopt unique morpholo-

gies, or carry out their physiological function in the context of an entire organism.

One example in which the specific connections of a regulatory network are of particular

biomedical importance is drug resistance in cancer. Endocrine resistance in breast cancer is an
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excellent example of a drug resistance phenotype. Approximately 75% of breast cancers are

positive for estrogen receptor alpha (ERα) at the time of diagnosis. ERα is a transcription fac-

tor that controls a mitogenic growth program in breast cancer cells [4,5]. Blocking ERα is an

effective therapy for ER+ breast cancer. However, 40–50% of patients develop endocrine-resis-

tance during the course of treatment [6]. Intensive work over the past decade has implicated

several growth factor signaling pathways in contributing to endocrine resistance in breast can-

cer cells [7–12]. For instance, the RET tyrosine kinase signaling pathway correlates with an

endocrine resistance phenotype both in patients and in cell models [7–10]. However, we know

little about how genes within these signaling pathways interact with one another, and with

existing transcriptional programs controlled by ERα to promote endocrine resistance.

Experimental strategies devoted to mapping gene regulatory network interactions remain

challenging to apply in practice. To a large extent, this is explained by the highly interconnec-

ted nature of gene regulatory networks and the poor temporal resolution of standard genome-

wide tools. An emerging strategy for dissecting transcriptional responses to stimuli involves

measuring nascent RNA production [13–17]. This approach is sensitive to rapid and dynam-

ical transcriptional changes, allowing target genes to be identified within minutes of activation

and hence distinguishing primary and secondary effects [18–22]. Moreover, measuring pri-

mary transcription is a general marker that can be used to identify active transcriptional regu-

latory elements (TREs), including promoters and enhancers, because these elements initiate

RNA Pol II transcription [23–28] which are not observed in RNA-seq data owing to rapid deg-

radation by the exosome complex [25,29]. A recent method for detecting nascent transcription

by mapping the location and orientation of actively transcribing RNA polymerase, called Pre-

cision Run-On and Sequencing (PRO-seq), serves as a powerful assay for both identifying

TREs and measuring gene transcription levels [26].

Recognizing these important advantages we used PRO-seq to map the temporal dynamics

of changes in RNA polymerase in response to GDNF treatment in MCF-7 breast cancer cells.

We collected data at both short (60 min.) and long (24 hours) timescales in order to read-off

the gene regulatory network that lies downstream of GDNF-RET signaling. We found that

SRF and AP-1 are the transcription factors responsible for transducing the immediate changes

in response to GDNF-induced RET activation, and that these factors act downstream of ERK

signaling by releasing promoter proximal paused Pol II into productive elongation. Activation

of SRF causes breast cancer cells to switch the active state of a bi-stable feedback loop, by tran-

scriptionally repressing ERα and activating the transcription factor EGR1, which in turn leads

to the secondary activation of GDNF. Finally, we find that endocrine resistant MCF-7 cells are

in a cellular state characterized by high expression of GDNF (GDNF-hi) and low expression of

ERα (ER-low). Taken together, our studies demonstrate a novel bi-stable feedback loop that

explains how RET-tyrosine kinase signaling leads to resistance to endocrine therapies in breast

cancer.

Materials and methods

Contact for reagent and resource sharing

Information and requests for reagent and resources (Table 1) can be directed to the Lead Con-

tact Charles G. Danko (dankoc@gmail.com).

Cell lines and cell culture

Tamoxifen-sensitive (TamS) B7TamS and C11TamS and resistant (TamR) G11TamR and H9TamR

MCF-7 cells were generous gift from Dr. Joshua LaBaer [30]. TamS cells were grown in

DMEM containing 5% FBS and 1% Penicillin Streptomycin, and TamR cells were grown
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Table 1. Reagents and resources.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-p-ERK Cell Signaling Cat# 4695

anti-ERα Santa Cruz Cat# sc-543

anti-p-ER Cell Signaling Cat# 2511

Chemicals, Peptides, and Recombinant Proteins

(Z)-4-Hydroxytamoxifen (4-OHT) Sigma-Aldrich Cat# H7904

Recombinant human GDNF PeproTech Cat# 450–10

SUPERase In RNase Inhibitor (20 U/L) Life Technologies Cat# AM2694

Protease Inhibitor Cocktail Roche Cat# 11836153001

Biotin-11-ATP PerkinElmer Cat# NEL544001EA

Biotin-11-GTP PerkinElmer Cat# NEL545001EA

Biotin-11-CTP PerkinElmer Cat# NEL542001EA

Biotin-11-UTP PerkinElmer Cat# NEL543001EA

Sarkosyl Fisher Scientific Cat# AC612075000

Trizol Life Technologies Cat# 15596–026

Trizol LS Life Technologies Cat# 10296–010

GlycoBlue Ambion Cat# AM9515

Hydrophilic streptavidin magnetic beads NEB Cat# S1421S

RppH NEB Cat# M0356S

T4 RNA Ligase 1 NEB Cat# M0204L

Critical Commercial Assays

RNeasy Kit Qiagen Cat# 74104

High Capacity RNA-to-cDNA Applied Biosystems Cat# 4387406

Power SYBR Green PCR Master Mix Applied Biosystems Cat# 4367659

Deposited Data

All genomic data was deposited in GEO and the sequence read archive Herein GSE93229

Experimental Models: Cell Lines

MCF7-B7TamS (Gonzalez-Malerva et al., 2011) N/A

MCF7-C11TamS (Gonzalez-Malerva et al., 2011) N/A

MCF7-G11TamR (Gonzalez-Malerva et al., 2011) N/A

MCF7-H9TamR (Gonzalez-Malerva et al., 2011) N/A

Sequence-Based Reagents

Primers for ACTB, see STAR Methods This paper N/A

Primers for ESR1, see STAR Methods This paper N/A

Primers for GDNF, see STAR Methods Boulay et al., 2008 N/A

Primers for EGR1, see STAR Methods Fang et al., 2016 N/A

Software and Algorithms

cutadapt Martin, 2011

dREG Danko et al., 2015 https://github.com/Danko-Lab/dREG

dREG-HD Manuscript in preparation; This paper https://github.com/Danko-Lab/dREG.HD;

bigWig software package https://github.com/andrelmartins/bigWig

Visualization using R Team, 2010

BedTools Quinlan and Hall, 2010

bedGraphToBigWig program in the Kent Source software package Kuhn et al., 2013

DEseq2 Love et al., 2014

(Continued)
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DMEM containing 5% FBS, 1% Penicillin Streptomycin, and 1 μM (Z)-4-Hydroxytamoxifen

(Tamoxifen; Sigma-Aldrich; Cat No. H7904).

