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Abstract

Simulations of close relatives and identical by descent (IBD) segments are common in

genetic studies, yet most past efforts have utilized sex averaged genetic maps and ignored

crossover interference, thus omitting features known to affect the breakpoints of IBD seg-

ments. We developed Ped-sim, a method for simulating relatives that can utilize either

sex-specific or sex averaged genetic maps and also either a model of crossover interfer-

ence or the traditional Poisson model for inter-crossover distances. To characterize the

impact of previously ignored mechanisms, we simulated data for all four combinations of

these factors. We found that modeling crossover interference decreases the standard

deviation of pairwise IBD proportions by 10.4% on average in full siblings through second

cousins. By contrast, sex-specific maps increase this standard deviation by 4.2% on

average, and also impact the number of segments relatives share. Most notably, using

sex-specific maps, the number of segments half-siblings share is bimodal; and when com-

bined with interference modeling, the probability that sixth cousins have non-zero IBD

sharing ranges from 9.0 to 13.1%, depending on the sexes of the individuals through

which they are related. We present new analytical results for the distributions of IBD

segments under these models and show they match results from simulations. Finally, we

compared IBD sharing rates between simulated and real relatives and find that the combi-

nation of sex-specific maps and interference modeling most accurately captures IBD rates

in real data. Ped-sim is open source and available from https://github.com/williamslab/

ped-sim.
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Author summary

Simulations are ubiquitous throughout statistical genetics in order to generate data with

known properties, enabling tests of inference methods and analyses of real world pro-

cesses in settings where experimental data are challenging to collect. Simulating genetic

data for relatives in a pedigree requires the synthesis of chromosomes parents transmit to

their children. These chromosomes form as a mosaic of a given parent’s two chromo-

somes, with the location of switches between the two parental chromosomes known as

crossovers. Detailed information about crossover generation based on real data from

humans now exists, including the fact that men and women have overall different rates

(women produce *1.6 times more crossovers) and that real crossovers are subject to

interference—whereby crossovers are further apart from one another than expected

under a model that selects their locations randomly. Our new method, Ped-sim, can simu-

late pedigree data using these less commonly modeled crossover features, and we used it

to evaluate the impact of sex-specific rates and interference compared to real data. These

comparisons show that both factors shape the amount of DNA two relatives share, and

that their inclusion in models of crossover better fit data from real relatives.

Introduction

Inferring identical by descent (IBD) segments and estimating relatedness are classical prob-

lems in human genetics [1], with recent work motivated by the abundance of close relatives in

large samples [2–6]. In order to study individuals with a known relationship, many investiga-

tors have performed simulations, both to evaluate novel methods [4–8], and to characterize

the properties of IBD sharing rates among relatives [9, 10]. Additionally, direct-to-consumer

genetic testing companies—now with data from several million individuals—have used simu-

lated data to infer relationships by matching relatedness statistics from their customers to

those from simulations [11, 12].

In parallel with the above, efforts to characterize crossovers, including the dynamics of

crossover interference [13–15] and differences in male and female genetic maps [15–17] have

yielded precise resources for realistically simulating this form of recombination. Despite this,

most prior simulations and canonical models of IBD sharing between relatives [18] make use

of sex averaged genetic maps and have ignored crossover interference.

Differences between male and female crossover rates were first identified decades ago [19],

and modern data from families enable detection of separate male and female crossovers and

therefore the inference of distinct maps [15–17]. Other commonly used but inherently sex

averaged genetic maps [20] are based on population linkage disequilibrium (LD) patterns: the

signal left by thousands of male and female meioses. Crossover events are also detectable as

positions that switch between ancestral populations within an admixed individual’s genome,

but—lacking information about which ancestor produced each crossover—the resulting maps

are also sex averaged [21]. Lastly, recent work on sequencing and resolving crossovers in single

oocytes [22, 23] and sperm cells [24–27] provide information on sex-specific crossover proper-

ties and can be used to construct sex-specific maps.

In turn, characterization of crossover interference, initially observed as unexpectedly low

rates of double crossovers in early Drosophila linkage analyses [28], now includes sex-specific

parameter estimates from over 18,000 human meioses [15]. During meiosis, crossovers arise as

chiasmata that physically link homologous chromosomes within tetrads—four chromosome

bundles consisting of two copies of each homologous chromosome. Since chiasmata link
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together two non-sister chromatids (i.e., homologous chromosome copies of distinct parental

origin), the resulting crossover affects just two of the four gametes. To account for crossover

interference, early models assumed that crossover intermediates are placed uniformly at ran-

dom, but that only one of m intermediates resolves as a chiasma [29, 30]. The inter-chiasmata

distance under this model is gamma distributed with an integer shape parameter m (the χ2

model). This and current models assume a uniformly random placement of chiasmata among

the chromatids in a tetrad (i.e., no chromatid interference [22, 23]), corresponding to an inde-

pendent probability of 1/2 for a gamete to contain any crossover. Later work found that inter-

chiasmata distances are better fit by a gamma distribution with a fractional shape parameter

[13] (the gamma model). Building on this, Housworth and Stahl found improved fits to

human inter-crossover distances using a mixture (two-pathway) model that, in addition to the

gamma model, also includes some fraction of events that escape interference [14].

Here, we employ empirical human genetic maps and interference estimates to analyze the

effects of crossover modeling on IBD distributions between close relatives. Specifically, we sim-

ulated several types of relatives using either sex-specific or sex averaged crossover genetic

maps [16], and either incorporating crossover interference (under the Housworth-Stahl

model) [14, 15] or using a non-interference (i.e., Poisson) model. While mean IBD sharing

rates are unaffected by these factors, the variance in IBD sharing proportion differs substan-

tially between them, impacting relationship classification metrics (particularly between close

relatives) and estimates of the time since admixture for very recently admixed individuals. Fur-

thermore, by analytically solving a theoretical renewal process model, we show that crossover

interference impacts the distribution of IBD segment lengths, and we confirm these results

using simulations.