Cell set up and PRO-seq library preparation

TamS and TamR cells were plated in 150 mm dishes in their regular recommended media.

After 24 hours, cells were rinsed with PBS three times to remove any residual tamoxifen. Cells

were grown in media without tamoxifen for additional three days until approximately 80%

confluency. Cells were then treated with 10 ng/mL GDNF for 0, 1, or 24 hours. Cell nuclei

were isolated as described previously [17] and nuclear run-on experiments were performed as

described previously [13,31] with modifications (see Supplemental Experimental Procedures).

PRO-seq library preparation were executed according to Illumina protocol and were

sequenced using the Illumina NextSeq500 sequencing.

Identification of TREs using dREG-HD

TREs were identified using dREG [26]. Data collected between different time points (GDNF

treatment) was combined to increase statistical power for the discovery of TREs. We used our

dREG-HD [32] to locate precise coordinates of TREs (available at https://github.com/Danko-

Lab/dREG.HD).

Differential expression analysis (DESeq2)

When comparing gene expression in GDNF treated and untreated MCF-7 cells, we counted

reads in the window between 1,000 bp downstream of the transcription start site and the end

of the annotation or 60,000 bp into the gene body (whichever was shorter). This window was

selected to avoid (1) counting reads in the pause peak near the transcription start site, and (2)

to focus on the 5’ end of the gene body affected by changes in transcription during 60 minutes

of GDNF treatment assuming a median elongation rate of 2 kb/ minute. We limited analyses

to gene annotations longer than 2,000 bp in length. To quantify transcription at enhancers,

reads on both strands in the window covered by each dREG-HD site were counted. DESeq2

[33] was used for differential gene expression analysis (false discovery rate (FDR) < 0.01).

Motif enrichment analysis

Motif enrichment analyses were completed using our RTFBSDB as described previously [34].

We used the set of 1,964 human motifs in RTFBSDB clustered into 622 maximally distinct

DNA binding specificities, which represents the default settings in the package. The motif that

represents each cluster was selected to be the canonical transcription factor that was most

highly transcribed in MCF-7 cells. We filtered matches based on a log odds ratio of 7.5 (log e)
fir a motif match compared with a third-order Markov model background. We identified

Table 1. (Continued)

REAGENT or RESOURCE SOURCE IDENTIFIER

RTFBSDB Wang et al., 2016

Cytoscape software package Shannon et al., 2003

GraphPad Prism

The following reagents and resources were used in this study.

https://doi.org/10.1371/journal.pone.0194522.t001
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motifs that were strongly enriched in TREs that change transcription between two conditions

compared to a background set. Motifs were evaluated using Fisher’s exact test with a Bonfer-

roni correction for multiple testing. the background set consisted of>1,500 TREs matched for

GC content that do not change (<0.25 absolute difference in magnitude (log-2 scale) and

p> 0.2). We used the enrichmentTest function in RTFBSDB [34].

Immunoblot analysis

Whole cell lysates were resolved by SDS-PAGE followed by transfer to PVDF membrane. The

membranes were stained with Ponceau to visualize the total bound-protein. The membranes

were incubated overnight with primary antibodies diluted in TBST in 4˚C using the following

antibody concentrations: anti-p-ERK (1:1000; Cell Signaling; Cat# 4695), anti-ERα (1:1000;

Santa Cruz; Cat# sc-543) and anti-p-ER (1:1000; Cell Signaling; Cat# 2511). The primary anti-

bodies were detected with HRP-conjugated secondary antibodies and were exposed to ECL

reagents.

Pausing analysis

Pause and gene body densities were quantile normalized across all GDNF time course PRO-

seq data before pausing analysis in order to avoid potential unknown confounding effects, as

described by Danko et. al. (2013). Pausing indices were defined as the ratio of quantile normal-

ized RNA polymerase densities in 500 bp centered on the annotated GENCODE (v19) tran-

scription start sites and the gene body (+1kb to +60kb, as defined above). In the pausing

analysis we compared the log e transformed ratio of pausing indices between 1 hour of GNDF

and untreated TamS MCF-7 cells. All computations were preformed using the R statistical

package.

Reconstructing tamoxifen resistance regulatory network

We defined direct targets of E2 and GDNF signaling as all of those genes undergoing tran-

scriptional changes following short durations of ligand treatment (<40–60 minutes). We used

existing GRO-seq data following 40 minutes of E2 treatment (GSE27463). Data following

GDNF treatment were collected during the course of this study. Secondary targets were

defined as transcriptional changes following 24 hours of GDNF treatment. Networks were

visualized using the Cytoscape software package [35].

Estimating ESR1 start time

First, we estimated the position of the Pol II wave at 60 min. of GDNF treatment to be ~104 kb

using a 3 state hidden Markov model [19]. The 60 min in which GDNF was present in the cul-

ture media can be represented in two stages: First, we assume a delay, D, which is of interest to

estimate here, before GDNF signaling induces the repression of ESR1. Second, Pol II tran-

scribes for the remaining time, 60 –D, at an average elongation rate, r. The delay D can be esti-

mated as:

104000 ¼ r � ð60 � DÞ

We used two estimates for the elongation rate, r, at ESR1: First, we estimated the elongation

rate of ESR1 in MCF-7 cells to be ~1.77 kb/min between 10 and 40 min of E2 treatment [18];

Second, we used an alternative estimate using the median elongation rate in MCF-7 cells of 2.1

kb/min [19].
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Solving for the delay D at these elongation rates suggests that ESR1 down-regulation begins

between approximately 1.13 min and 10 min, respectively, after adding GDNF to the MCF-7

culture media.

RNA isolation and quantitative real-time PCR

RNA was purified using the Qiagen RNeasy Kit and reverse-transcribed using the Applied Bio-

systems High Capacity RNA-to-cDNA kit following the manufacturers’ protocols. Real-time

quantitative PCR analysis was performed using the Power SYBR Green PCR Master Mix on

ACTB, ESR1, GDNF [36], EGR1 [37] primers (Table 2). Samples were normalized to β-actin

(ACTB) and at least three biological replicates were performed. Data are represented as

mean ± SEM. Statistical analyses were performed using a two-tailed unpaired Student’s t-test

in GraphPad Prism.

Estimating bi-stable feedback loop state

We derived a score that represents the degree to which cells were dominated by the GDNF or

ESR1 state in the bi-stable feedback loop. Intuitively, the score represents the extent to which

each cell line recapitulates transcriptional signatures downstream of either GDNF (24 h) or E2

(40 m) by taking the sum of scores across all genes weighted by the magnitude of effect. The

score is computed by the following formula:

s ¼

P
gwGDNF

f � F0h
F24h � F0hP

gwGDNF
�

P
gwE2

f � F0m
F40m � F0mP

gwE2

Where wGDNF and wE2 represent the fold change of each gene, g; f represents the RPKM nor-

malized read counts for gene g in the sample of interest; F0h and F24h represent the mean TamS

RPKM normalized read counts after 0 and 24 hours of GDNF treatment; and F0m and F40m
represent the mean RPKM normalized read counts after 0 and 40 minute treatments with E2.

This score is high when the targets of GDNF are activated, and low when the targets of E2 are

activated.

Statistical analysis

Number of biological replicates (n), mean ± SEM, and statistical significance are reported in

the Figure legends. Using two-tailed Student’s t-test, data with p< 0.05 are reported statisti-

cally significant. In the figures, asterisks (�) and pound (#) signs denote statistical significance.

Specific p-values are indicated in the Figure legends. Statistical analyses were performed using

GraphPad Prism 7.

Table 2. Primer sets.

Target Genes Primer

ACTB Forward 5’-CCAACCGCGAGAAGATGA-3’

ACTB Reverse 5’- CCAGAGGCGTACAGGGATAG-3’

ESR1 Forward 5’- TTACTGACCAACCTGGCAGA-3’

ESR1 Reverse 5’-ATCATGGAGGGTCAAATCCA-3’

GDNF Forward 5’- TCTGGGCTATGAAACCAAGGA-3’

GDNF Reverse 5’- GTCTCAGCTGCATCGCAAGA-3’

EGR1 Forward 5’- AGCCCTACGAGCACCTGAC-3’

EGR1 Reverse 5’- GTTTGGCTGGGGTAACTGGT-3’

Quantitative real-time PCR was conducted using the indicated primer sets.

https://doi.org/10.1371/journal.pone.0194522.t002
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Data and software availability

Raw data files for PRO-seq were deposited to the Gene Expression Omnibus (GEO) under

accession number GSE93229. All the software and scripts used in the manuscripts are publicly

available on GitHub at https://github.com/Danko-Lab/mcf7tamres; recent version number:

855156ad07c042c88089cb4f31bf9d544487a1b2.

Results

GDNF-RET signaling indices a broad transcriptional response to stimuli

We took advantage of an existing MCF-7 model [12,30] to map the transcriptional regulatory

interactions downstream of RET tyrosine kinase signaling. We have recently reported that

GDNF, a ligand activating RET tyrosine kinase, is necessary for resistance to two endocrine

therapies, tamoxifen and fulvestrant, in two MCF-7 subclones (TamR; G11TamR and H9TamR)

[12]. We have also shown that two clones were highly sensitive to endocrine therapies (TamS;

B7TamS and C11TamS), which represent the ground-state of ER+ breast cancer cells. Resistance

to endocrine therapies can be introduced in B7TamS lines by treatment with recombinant

GDNF through activation of the endogenous RET signaling pathway [12].

We hypothesized that we could use recombinant GDNF to precisely control the timing of

changes in gene expression that ultimately result in endocrine resistance, providing new

insights into the responsible pathways. We used PRO-seq to map the location and orientation

of RNA polymerase in both TamS and TamR MCF-7 cell lines following induction of RET sig-

naling using recombinant GDNF (10 ng/ ml). To identify both direct and indirect targets, we

collected PRO-seq data following a time-course of 0, 1, and 24 hours of GDNF in B7TamS,

C11TamS, G11TamR, and H9TamR MCF-7 cells (Fig 1A). We sequenced PRO-seq libraries to a

combined depth of 269 million uniquely mapped reads (S1 Table), and confirmed that endo-

crine sensitive and resistant subclones (B7TamS and C11TamS; G11TamR and H9TamR) were

highly correlated across the time course, supporting the use of separate clones as biological

replicates (Spearman’s rank correlation ρ> 0.95; S1A and S1B Fig).

Using DESeq2, we found that GDNF treatment changed the transcription of 4,921 anno-

tated (GENCODE v19) transcription units, covering ~15% of expressed transcripts (FDR <

0.01, DESeq2 [33]; Fig 1B and 1C) at either the 1 or 24 hour time points in TamS MCF-7 cells.

Most targets were regulated immediately in a burst of transcription following 1 hour of GDNF

treatment (n = 3,849 at 1hr). Many genes were rapidly and dramatically activated by 1 hour of

GDNF, including immediate early transcription factors EGR1 and ETS2 (Fig 1B). Transcrip-

tion of ESR1, the gene that encodes the master transcription factor ERα, was down-regulated

(~2-fold) following 1 hour of GDNF. Changes in the transcription of genes induced by GDNF

were highly correlated between TamS and TamR cell lines (Pearson’s R> 0.73, p< 2.2e-16;

S1C and S1D Fig). Transcriptional responses were lower in magnitude in TamR MCF-7 cells

following both 1 and 24 hours of GDNF treatment, likely reflecting a dampened GDNF

response in TamR lines due to higher basal levels of GDNF acting to stimulate the RET recep-

tor in an autocrine fashion, as expected based on our previous work [12]. We conclude that

GDNF causes rapid and extensive changes in transcription at thousands of genes, many of

which are likely to kick off a secondary and indirect wave of transcription that explain changes

during longer durations of GDNF treatment.