We conducted all simulations for this study using Ped-sim, an open source method we

developed that simulates relatives under any of the four combinations of genetic map type and

inter-crossover distance model (Methods). Ped-sim has functionality related to IBDsim [31],

but the latter uses a χ2 interference model with fixed parameters, is less scalable than Ped-sim

(Results), and does not produce genetic data.

To determine which crossover model best fits data from real relatives, we leveraged geno-

types from the San Antonio Mexican American Family Studies (SAMAFS) [32–34], a dataset

comprising roughly 2,500 samples in dozens of pedigrees. With thousands of close relative

pairs, these data enable precise estimates of IBD summary statistics. We also leveraged IBD

sharing rates from 20,240 full sibling pairs analyzed by Hemani et al. [35]. These analyses show

that use of sex-specific genetic maps and interference modeling provide overall better fits to

IBD sharing summary statistics in these real relatives than do other crossover models.

Results

To investigate the effect of sex-specific maps and crossover interference on IBD sharing

between relatives, we used Ped-sim to simulate 10,000 pairs of relatives for several relationship

types and each of four crossover models. Ped-sim can produce genetic data for relatives given

input haplotypes, but the analyses we present leverage exact IBD segments as detected through

internally tracked haplotype segments (Methods). These segments arise by (simulated) descent

from the chromosomes of founders—i.e., pedigree members whose ancestors Ped-sim does

not model.

Comparing IBD sharing between simulated and real relatives is complicated by the fact that

deeper, “background” relatedness from cryptic common ancestors can exist between real sam-

ples [36]. This may inflate the relatedness between real samples above that implied by the more

recent common ancestors we focus on. Additionally, population-based IBD segment inference

Crossover interference and sex-specific maps shape IBD distributions
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procedures are subject to both false positive and false negative signals, whereas simulated data

perfectly capture the IBD regions generated under a given model.

We used two approaches to detect IBD segments in the SAMAFS data: one family-based

and applied to full siblings—a strategy that avoids most issues of background relatedness, as

described next—and a population-based detector for other relatives [37]. The population-

based IBD estimates require adjustment for background relatedness and false signals, so we

mean-shifted these estimates to match theoretical expectations in each relationship class. Fur-

thermore, while we analyze the standard deviation of IBD sharing rates in full siblings, to limit

the impact of outliers in quantifying the corresponding variance terms within non-sibling rela-

tives, we focus on the quartiles of the mean-shifted IBD sharing fractions. (Standard deviations

derive from squared deviations from the mean, so outliers have a stronger influence on that

statistic than on the rank-ordered quartiles).

To calculate the full sibling IBD sharing proportions, we applied a family-based phasing

method [38] to the SAMAFS nuclear families that have data for at least three children and

both parents. Likewise, we leverage IBD estimates from 20,240 full sibling pairs that Hemani

et al. inferred using a family-based algorithm (Hemani20k) [35, 39]. These family-based IBD

detection methods work by inferring haplotype transmissions from parents to children and

locating regions where a pair of children co-inherit the same parental haplotype. That is, the

siblings’ IBD status is with respect to the parents’ four haplotypes, not the alleles the siblings

share, so the detected IBD segments are only those inferred to coalesce in the parents (not

older, cryptic relatives). Moreover, family-based phasing models are extremely accurate and

are considered to be the gold standard approach [40], leading to IBD sharing estimates that

deviate little from the truth (95% confidence interval of deviation [−1.73 × 10−3, 2.25 × 10−3]

in simulated three child families; S1 Fig). Notably, background IBD sharing between the two

parents has little impact on the phasing quality due to the depth of information contained in a

nuclear family, including the long-range linkage of haplotypes. Additionally, a run of homozy-

gosity (ROH) in a parent, though inhibiting precise localization of crossovers, also rarely con-

founds IBD detection due again to linkage. (In general, the majority of children will have

inherited a non-recombined haplotype across the ROH interval, enabling phasing of sites sur-

rounding the ROH.) Given these factors, we consider the IBD sharing values inferred for the

real full siblings as comparable to the corresponding simulated data quantities, and we do not

adjust them.

The IBD proportions quoted hereafter are fractions of the diploid genome two samples

share, and we calculated these as half the fraction of the genome the two share IBD1 plus the

IBD2 fraction (Methods), where these IBD1/IBD2 regions correspond to locations the pair

shares on one or two haplotypes, respectively. Below, we abbreviate sex-specific and sex aver-

aged as SS and SA, respectively, and refer to the four crossover models we used with Ped-sim

as: SS+intf for sex-specific genetic map with interference; SS+Poiss for sex-specific map, Pois-

son event distribution (i.e., no interference); SA+intf for sex averaged genetic map with inter-

ference; and SA+Poiss for sex averaged map, Poisson event distribution.

Sex-specific maps and interference oppositely affect the variance in IBD

sharing proportion

We simulated full siblings, first cousins, first cousins once removed, and second cousins under

all four crossover models. For all relative types, use of SS genetic maps increases the variance

in IBD proportion compared to the SA map, though the effect is somewhat limited. In particu-

lar, averaged among these relationships, the standard deviation increases by 3.6% under the

Poisson crossover localization model and 4.7% under the interference model (Fig 1, S2 Fig).

Crossover interference and sex-specific maps shape IBD distributions
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SS maps have similar effects on the size of the interquartile range, increasing this span by an

average of 3.9% under the Poisson model and 5.3% in the presence of crossover interference.

These small differences in IBD sharing statistics correspond to distributions of IBD rates for

SS and SA maps that are difficult to distinguish visually (S4 Fig).