SRF and AP-1 control enhancer responses to GDNF treatment

We used dREG [26] to identify the location of 39,119 transcriptional regulatory elements

(TREs) that were active during at least one of the GDNF treatment time points. Comparing
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the location of TREs with histone modifications in resting MCF-7 cells revealed patterns that

were characteristic of both promoters and distal enhancers. Whereas both gene distal (>5000

bp) and proximal (<100 bp) TREs were enriched for acetylation of histone 3 lysine 27

(H3K27ac), a mark of both distal enhancers and promoters, gene-proximal TREs were

enriched for histone 3 lysine 4 trimethylation (H3K4me3) to a larger extent than distal TREs

(Fig 2A). Taken together, these enrichments validate the use of nascent transcription in discov-

ering the location of TREs involved in mediating the GDNF response.

To define the dynamic changes in TRE activities across the time course, we counted PRO-

seq reads in a window extending TREs by 500 bp in both orientations to capture paused and

elongating RNA polymerase adjacent to the TRE center, and analyzed counts using DESeq2.

Our analysis discovered 1,520 TREs with highly confident changes in Pol II loading across

the time course (DESeq2, FDR adjusted p< 0.01). Discriminative motif discovery using

RTFBSDB [34] identified two motifs that were highly enriched in 1,036 TREs that changed fol-

lowing 1 hour of GDNF treatment compared with those transcribed at consistent levels

throughout the time-course (Fig 2B). We observed the largest enrichment (8.7-fold) in motifs

recognized by serum response factor (SRF) (p< 2e-5, Fisher’s Exact Test). In addition to SRF,
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Fig 1. GDNF activates thousands of target genes. (A) Schematic illustration of experimental setup. PRO-seq libraries were prepared from TamS and TamR MCF-7

clones grown in the presence of GDNF for 0, 1, or 24 hours. (B-C) MA plot shows significantly upregulated and downregulated genes (red) following 1 hour (B) or 24

hours (C) of GDNF treatment in TamS MCF-7 cells.

https://doi.org/10.1371/journal.pone.0194522.g001

A bi-stable feedback loop contributing to endocrine resistant breast cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0194522 April 3, 2018 8 / 20

https://doi.org/10.1371/journal.pone.0194522.g001
https://doi.org/10.1371/journal.pone.0194522


a motif recognized by AP-1, a heterodimer comprised of FOS, JUN, and ATF family members

was also enriched 2.9-fold (p< 1e-5, Fisher’s Exact Test).

In neurons, where GDNF is best studied, GDNF activates SRF through the MAPK-ERK sig-

naling pathway [38]. Using Western blotting, we found that ERK phosphorylation is rapidly (2

min.) and dramatically increased in B7TamS MCF-7 cells (Fig 2C). Taken together, these find-

ings support a model in which GDNF exerts its immediate transcriptional effects by the activa-

tion of p-ERK and downstream effects on the SRF and AP-1 transcription factor complexes

(Fig 2D).

GDNF releases paused Pol II into productive elongation

Transcription factors regulate transcription by changing the rates of several steps early during

gene transcription (reviewed by [39]). Although Pol II densities increase in the bodies of genes

activated by GDNF, the pause peak decreased in both TamS cell lines (Fig 3A), suggesting that

GDNF increases transcription, in part, by stimulating the rate at which paused RNA Pol II

transitions into productive elongation. To test this hypothesis more rigorously, we computed

changes in the pausing index between GDNF-treated (1 hr) and untreated TamS MCF-7 cells

at genes up- or down-regulated by GDNF. To avoid potentially confounding batch effects we

Fig 2. GDNF activates transcriptional regulatory elements. (A) Heatmap depicting PRO-seq, H3K27ac, and H3K4me3 near 1,520 TREs uing dREG

from PRO-seq data. (B) Motifs enriched in 1,036 TREs that changed following 1 hr of GDNF treatment compared with TREs that have consistent levels.

(C) Immunoblot analysis of p-ERK in B7TamS and G11TamR cells treatment with 10 ng/mL GDNF. (D) Schematic illustration of signaling pathways of

tamoxifen resistant MCF-7 cells.

https://doi.org/10.1371/journal.pone.0194522.g002
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assumed that global pausing levels were the same in all samples, as described previously [19].

Whereas genes that do not undergo changes in gene body transcription had consistent pausing

indices under various conditions, up-regulated genes were observed to have a lower pausing

index after 1 hr of GDNF treatment (Fig 3B; p< 2.2e-16 Wilcoxon rank sum test). Likewise,

down-regulated genes were observed to have slightly but significantly higher pausing indices

(p< 2.2e-16; Wilcoxon rank sum test). These results suggest that GDNF treatment activates or

represses genes in part by changing the rate at which Pol II transitions from a paused state to

productive elongation.

ESR1 and GDNF-EGR1 form a bi-stable feedback loop

Having dissected the factors contributing to the early GDNF response in MCF-7 cells, we set

out to define the transcriptional regulatory network downstream of the initial changes in

GDNF-RET signaling. Our approach leverages information in the dynamics with which tran-

scriptional changes arise to separate direct and indirect target genes. We compared responses

following GDNF to those in response to 17β-estradiol (E2), which activates ERα [18]. We

assume that genes up-regulated during the first 40 min. (E2) or 1 hour (GDNF) of treatment are

primarily comprised of direct targets because not enough time has elapsed for transcription,

translation, and successive rounds of transcriptional activation. Secondary targets responding

downstream of GDNF were defined as transcriptional changes following 24 hrs of treatment.

Propagating these simple rules revealed a transcriptional regulatory network with extensive

crosstalk between E2 and GDNF signaling pathways (Fig 4A). The central feature of this net-

work is a bi-stable feedback loop between GDNF/RET and E2/ERα. In this loop, GDNF
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Fig 3. GDNF stimulates the rate at which paused Pol II transitions into productive elongation. (A) Heatmap

depicting changes in RNA polymerase density following 1 hour of GDNF treatment in B7TamS MCF-7 cells. (B)

Changes in pausing index between treated (1 hour) and untreated TamS MCF-7 cells at the indicated class of genes.

The Y-axis represents log base e of changes in read density in the promoter compared to the gene body.

https://doi.org/10.1371/journal.pone.0194522.g003
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Fig 4. Bi-stable feedback loop between ESR1, EGR1, and GDNF. (A) Transcriptional regulatory network of GDNF-dependent endocrine resistance

highlighting the bi-stable feedback loop inferred between ESR1, EGR1, and GDNF. Each point represents a gene regulated following 1 or 24 hours of

GDNF signaling. Only transcription factors or signaling molecules are shown. Blue and ref edges represent activation or repression relationships,

respectively. (B) Transcription near the GDNF locus in B7TamS cells. PRO-seq densities on sense strand and anti-sense strand are shown in red and blue,

respectively. dREG scores are shown in green. The promoter is shown in light green shading. Arrows indicate the direction encoding annotated genes. (C)

Dot plots of transcription levels of ESR1 following GDNF treatment. (D) Transcription in the ESR1 gene in B7TamS cells. PRO-seq densities on sense

strand and anti-sense strand are shown in red and blue, respectively. dREG scores are shown in green. Enhancers and promoters are shown in grey and

light green shading, respectively. Arrow indicates the direction encoding annotated genes. (E) Difference in read counts in 3kb windows along ESR1
between 1 hours of GDNF and untreated TamS MCF-7 cells. The location of the wave of RNA polymerase along ESR1 was identified using a hidden

Markov model and is represented by the yellow box. (F) ESR1 mRNA expression levels in B7TamS cells following 10 ng/mL GDNF treatment. Data are

represented as mean ± SEM (n = 3). ���� p<0.0001. (G) Immunoblot analysis of ERα and p-ERα in B7TamS cells treatment with 10 ng/mL for 0, 1, 2, and

4 hours. (H) Dot plots representing transcription levels of ERα target genes (PGR, GREB1, and ELOVL2) following a time course of GDNF treatment. (I)

Bar plot showing the fraction of genes whose transcription is up-regulated by 40 min. of E2 in all RefSeq annotated genes (left) or those which are

downregulated by 1 (center) or 24 hours (right) of GDNF treatment. E2 target genes were enriched in those down-regulated following 24 hrs of GDNF

treatment. The Y axis denotes the fraction of genes that are direct up-regulated E2 targets (defined based on Hah et. al. (2011) and also up-regulated in

B7TamS). # p = 1.098e-10, ## p = 6.556999e-19. Fisher’s exact test was used for statistical analysis.

https://doi.org/10.1371/journal.pone.0194522.g004
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directly inactivates the transcription of ERα and activates transcription of EGR1, which, in

turn, activates GDNF transcription at 24 hrs (Fig 4A–4D). Conversely, ERα directly inactivates

EGR1, which in turn leads to a secondary down-regulation of GDNF. Thus, GDNF and ERα
are indirect target of each other, and activation of either signaling pathway by environmental

stimulation reinforces its own activity through a positive feedback loop, both dependent on

opposite effects on the transcription factor EGR1. Importantly, these intermediate interactions

that comprise the regulatory network were overlooked in previous studies [8,40], owing to

their limited temporal resolution (>3 hours) after both direct and indirect target genes had

begun to accumulate.

Validation and refinement of the bi-stable feedback loop

We asked whether the decrease in ESR1 leads to decreased ERα protein abundance, and ulti-

mately lower transcription of ERα target genes. Using the position of the retreating wave of

RNA polymerase after 60 min. of GDNF [19], we estimated that down-regulation of ESR1
begins between 1.13 min and 10 min after adding GDNF to the MCF-7 culture media, con-

firming that it is a direct target of GDNF signaling in MCF-7 cells (Fig 4E). Analysis of ESR1

transcript and protein abundance revealed that these transcriptional changes propagate into a

2-fold decrease in ESR1 mRNA abundance and ERα protein level following 2–4 hours of

GDNF treatment (Fig 4F and 4G). Finally, analysis of PRO-seq data after 24 hrs of GDNF

treatment revealed that the down-regulation of ERα protein results in the transcriptional

down-regulation of E2 target genes. Classical targets such as PGR, GREB1, and ELOVL2 are

not different at 1 hr of GDNF treatment, but transcriptionally down-regulated between two

and four-fold following 24 hrs of GDNF (Fig 4H). We confirmed by qPCR that the GDNF-

induced decrease in PGR mRNA occurs at 24 hrs but not at 4 hrs (S2A Fig). Genome-wide,

ESR1 target genes were more than three-fold enriched in the set of genes responding to GDNF

at 24 hrs, but not at 1 hr (Fig 4I). Moreover, transcriptional changes at 24 hours of GDNF neg-

atively correlate with 40 min of E2 treatment (Pearson’s R = -0.14; p = 4.2e-3). Finally, the ERα
binding motif was enriched in TREs that change Pol II abundance following 24 hrs of GDNF

treatment (p< 1e-9, Fisher’s exact test; Fig 2B). Taken together, these results provide indepen-

dent confirmation that GDNF-RET signaling down-regulates the E2 regulatory program by

decreasing the transcriptional activity of ESR1 during the first 10 min of GDNF treatment.