By contrast, crossover interference has a strong effect on the variance in IBD sharing frac-

tion, decreasing the standard deviation compared to the Poisson model by 10.0% when simu-

lating with SS maps and 10.9% using the SA map (averaged over all relationships we

considered; Fig 1, S2 Fig). Furthermore, interference tightens the range between the 25th and

75th percentiles by 9.8% when using SS maps and 11.0% using the SA map. With decreased

variances of these magnitudes, the distributions of IBD proportions for relatives simulated

under interference are noticeably more peaked near the mean, with smaller tails (Fig 2). These

results highlight the importance of including interference when simulating relatives, and hint

that distantly related samples may have non-zero IBD sharing more frequently when simulated

under interference—a feature we analyze below (see “Rates of sharing at least one IBD segment

among distant relatives”).

Simulations including sex-specific maps and interference best fit data from

real relatives

Given the differences in the distribution of IBD proportions observed by varying the combina-

tion of map type and crossover interference among simulated relatives, we sought to under-

stand which scenario best matches real human data. We first examined IBD sharing between

pairs of full siblings in the SAMAFS and Hemani20k data, which have mean IBD proportions

Fig 1. IBD sharing fraction standard deviations in full siblings and 25th and 75th percentiles in first through second cousins from real and simulated data.

Points are from the SAMAFS, SAMAFS-validated subset (except full siblings), Hemani20k set (only full siblings), and the simulation models. The latter are labeled

using abbreviations given in the main text. The SAMAFS and SAMAFS-validated 25th and 75th percentiles are from values mean-shifted to match expectations.

Bars indicate 95% confidence interval (±1.96 standard errors) as calculated from 1,000 bootstrap samples. Standard deviations for first through second cousins and

25th and 75th percentiles for full siblings are in S2 Fig, and further statistics are in S3 Fig. SD indicates standard deviation.

https://doi.org/10.1371/journal.pgen.1007979.g001
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of 0.501 and 0.502, respectively, in line with expectations (S3 and S5 Figs). Overall, the SS+intf

model produces the best fit to the standard deviations from real data, being the only model

within one standard error (0.76 units) of the SAMAFS estimate, and 1.03 standard errors from

the Hemani20k value (Fig 1, S6 and S7 Figs). This contrasts with the traditional SA+Poiss

model, which is 2.3 standard errors from SAMAFS, and 9.3 from Hemani20k. The SA+intf

and SS+Poiss models are also discrepant, with both more than 3.2 standard errors from

SAMAFS, and 3.4 standard errors from Hemani20k.

The mean IBD2 sharing rate in the SAMAFS full siblings is 0.250, as expected, and the cor-

responding value in Hemani20k is 0.251 (S3 Fig). The standard deviation of IBD2 sharing

under the SS+intf model is 1.4 standard errors from that of SAMAFS, and only 1.03 standard

errors from the Hemani20k value. Again, these deviations are the smallest of all the models we

considered (Fig 1). The traditional SA+Poiss model is the next closest to SAMAFS at a distance

of 1.9 standard errors, but deviates meaningfully from Hemani20k at 9.3 standard errors away.

The SA+intf IBD2 standard deviation is 3.0 and 3.4 standard errors from the SAMAFS and

Hemani20k quantities, respectively, and, as in the full IBD proportion, SS+Poiss deviates the

most from the real data, being 3.6 standard errors from SAMAFS, and 13.3 from Hemani20k.

Turning to relationships more distant than full siblings, we focus on the interquartile IBD

sharing rates compared to mean-shifted SAMAFS values. Additionally, we analyzed a subset of

SAMAFS samples for whom data for all first degree relatives that connect them are available,

and where we confirmed these first degree relationships (S8A Fig, Methods). This subset

should be free of any mislabeled relatives, and we refer to it as SAMAFS-validated.

As in the full sibling analyses, use of SS genetic maps and crossover interference modeling

provides a good fit to the real data across all these more distant relationship types. In first cous-

ins, the 25th and 75th percentile IBD proportions under the SS+intf model are 0.111 and

0.138—the same as in the SAMAFS-validated data (Fig 1)—while the corresponding

Fig 2. First cousins simulated with crossover interference have a distribution of IBD sharing proportion more concentrated near the mean than those

simulated using a Poisson model. Interference decreases the variance in IBD sharing both when using sex-specific (left) and sex averaged (right) genetic maps.

https://doi.org/10.1371/journal.pgen.1007979.g002
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percentiles under SA+Poiss are 0.110 and 0.140, with the latter value 3.3 standard errors from

SAMAFS-validated. For first cousins once removed and second cousins, the SS+intf 25th and

75th percentile values are within one standard error of SAMAFS-validated in all cases, while

the three other models deviate by more than one standard error for at least one of the two

quartiles in both relationships.

As another line evidence that IBD sharing in SS+intf most closely mirrors that of real

data, we inferred degrees of relatedness for the simulated and SAMAFS relatives. This infer-

ence maps the kinship coefficient of each pair to a degree of relatedness using the same kin-

ship ranges as in KING [41] (Methods). S9 Fig plots the percentage of samples inferred as

their true degree of relatedness in the SAMAFS and simulated pairs. For all four relationship

types, the model with percentages nearest to that of SAMAFS-validated is SS+intf. In fact,

SS+intf is within one standard error of the SAMAFS-validated percentage for all four rela-

tionship types, whereas SA+Poiss and SS+Poiss are >3.0 standard errors from SAMAFS-val-

idated for all but full siblings. The SA+intf model is less than one standard error away from

SAMAFS-validated for all but first cousins once removed, where it deviates by 2.4 standard

errors.