Next we investigated the positive feedback loop between GDNF and EGR1. We integrated

our analysis of PRO-seq data with ChIP-seq in MCF-7 cells from the ENCODE project in

order to provide insight into which transcription factors underlie each transcriptional

response. First, we confirmed that the 30-fold up-regulation of EGR1 transcription at 60 min.

of GDNF (Fig 5A) led to an 83-fold increase in EGR1 transcript abundance following 4 hrs of

GDNF treatment (Fig 5B; p< 0.01). We attributed EGR1 transcriptional activation to an SRF

binding site in the EGR1 promoter using MCF-7 ChIP-seq data (Fig 5A), consistent with motif

discovery analyses implicating SRF in the early activation downstream of GDNF. Analysis of

EGR1 ChIP-seq revealed a binding site in the GDNF promoter (Fig 4B), suggesting that sec-

ondary activation of GDNF works through initial activation of EGR1. This data suggests that

SRF activated by ERK signaling directly up-regulates EGR1 in MCF-7 cells, leading to a posi-

tive feedback loop with GDNF.

Our proposed bi-stable feedback loop model predicts that inhibition of ERα should result

in increases in both EGR1 and GDNF at the transcriptional level. We confirmed that blocking

ERα using tamoxifen significantly increased both EGR1 and GDNF mRNA levels following 24

hours in B7TamS MCF-7 cells (Fig 5C and 5D). Moreover, analysis of public data profiling gene

expression in breast cancer patients after blocking ERα using the aromatase inhibitor letrozole

A bi-stable feedback loop contributing to endocrine resistant breast cancer
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[41] found an increase in EGR1 transcript abundance (p = 1.775e-06, Wilcoxon rank sum test;

Fig 5F), suggesting that the interaction between ERα and EGR1 is active in breast cancer tissue,

though we observed no change in GDNF. Finally, EGR1 and ESR1 mRNA abundance were

strongly and negatively correlated in ER+ breast cancers analyzed using TCGA (Pearson’s R =

-0.21; p = 2.7e-10; Fig 5E).
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Fig 5. Validation of bi-stable feedback loop in MCF-7 cells and primary breast tumors. (A) Transcription at the EGR1 locus in B7TamS and G11TamR cells before and

after treatment with GDNF. PRO-seq densities on sense strand and anti-sense strand are shown in red and blue, respectively. dREG scores are shown in green. The

number of reads mapping in EGR1 and SRF ChIP-seq data is shown in black. Arrow indicates the direction of annotated genes. (B) EGR1 mRNA expression level in

B7TamS cell after treatment with 10 ng/mL GDNF for 4 or 24 hrs. Data are represented as mean ± SEM (n = 3). �� p< 0.01, ��� p� 0.001. (C) EGR1 mRNA expression

level in G11TamR cells after treatment without (water) or with 10 ng/mL GDNF for 4 or 24 hrs. Data are represented as mean ± SEM (n = 3). � p< 0.05. (D) GDNF
mRNA expression levels in G11TamR cells after treatment without (water) or with 10 ng/mL GDNF for 4 or 24 hrs. Data are represented as mean ± SEM (n = 3).
�� p< 0.005. (E) Boxplots show EGR1 expression level before or following 90 days of treatment with letrozole (p = 1.8e-6, Wilcoxon Rank Sum Test). (F) Density

scatterplots show the expression of EGR1 versus ESR1 based on mRNA-seq data from 1,177 primary breast cancers. ER+ breast cancers (n = 925), defined based on

ESR1 expression (>1e-5), are highlighted in color. The trendline was calculated using Deming regression in the ER+ breast cancers (Pearson’s R = -0.21; p = 2.7e-10).

https://doi.org/10.1371/journal.pone.0194522.g005
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These results provide independent confirmation of the positive feedback loop we proposed

based on an analysis of PRO-seq data. Taken together, our results demonstrate that

GDNF-RET and ERα form a bi-stable feedback loop dependent on EGR1, in which either ERα
or GDNF/RET signaling can remain at a high level.

TamR MCF-7 cells are constitutively in the GDNF-hi ERα-low state

We have previously reported that GDNF is sufficient to induce endocrine resistance in TamS

MCF-7 cells, and is necessary to maintain resistance in TamR MCF-7 cell lines [12]. Having

shown that GDNF switches the active state of a bi-stable feedback loop between GDNF and

ERα, we hypothesized that TamR cells are constitutively in the GDNF-hi, ERα-low state. To

test this hypothesis, we analyzed PRO-seq data from two separate replicates of all four TamR

and TamS cell lines grown in identical conditions for 36 hours. GDNF was transcribed 23-fold

higher in TamR than in TamS lines (FDR corrected p = 1e-5, DESeq2) [12], suggesting that

TamR MCF-7 cells share more similarity with the GDNF-high side of the bi-stable feedback

loop. To provide genome-wide support, we devised a score that summarizes the expression

similarity of each MCF-7 clonal line to gene expression targets that lie downstream of either

GDNF or ERα (see Materials and methods). These scores revealed that TamS MCF-7 cells

have a signature that is similar to ERα activation, whereas TamR lines are biased for signatures

associated with GDNF activation (Fig 6A). Finally, we also observed constitutive phosphoryla-

tion of ERK in G11 TamR lines that was not observed in TamS (Fig 2C) despite consistent

transcription levels of both genes in these lines (S3 Fig). This result suggests that endogenous

GDNF keeps the MAPK/ ERK signaling pathway constitutively active by signaling RET in an

autocrine fashion. Taken together, these results imply that TamR lines exhibit gene expression

and cell signaling properties associated with the GDNF-EGR1 arm of the bi-stable feedback

loop, whereas TamS cells are driven by ERα.

Discussion

We have used genomic tools to reconstruct a regulatory network that contributes to endocrine

resistance in an MCF-7 breast cancer model. We distinguish primary from secondary target

TamS
TamR

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

GDNF − E2 signature score

GDNFlow, ERhigh GDNFhigh ERlow 
Fig 6. Tamoxifen resistant MCF-7 cells are biased for signatures associated with GDNF activation. (A) Scores

summarizing the expression similarities between TamS (black) and TamR (red) cells to gene expression targets that lie

downstream of either ERα or GDNF.

https://doi.org/10.1371/journal.pone.0194522.g006
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genes by using PRO-seq to measure nascent transcription over short (�1 hr) and long (24 hrs)

treatments with E2 and GDNF, two stimuli that are central to our proposed resistance net-

work. Our work revealed at least two distinct phases of GDNF pathway activation: An initial

response, which is governed by MAP kinase signaling activating the transcription factors SRF

and AP-1, and a second indirect response governed by the transcription factors EGR1 and AP-

1. Transcriptional changes following GDNF stimulation switch the active state in a bi-stable

feedback loop by down-regulating ERα and constitutively expressing GDNF. Taken together

with our recent work manipulating GDNF expression in MCF-7 cell lines [12], all data

strongly support a causal role of this regulatory network in endocrine resistance. Overall, our

study provides mechanistic insights into how growth factor ‘escape pathways’ become acti-

vated and change the behavior of ER+ breast cancers in ways that facilitate ERα-independent

growth.