Rates of sharing at least one IBD segment among distant relatives

Random assortment during meiosis commonly leads to a loss of IBD segments such that dis-

tant relatives may not share any IBD regions with each other despite having a genealogical rela-

tionship. Given the fit of the crossover model that incorporates SS maps and interference, we

set out to examine the distribution of the number of IBD segments shared among full and

half-siblings and first through sixth cousins. For close relatives, including full and half-siblings,

and first and second cousins, all simulated pairs share at least one IBD segment with each

other regardless of the crossover model. However, some proportion of third through sixth

cousins share no IBD segments of any size (Fig 3). Specifically, in the SS+intf simulation, 1.5%

of third cousins share no IBD regions, and this percentage increases to 27.3%, 67.4%, and

88.9% of fourth, fifth, and sixth cousins, respectively. For the 1,112 (of 10,000) sixth cousins

that do share IBD segments, the average total length is 7.6 centiMorgans (cM). Unsurprisingly,

most sixth cousin pairs retain only one IBD segment with very few (107/1,112) pairs sharing

more than one segment (Fig 3). The total IBD length varies substantially among sixth cousins,

with the top 25% of pairs that have IBD regions sharing a total of at least 10.2 cM and a maxi-

mum of 53.4 cM. Thus sixth cousins with rare extremes of IBD sharing have total shared

lengths more typical of third and fourth cousins.

As already noted, crossover interference leads to a more concentrated distribution of IBD

sharing rates (e.g., Fig 2). Interference also leads to a slightly larger fraction of distant relatives

that share IBD segments. For example, 32.7% of fifth cousins share one or more IBD segments

under the SS+intf model compared to only 30.0% under SA+Poiss.

Sex-specific maps impact the number of IBD segments relatives share

While SS maps have a smaller effect than interference on the variance in IBD sharing propor-

tion between two relatives, they do impact the number of segments relatives share. Specifically,

females produce an average of 1.57 times more autosomal crossover events per meiosis than

males [16]. With such differences, females should transmit a larger number of IBD segments

that are on average smaller compared to transmissions from males. This is because, without a

crossover event, the probability of transmitting an IBD segment is 50%. On the other hand,

when a newly generated crossover occurs within an IBD region, transmission of some portion

of the IBD region (on one side or the other of the crossover) is guaranteed.

Crossover interference and sex-specific maps shape IBD distributions
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Fig 3. Number of IBD segments that simulated third through sixth cousins share under various modeling scenarios. More distant relatives have reduced rates

of sharing one or more IBD regions. Percentages above each bar indicate the fraction of simulated relatives (of 10,000 for each scenario) that have at least one

segment shared. Female+intf are from simulations using sex-specific maps and interference but where the pairs are related through only female non-founders, with

a male and female couple as founder common ancestors (S8B Fig). Male+intf pairs are the same as Female+intf but with the non-founders being only male instead

of female. Error bars are the 95% confidence interval (±1.96 standard errors) of the percentage of relatives that share at least one IBD segment based on 1,000

bootstrap samples. Error on internal bar segment counts are in S10 Fig.

https://doi.org/10.1371/journal.pgen.1007979.g003

Crossover interference and sex-specific maps shape IBD distributions
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To more fully investigate the impact of SS genetic maps, we used the SS+intf model to simu-

late third through sixth cousins where the non-founder ancestors through whom they are

related are either all female or all male (with the shared founder grandparents being a male

and female couple; S8B Fig). When related primarily through females, third through sixth

cousins are much more likely to have non-zero IBD sharing than those related primarily

through males. The differences are quite extreme with respectively 2.5%, 19.6%, 33.1%, and

46.2% more (in relative terms) third, fourth, fifth, and sixth female-lineage cousin pairs sharing

at least one IBD region compared to the analogous male-lineage cousins (Fig 3). Consistent

with intuition, the IBD regions in female-descent cousins are smaller on average than those in

male-descent cousins. For example, female-lineage fifth cousins with IBD regions share an

average of 1.3 segments with a mean total length of 9.0 cM compared to the male-lineage aver-

ages of 1.2 segments and total length 11.9 cM.

These differences in male and female maps impact IBD sharing between close relatives as

well, with especially noticeable effects in half-siblings. In particular, maternal half-siblings

share on average 1.4 times as many IBD segments as paternal half-siblings (mean segment

numbers 51.9 and 37.1, respectively). The effect is substantial enough to produce a bimodal

distribution, with little overlap between the two types of half-siblings (Fig 4; S11A Fig).

Although less distinct than segment counts from simulations, the SAMAFS half-siblings also

have a bimodal distribution that corresponds with the sex of the common parent (S11B Fig;

Methods). Notably, the mean segment count in simulated paternal half-siblings is less than

that of first cousins with randomly assigned parent sex (who share a mean of 39.0 segments;

Fig 4). However, the segments paternal half-siblings share are more than twice as long as those

of first cousins, with an average length of 45.1 cM compared to 21.5 cM in first cousins.

Fig 4. Sex-specific maps impact the number of segments half-siblings share. Number of IBD segments half-siblings share when simulated with sex averaged

maps compared to sex-specific maps have very different shapes, with sex-specific maps producing a bimodal distribution (left). Half-sibling segment counts in the

context of other relative types where we simulated all relatives under sex-specific maps (right). The lower mode of half-sibling segment counts—which corresponds

to IBD sharing between paternal half-siblings (S11A Fig)—is below that of first cousins. The distributions are based on 10,000 pairs simulated under interference

for all relationship types.

https://doi.org/10.1371/journal.pgen.1007979.g004
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Inferring degrees of relatedness from simulation summary statistics

Given the popularity of genetic testing companies and their work to infer relatedness by

matching real data summary statistics to corresponding values from simulations [11, 12], we

sought to understand the impact the simulation model has on this inference. In particular, we

examined classification rates and relationship probability calibrations in kernel density estima-

tion models (KDEs) trained under the four crossover scenarios (Methods). We applied these

KDEs to data simulated under SS+intf, which more precisely captures real data relatedness sta-

tistics compared to the other models (Fig 1, S9 Fig).

As shown in S12 Fig, the sensitivity and specificity of the KDEs are fairly similar among the

four types of training data. However, the classifier trained using SA+Poiss data has lower speci-

ficity overall and lower sensitivity for fifth and sixth degree relationships. The latter SA+Poiss

specificity rates are 0.031 and 0.020 less, respectively, than the SS+intf classifier (P = 7.7 × 10−7

and P = 7.5 × 10−4, respectively, paired difference t-test). The calibration curves also reveal dif-

ferences in performance among the training data types (S13 Fig). Under this metric, training

with data subject to interference meaningfully improves the probability calibrations for second

and third degree relatives compared to training with SA+Poiss data. These results suggest that,

in applications that use relationship probabilities, interference modeling (including via simula-

tions) may be beneficial for analyses of close relatives.

Estimates of time since admixture vary by simulation model for recently

admixed samples

We sought to characterize the impact of the four crossover models on estimates of the time

since admixture using single admixed samples. For this purpose, we simulated one admixed

haplotype per chromosome in a set of individuals, with the onset of admixture T generations

ago, and all ancestor couples in that generation including one member of each of two popula-

tions (S14 Fig). We used the resulting local ancestry segments to estimate the time since

admixture by fitting an exponential rate to all segments from the two ancestral groups in each

admixed sample (Methods).

Fig 5 plots estimates of T from each of 15,000 simulated admixed samples where T = 2, 3, 4,

6. Here, crossover interference has a noticeable effect on the distribution, leading to a reduc-

tion in the standard deviation of the estimated T of 11.4% compared to the Poisson model

(averaged over both map types and all T). This effect remains consistent as T increases, with an

10.2% decrease in standard deviation at T = 2 (grandparents-grandchild) and 11.8% at T = 6

(fourth great-grandparents-grandchild). Additionally, the variance under SS maps is much

higher than under the SA map, with standard deviations 13.4% larger under the SS maps

(again averaged across interference parameters and all T). The impact of SS maps is greatest

for small T, with a 23.4% larger standard deviation for T = 2 compared to 6.8% for T = 6. The

differences between the SS and SA models are higher for small numbers of meioses because

the probability of all meioses being in only one sex is highest for small T. As the number of

meioses grows, a greater fraction of the samples will have closer to equal numbers of male and

female meioses, and so the sharing patterns will be more similar to those that arise from an SA

map.

Comparing SS+intf to the traditional SA+Poiss model shows that the effects of interference

and map type in some ways cancel each other except when T is small. Indeed, these distribu-

tions have more similar standard deviations than the comparisons described above, with only

a 6.0% lower standard deviation for SS+intf compared to SA+Poiss when T = 6. This indicates

that, except when admixture is quite recent or for fine grained analyses, the SS+intf model pro-

duces local ancestry distributions similar to that of the SA+Poiss model. Of note, most analyses

Crossover interference and sex-specific maps shape IBD distributions
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of local ancestry segments use data from many haplotypes, which should produce estimated

times with overall reduced variance compared to these analyses.

The effects of interference and sex-specific maps on IBD segment lengths

To gain insight into the effect of crossover interference and SS maps on IBD segment lengths,

we analytically obtained the distribution of these lengths under the SA+intf and SS+Poiss

models.

In the Housworth-Stahl two-pathway model [14], the proportion of crossovers that escape

interference (are “unregulated”, or distributed according to a Poisson process) is denoted as p.

The remaining (“regulated”) crossovers are independently generated by first drawing the posi-

tions of chiasmata as a stationary renewal process [42] along the chromosome, with gamma

distributed inter-chiasma distances (in Morgans) with shape ν and rate 2ν(1 − p) (Methods).

Each chiasma becomes a crossover in the gamete being modeled with probability 1/2. Here we

consider IBD segments shared by individuals with a common ancestor T generations ago, or

separated by 2T meioses.

In Methods, we show that the density of x, the length (in Morgans) of IBD segments subject

to interference and under an SA map, is

�ðxÞ ¼ e� 2pTx½~GregðxÞ�
2T� 1

4pTgregðxÞ þ
ð2T � 1Þg2

regðxÞ
~GregðxÞ

þ ð1 � pÞfregðxÞ þ 2p2T ~GregðxÞ

" #

; ð1Þ

where

fregðxÞ ¼
X1

k¼1

2� kxkn� 1e� 2ð1� pÞnx½2ð1 � pÞn�kn

GðknÞ

Fig 5. Distributions of estimated time since admixture based on one admixed sample. Histograms show estimated rates from 15,000 individuals simulated under

each crossover model. Estimates are rate fits of an exponential distribution accounting for finite chromosomes (Methods). Horizontal lines indicate the true T.

https://doi.org/10.1371/journal.pgen.1007979.g005
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is the probability density of the distance between regulated crossovers,

gregðxÞ ¼ ð1 � pÞ
X1

k¼1

2� k G½kn; 2ð1 � pÞnx�
GðknÞ

is the probability density of the distance between a random site and the next regulated cross-

over, and

~GregðxÞ ¼
Z 1

x
gregðyÞdy

is one minus the cumulative distribution of greg(x).

The expressions above are valid for infinitely-long chromosomes. We further show in

Methods how to modify Eq (1) for the case of a finite chromosome (Eq (16)).

To confirm these results, we used Ped-sim to simulate IBD sharing under the SA+intf

model for chromosome 1. The simulated distribution of the IBD segment lengths is shown in

Fig 6 for half-cousins with a common ancestor T = 1, 2, 4, 6 generations ago (where T = 1

corresponds to half-siblings), and agrees with the theory (Eq (1)). The plot also depicts the

expected distribution under the Poisson model, and demonstrates that the effect of interfer-

ence can be substantial and is noticeable up to T≲ 4. However, by T = 6 the Poisson process is

already an excellent approximation to SA+intf.

Next we considered the effect of SS maps, this time assuming Poisson crossover placement.

For concreteness, consider (T − 1)th-full cousins, which are separated by 2T meioses as above.