The positive feedback loop between GDNF and EGR1 provides mechanistic insights into

how the GDNF-RET signaling pathway, long implicated in endocrine resistance [8,9], leads to

stable ER-independent growth. We propose that GDNF is transcriptionally activated by EGR1,

translated, secreted, and acts in an autocrine fashion to further simulate activation of the RET

receptor. In support of this model, endocrine resistant MCF-7 cells constitutively express

GDNF and its downstream targets (Fig 6A). Moreover, endocrine resistant cells also have a

high intrinsic phosphorylation of ERK, compared with endocrine sensitive cells (Figs 6B and

2C), indicating that the RET receptor is constitutively active in TamR cell lines. Finally, the

importance of intrinsic GDNF is also supported by GDNF knockdown experiments, in which

the formation of the autocrine loop is prevented, and causing TamR MCF-7 cells to become

highly sensitive to endocrine treatment [12].

Stimulating endocrine-sensitive MCF-7 cells with GDNF switches the active state in a bi-

stable feedback loop by down-regulating ERα and constitutively expressing GDNF. This result

was first identified by our PRO-seq time course data, and we have validated this network loop

through extensive experimental manipulation (Figs 4 and 5). This type of feedback loop struc-

ture might be a sufficient condition to confer resistance to endocrine therapies on its own.

Supporting this possibility are our current and previous observations that GDNF is both suffi-

cient to induce resistance in B7TamS MCF-7 cells, and that endogenous GDNF transcription is

necessary for resistance in G11TamR cells [12]. Chemotherapy resistance can arise indepen-

dently of changes to DNA sequence when cells in a population have gene expression profiles

that, although rare in the starting population, confer drug resistance to the cells in these states,

causing these states to increase substantially following application of the drug by natural selec-

tion [42–45]. The bi-stable feedback loop between GDNF and ERα may be the molecular sub-

strate that leads MCF-7 cells to develop endocrine resistance by this epigenetic mechanism.

A bi-stable feedback loop, such as the one that we have observed here, has a number of

properties suggesting that it may be part of the molecular substrate that underlies the forma-

tion of stable resistance in this MCF-7 model. Perhaps the most important of these properties

is that resistance is a stable state in cells within the population. Endocrine resistant MCF-7

cells are associated with the GDNF-hi state for durations of at least 36 hours (Fig 6). This pro-

vides an element of cellular memory which can last for multiple cycles of cell division and

results in numerous challenges relating to clinical practice. The bi-stable feedback loop may

also suggest the use of novel treatment strategies. For instance, we predict that cells could be

manipulated back into a GDNF-low/ ER-hi state given higher doses of E2. This will likely pro-

mote higher tumor growth rates, but may re-sensitize tumors to endocrine therapies if they are

resistant by this mechanism. Alternatively, by applying endocrine therapies in pulses may also

prevent the GDNF-hi state of the bi-stable feedback loop described here.
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Changes to DNA sequence may also work to reinforce the GDNF-hi state of the bi-stable

feedback loop. The extent to which DNA sequence changes contribute to endocrine resistance

by this mechanism remains an important question that is not addressed in the present study.

We found no evidence for genetic factors that are known to contribute to endocrine resistance

in cell models or in patients. For instance, DNA sequence changes to the amino acid sequence

encoding ESR1 can lead to constitutively active ERα, causing resistance to aromatase inhibitors

[46]. TamR lines studied here were also highly resistant to fulvestrant, which works by degrad-

ing ERα protein, demonstrating that endocrine resistance reported here is ER-independent

[12]. Nevertheless, the present study cannot rule out a DNA sequence mutation elsewhere in

the genome as a factor that contributes to endocrine resistance in these TamR MCF-7 cell

lines.

Our primary goal in the present study was to identify direct and indirect targets of GDNF

signaling, which required us to use concentrations of GDNF that produce a robust response.

For this reason, we added recombinant GDNF at a concentration of 10 ng/ mL, as recom-

mended by the manufacturer, and used in prior work [8,9]. Therefore, another limitation of

the present study is that the dose of recombinant GDNF used is substantially higher than the

concentration of GDNF than produced by G11TamR MCF-7 cells [12]. An important question

in future studies is how producing physiological quantities of GDNF affects the resistance net-

work that we introduce here.

Taken together, results reported in this study reveal a regulatory network that is responsible

for GDNF-RET-mediated endocrine resistance in MCF-7 cells. Longitudinal clinical studies

targeting large cohorts will be required to fully validate the clinical relevance of our proposed

mechanism of endocrine resistance.

Supporting information

S1 Table. PRO-seq data collection and sequencing depth. PRO-seq was conducted in the

indicated cell clone and biological condition. Raw PRO-seq data were sequenced to the

uniquely mapped read depth specified and aligned to the human genome (hg19) using estab-

lished pipelines.

(DOCX)

S1 Fig. Highly correlated transcriptional patterns in biological replicates across the time

course. (A) Density scatterplot showing global transcriptional levels between TamS (B7 and

C11; top) or TamR (G11 and H9; bottom) MCF-7 cell lines at 0, 1, or 24 hours GDNF treat-

ment. (B) Heatmap shows Spearman’s rank correlation of RNA polymerase abundance of

TamS and TamR lines between the indicated samples. Sample order is determined by hierar-

chical clustering. Color scales show 0, 1, or 24 hours of GDNF treatment (above) or TamS or

TamR (right) as shown below the heatmap. (C-D) Scatter plots depict transcriptional changes

between TamS and TamR MCF-7 cells following (C) 1 hour or (D) 24 hours of GDNF treat-

ment.