Fig 6. The effect of crossover interference on IBD segment lengths. We used Ped-sim to simulate half-cousins with a common ancestor T = 1, 2, 4,

6 generations ago (panels A-D, respectively) under the SA+intf model, extracting IBD segment lengths for chromosome 1. Each panel shows the

simulated distribution of IBD segment lengths (over 105 pairs for T = 1, 2 and 106 pairs otherwise; purple circles), the theory from Eq (1) (blue lines;

including the finite-chromosome correction of Eq (16)), and the expectation based on a Poisson process (red dashed lines; Eq (17)).

https://doi.org/10.1371/journal.pgen.1007979.g006
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Each IBD segment descends from one of the founder parents (a female or a male with equal

probability), who transmits it via two meioses. The remaining 2T − 2 meioses can be either

male or female with equal probability. The number of female transmissions is thus nf = nf,i +

2nf,a, where nf,i is the number of female meioses that relate the full cousins ignoring the com-

mon ancestors, and is binomial with parameters (2T − 2, 1/2); and nf,a indicates whether the

common ancestor who transmitted the segment is female, and is Bernoulli with parameter 1/2.

The number of male transmissions is nm = 2T − nf. In fact, the same expressions hold for half-

cousins, if the sex of the founder parent is random.

For each SNP i, denote by λm(i) the male crossover rate (in Morgans per base-pair [bp])

between SNPs i and i + 1, and define λf(i) similarly. We assume the rate is constant between

SNPs (and zero before the first SNP). Given nf and nm female and male meioses, respectively,

the total crossover rate between SNPs i and i + 1 for the two relatives is λ(i) = λf(i)nf + λm(i)nm.

Thus, placement of crossovers is still based on a Poisson process, but because the per bp rates

in males and females differ by position, the rate is inhomogeneous along the genome. (Note

that the male and female maps themselves are also inhomogeneous with respect to physical

positions. We focus here on physical positions because the effects of the process ultimately

occur at a physical position, and those physical positions are common to both the male and

female maps).

To obtain the distribution of inter-crossover distances (again in physical bp) for a fixed

number of male and female transmissions, we use a result by Yakovlev et al. [43] for the

distribution of inter-event times in an inhomogeneous Poisson process. Denote λ(x) as the

implied crossover rate at a physical coordinate x (as implied by the λ(i)’s above), and define

LðxÞ ¼
R x

0
lðuÞdu. Then we have

�ðxÞ ¼
1

LðLÞ

Z L� x

0

lðyÞlðyþ xÞe� ½LðyþxÞ� LðyÞ�dyþ
lðxÞe� LðxÞ

LðLÞ
: ð2Þ

Here ϕ(x) describes the density of all inter-crossover distances, not including the one censored

by the chromosome end, with the number of male and female transmissions assumed given.

To obtain the density without conditioning on male and female meiosis counts, we sum over

all nf = 0, . . ., 2T, each weighted by its probability. In relatives, not all inter-crossover blocks

will become IBD segments, but rather only those whose line of descent is from the same com-

mon ancestor in both relatives. However, since IBD segments are a random subset of all

blocks, the IBD segment length distribution is expected to be similar to that of the inter-cross-

over distances. This is confirmed in S15 Fig, where we plot the distribution of simulated IBD

segment lengths under SS+Poiss for half-cousins separated by T = 1, 2, 4, 6 generations. As

opposed to the observations from crossover interference, the distribution of segment lengths

under SS maps is not substantially different from that obtained by Eq (2) with SA maps.

Ped-sim comparison to IBDsim

The functionality in Ped-sim is available with some limitations in IBDsim [31], an R package

that uses the χ2 interference model with fixed parameters. We used Ped-sim (under the SS+intf

model) and IBDsim to simulate 10,000 full sibling pairs and 10,000 second cousin pairs (Meth-

ods). Ped-sim simulated the full siblings and second cousins in 8.1 and 8.7 seconds, respec-

tively, while IBDsim required 371 and 608 seconds, respectively (corresponding to 46-fold and

70-fold speedups). Memory requirements are low for both methods, with Ped-sim and IBDsim

using, respectively 0.62 Gb and 2.0 Gb to simulate the second cousins.

Neither of the above analyses produced genotype data (and IBDsim does not provide this

functionality), but only generated IBD segments from replicate pedigrees. To produce
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genotype data, Ped-sim compute times are on the scale of dozens of minutes for several thou-

sand samples. For example, simulating genotype data for 4,450 pairs of full siblings at 462,828

markers took 33.5 minutes for non-gzipped input and output (I/O) data and 59.2 minutes for

gzipped I/O, and both runs used 0.13 Gb of RAM (Methods).

Discussion

Modeling relatedness among individuals is more challenging than is typically appreciated due

to the complexities of meiotic biology. Variable crossover rates between the sexes and the

phenomenon of crossover interference both affect the quantity and size of IBD segments that

individuals share. Our analyses demonstrate that use of sex-specific maps and inclusion of

crossover interference provides the best fit to the standard deviation of IBD sharing rates in

real human data from full siblings. Likewise, the 25th and 75th percentiles of IBD proportion

from real first through second cousins are best fit by jointly modeling sex-specific maps and

interference.

In modeling both the IBD sharing proportion between relatives and the lengths of their

IBD segments, crossover interference has a much stronger influence than varying sex-specific

versus sex averaged maps. However, sex-specific maps have a sizable impact on the number of

IBD segments that both close (especially half-siblings) and somewhat distant (up to sixth cous-

ins) relatives share. Therefore, both crossover interference and sex-specific maps play roles in

the accurate representation of meiotic transmissions. Even so, the crossover model that is most

discrepant with real IBD sharing fractions is the one that adopts sex-specific maps but Poisson

inter-crossover distances. Thus, although closer to the true meiotic process in terms of the

number of crossover events in men and women, the strong impact of interference in reducing

the variance of IBD sharing is important to include when simulating relatives under a sex-spe-

cific map.

Given the effects on IBD sharing of the features we consider here, it is necessary to revisit

the probability that a pair of relatives share any IBD segments with each other. A classic, influ-

ential treatment of this problem used an analytical approach based on Markov models and

considered sex averaged maps while ignoring interference [18]. That study estimated that

10.1% of sixth cousins share IBD regions, which is close to the 9.9% we obtain using a more

up-to-date sex averaged genetic map. Still, with both sex-specific maps and interference

modeling, we find that 11.1% of simulated sixth cousins have non-zero IBD sharing. This fac-

tor rises to 13.1% when the sixth cousins are related primarily through females, and drops to

9.0% when they are related primarily through males.

A question that arises in light of these non-standard models is whether and in what contexts

existing inference and/or simulation frameworks should incorporate the more realistic fea-

tures. We examined the performance of degree of relatedness inference using KDEs trained

with data simulated under the four crossover models. This analysis showed that the models

trained under interference have slightly improved probability calibration for close relatives

(S13 Fig). Perhaps more importantly, training with data from the traditional sex averaged map

with Poisson localization has slightly decreased specificity overall and lower sensitivity for fifth

and sixth degree relatives (S12 Fig).

A caveat to these and other results is that they leverage simulated, exact IBD segments, and

the limitations of IBD detection in real data may make the signals we highlight impossible to

reliably identify in practice. As described in Results, IBD detectors are affected by false posi-

tives and false negatives, and even without these concerns, real data include background IBD

sharing that can confound downstream analyses. The approaches we employed of mean-shift-

ing IBD sharing rates and, for the SAMAFS-validated data, limiting to pairs with rich evidence
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supporting their relationship type are infeasible in most studies. Further work will be needed

to determine how practically useful the findings presented in this paper are. Still, some applica-

tions of non-standard crossover models have been developed, as the method CREST now uses

sex-specific maps to infer whether real half-sibling and grandparent-grandchild pairs are

maternally or paternally related using only their autosomal IBD segments [44].

Besides influencing relatedness, crossover models are a central feature of linkage analysis—

an approach that computes the likelihood of trait association based on the co-segregation of

alleles and traits within pedigrees. Several methods for linkage analysis already incorporate

sex-specific maps [39, 45, 46], and use of these maps does impact linkage signals, both increas-

ing and decreasing evidence of association depending the data used [47, 48]. By contrast,

crossover interference is computationally intensive to model, and methods to perform such

modeling have only been applied to very small datasets—both in numbers of meioses and

markers [49, 50]. One study showed that accounting for interference can increase linkage anal-

ysis power [51], but this conclusion is based on simulated data with few markers. Analyses of

the impact of interference on likelihood calculations using more recent high density SNP data-

sets may be worthwhile, and could be coupled with efforts to improve the speed of interfer-

ence-based likelihood calculations.

In general, the comparisons most affected by the crossover properties considered here are

between relatives separated by meiosis counts ≲ 12 (or T≲ 6 in Fig 6, S15 Fig), while, for

more distant relatives, it is reasonable to use traditional models. That is, while crossover mod-

els affect IBD sharing in even moderately distant relatives such as fifth or sixth cousins, popula-

tion-based coalescent simulations and inference techniques are reasonable to perform with

standard approximations.

Going forward, efforts to better understand the dynamics of crossovers, including observed

“gamete effects” wherein crossover counts in a given gamete are correlated across chromo-

somes [52], and incorporating genetic variants that affect crossover rates [52] could yield mod-

els with even greater precision than those we focus on in this study. Nevertheless, the effects of

crossover interference and sex-specific maps merit consideration in models of relatedness, as

they alter IBD distributions in even moderately distant relatives.

Methods

We analyzed data from a combination of simulated and real relatives, the latter from the

SAMAFS and 20,240 full sibling pairs from Hemani et al. [35]. The IBD sharing statistic we

focus on primarily is the proportion of their genome two relatives share IBD, calculated as a

fraction of the diploid genome. For a given pair, this proportion is (k(2) + k(1)/2), where k(2)

and k(1) are the fraction of positions (in genetic map units) the pair shares IBD2 and IBD1,

respectively. To perform degree of relatedness classification (S9 Fig), we used kinship coeffi-

cients calculated for a given pair as (k(2)/2+ k(1)/4)—i.e., 1/2 the IBD proportion—and mapped

these coefficients to degrees according to the ranges KING uses [41].

The Ped-sim algorithm

Ped-sim simulates relatives by tracking haplotypes—initially ignoring genetic data—as a

sequence of segments that span a chromosome. Each segment consists of a numerical identi-

fier denoting the founder haplotype it descends from and a segment end point. The start posi-

tion is implicitly either the beginning of the chromosome or the site following the end of the

previous segment. All founders have two haplotypes with only one chromosome-length seg-

ment, each with a unique identifier.
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To begin, Ped-sim reads a file that defines the pedigree structure(s) it is to simulate and, for

each such structure, generates haplotype segments for the founders in the first generation. For

subsequent generations, it generates haplotypes for any founders in that generation and forms

haplotypes for non-founders from the parents’ haplotypes under a meiosis model. This model

works on the two haplotypes belonging to a given parent by first randomly selecting which of

these begins the offspring haplotype, each having 1/2 probability of being selected. Next, Ped-

sim samples the location of the crossover events, either using a model of crossover interference

or a Poisson model. It then produces the offspring haplotype by copying the segments that

comprise the parent’s initial haplotype up to the position of the first crossover, and introduces

a break point in the copied segment at that crossover position. Following this, it switches to

copying segments from the parent’s other haplotype, and it continues to alternate copied-from

haplotypes at each crossover in this manner until the end of the chromosome.

Details of the Housworth-Stahl crossover interference model are below, and we discuss

parameter choices in the next subsection.

Under the Poisson crossover model, the distance from the start of the chromosome to the

first crossover, and from one crossover to the next are each exponentially distributed with rate

equal to 1 crossover/Morgan. This rate arises naturally from the definition of a Morgan as the

distance within which an average of one crossover occurs per generation. The model sequen-

tially samples crossovers and terminates after sampling a crossover beyond the end of the

chromosome.