(EPS)

S2 Fig. GDNF causes decrease in PGR mRNA expression and ERα binding sites. (A) PGR
mRNA expression level in G11TamR cells after treatment without (water) or with 10 ng/mL

GDNF for 4 or 24 hrs. Data are represented as mean ± SEM (n = 3). ���� p< 0.0001.

(EPS)

S3 Fig. No difference in ERK transcription between TamR and TamS cell lines. The dots

represent transcription of ERK in TamS (left) and TamR (right) MCF-7 cells. The Y-axis rep-

resents a log-2 scale. The difference in means between TamS and TamR is <25% (p = 0.42, as
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estimated by DESeq2).

(EPS)

Acknowledgments

This project was supported by the NIH grants R01 HG009309-01 to C.G.D. We would like to

thank D.B. Mahat for technical advice and X. Yao, L. Lan, members of the Danko and Coon-

rod labs for valuable discussions. We also would like to thank G. Leiman and J. Lewis for com-

ments on preliminary manuscripts.

Author Contributions

Conceptualization: Sachi Horibata, Scott A. Coonrod, Charles G. Danko.

Data curation: Charles G. Danko.

Formal analysis: Charles G. Danko.

Funding acquisition: Charles G. Danko.

Investigation: Sachi Horibata, Charles G. Danko.

Methodology: Sachi Horibata, Edward J. Rice, Hui Zheng, Chinatsu Mukai, Brooke A. Marks.

Project administration: Edward J. Rice, Scott A. Coonrod, Charles G. Danko.

Resources: Scott A. Coonrod, Charles G. Danko.

Software: Tinyi Chu, Charles G. Danko.

Supervision: Scott A. Coonrod, Charles G. Danko.

Validation: Sachi Horibata, Hui Zheng, Charles G. Danko.

Visualization: Sachi Horibata, Charles G. Danko.

Writing – original draft: Sachi Horibata, Charles G. Danko.

Writing – review & editing: Sachi Horibata, Scott A. Coonrod, Charles G. Danko.

References
1. WADDINGTON CH. Towards a Theoretical Biology. Nature. 1968; 218: 525–527. https://doi.org/10.

1038/218525a0 PMID: 5650959

2. Waddington C. H. An introduction to modern genetics [Internet]. The Macmillan company; 1939. Avail-

able: https://archive.org/details/introductiontomo00wadd

3. Pisco AO, Fouquier d’Herouel A, Huang S. Conceptual Confusion: the case of Epigenetics. Cold Spring

Harbor Laboratory; 2016; 53009. https://doi.org/10.1101/053009

4. Planas-Silva MD, Weinberg RA. Estrogen-dependent cyclin E-cdk2 activation through p21 redistribu-

tion. Mol Cell Biol. American Society for Microbiology; 1997; 17: 4059–69. https://doi.org/10.1128/MCB.

17.7.4059 PMID: 9199341

5. Prall OW., Rogan EM, Sutherland RL. Estrogen regulation of cell cycle progression in breast cancer

cells. J Steroid Biochem Mol Biol. 1998; 65: 169–174. https://doi.org/10.1016/S0960-0760(98)00021-1

PMID: 9699870

6. Ma CX, Sanchez CG, Ellis MJ. Predicting endocrine therapy responsiveness in breast cancer. Oncol-

ogy (Williston Park). 2009; 23: 133–42. Available: http://www.ncbi.nlm.nih.gov/pubmed/19323294

7. Gattelli A, Nalvarte I, Boulay A, Roloff TC, Schreiber M, Carragher N, et al. Ret inhibition decreases

growth and metastatic potential of estrogen receptor positive breast cancer cells. EMBO Mol Med.

2013; 5: 1335–50. https://doi.org/10.1002/emmm.201302625 PMID: 23868506

A bi-stable feedback loop contributing to endocrine resistant breast cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0194522 April 3, 2018 17 / 20

https://doi.org/10.1038/218525a0
https://doi.org/10.1038/218525a0
http://www.ncbi.nlm.nih.gov/pubmed/5650959
https://archive.org/details/introductiontomo00wadd
https://doi.org/10.1101/053009
https://doi.org/10.1128/MCB.17.7.4059
https://doi.org/10.1128/MCB.17.7.4059
http://www.ncbi.nlm.nih.gov/pubmed/9199341
https://doi.org/10.1016/S0960-0760(98)00021-1
http://www.ncbi.nlm.nih.gov/pubmed/9699870
http://www.ncbi.nlm.nih.gov/pubmed/19323294
https://doi.org/10.1002/emmm.201302625
http://www.ncbi.nlm.nih.gov/pubmed/23868506
https://doi.org/10.1371/journal.pone.0194522


8. Morandi A, Martin L-A, Gao Q, Pancholi S, Mackay A, Robertson D, et al. GDNF-RET signaling in ER-

positive breast cancers is a key determinant of response and resistance to aromatase inhibitors. Cancer

Res. 2013; 73: 3783–95. https://doi.org/10.1158/0008-5472.CAN-12-4265 PMID: 23650283

9. Plaza-Menacho I, Morandi A, Robertson D, Pancholi S, Drury S, Dowsett M, et al. Targeting the recep-

tor tyrosine kinase RET sensitizes breast cancer cells to tamoxifen treatment and reveals a role for RET

in endocrine resistance. Oncogene. 2010; 29: 4648–57. https://doi.org/10.1038/onc.2010.209 PMID:

20531297

10. Andreucci E, Francica P, Fearns A, Martin L-A, Chiarugi P, Isacke CM, et al. Targeting the receptor tyro-

sine kinase RET in combination with aromatase inhibitors in ER positive breast cancer xenografts.

Oncotarget. Impact Journals, LLC; 2016; 7: 80543–80553. https://doi.org/10.18632/oncotarget.11826

PMID: 27602955
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