Both models produce crossover positions in genetic units (i.e., Morgans), and Ped-sim

determines their physical location using a genetic map, storing the segment end points as

physical bp positions. When using sex-specific maps, it locates the physical positions using the

map corresponding to the sex of the parent. If a crossover falls between two defined map posi-

tions, Ped-sim uses linear interpolation to determine the physical location.

By default, Ped-sim randomly assigns the sexes of parents, and can generate any number of

pedigrees with a given structure (with parent sexes assigned independently in each). Ped-sim

can also generate data in which all reproducing non-founders have the same sex (male or

female), leading to descendants that are related to each other through nearly all male or all

female relatives. In such cases, the common ancestors of those descendants will generally be a

couple (S8B Fig), male and female, although it is possible to simulate only a single common

ancestor or for individuals to be related through more than one lineage (e.g., double first

cousins).

When given genetic data in the form of input haplotypes, Ped-sim randomly assigns the

data from one input sample to each founder. It then copies alleles from these assigned founder

haplotypes to descendants using the segment numerical identifiers and end points. The algo-

rithm can also introduce genotyping errors and missing data using user-specified rates, with a

uniform probability of these events at all positions. The genotyping error model only applies

to biallelic sites, and Ped-sim does not introduce errors at multi-allelic variants. When assign-

ing an erroneous genotype at a truly heterozygous site, Ped-sim changes the marker to be

either of the two homozygous genotype classes with equal probability. For errors at truly

homozygous markers, Ped-sim converts the site to be heterozygous under the default settings,

but it also has a probability of changing the site to the opposite homozygous genotype (with a

default rate of 0).

Another way to run Ped-sim is without haplotype data—instead using only IBD segments

detected using the internally tracked haplotype segments. This is the way we ran Ped-sim for

the analyses we describe here, using version 1.0.1 of the tool unless otherwise specified. The

IBD segments Ped-sim generates consist of physical start and end positions in both physical

(bp) and genetic units (cM). To be able to analyze statistics of IBD sharing in terms of genetic
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distances, Ped-sim reports the sex averaged genetic start and end positions of each segment

(the midpoint of the sex-specific coordinates), even when using sex-specific maps.

Ped-sim is available from https://github.com/williamslab/ped-sim, with several example

pedigree definition (def) files and the interference parameters we used [15] included in the

repository. The documentation in the repository includes links and Bash code for download-

ing and generating a file with the sex-specific map we used [16].

Genetic maps and crossover interference parameters

We used genetic maps produced using crossovers from over 100,000 meioses [16]. These maps

include those for both males and females and a sex averaged map that all span the same physi-

cal range. All simulations include the 22 autosomes but no sex chromosomes.

To simulate using the Housworth-Stahl crossover interference model, we leveraged female

and male interference parameters νi and pi for i 2 {f, m}, respectively, that were inferred from

over 18,000 meioses [15]. We calculated the sex averaged parameters νa and pa as follows. The

p parameter gives the fraction of events that escape interference, and we set pa = (pf + pm)/2. In

this model, distances between chiasmata subject to interference are gamma distributed with

shape and rate parameter values ν and 2(1 − p)ν, respectively [13, 14]. A simple average of the

male and female ν parameters does not produce a distribution with summary statistics at the

midpoint between the two sexes. All values of ν lead to distributions with the same expected

value of 1

2ð1� pÞ because the expectation of a gamma distribution is the shape divided by the rate

parameter. We therefore calculated νa such that the variance of the sex averaged distribution is

the mean of the variances of the male and female models, while assuming all p parameters are

the same between the models (since we separately estimate pa). This gives na ¼
1

2nf
þ 1

2nm

� �� 1

.

Note that the mean distance of 1/2 Morgans between events (accounting for both the regulated

crossovers and those that escape interference) is half the distance expected per chromatid. This

is because the model is for events in a tetrad (all four products of meiosis). To obtain the cross-

overs falling on the gamete being generated, the model randomly selects events with probabil-

ity 1/2 for inclusion.

IBD sharing fractions between full siblings in simulated nuclear families

To evaluate the reliability of full sibling IBD sharing fractions estimated using family-based

phasing of data from nuclear families, we used Ped-sim 1.0.2 to simulate data for 500 nuclear

families with three children and 500 nuclear families with five children. These simulations

resulted in 1,500 full sibling pairs from three child families and 5,000 pairs from five child fam-

ilies, and we used the SS+intf model with default error and missing data rates (10−3 per site for

each). The founder haplotypes input to Ped-sim are a subset of data from a multiple sclerosis

case-control study [53] consisting of 8,955 samples typed at 462,828 markers. These data were

previously used to evaluate a multi-way relatedness inference method; filters and phasing pro-

cedures used to generate it are in the corresponding paper [6]. We used the same approach to

infer IBD fractions in these simulated siblings as in the SAMAFS data (outlined in the next

subsection), and for each pair we calculated the difference between the predicted and true IBD

fractions (S1 Fig).

IBD detection in the SAMAFS

We used two different methods for inferring IBD fractions in the SAMAFS data: one applied

to nuclear families and which we used to analyze IBD sharing between full siblings, and the

other for analyzing IBD rates in first cousins, first cousins once removed, and second cousins.
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Quality control filtering of the SAMAFS data is the same as that described previously [54, 55].

In brief, we used biallelic SNPs typed on the Illumina Human660W, Human1M, Human1M-

Duo, or both the HumanHap500 and the HumanExon510S arrays, and required the SNP

probe sequences to map to a single location in the human GRCh37 build. Next, we excluded

individuals and SNPs with excessive missing data (>10% and>2%, respectively) and removed

duplicate SNPs. Additional SNP filters utilized information from auxiliary resources including

dbSNP and the reported “accessible genome” from the 1000 Genomes Project, among others

[54]. This yielded data for 2,485 samples typed at 521,184 SNPs. We further omitted 1,514 first

cousin, first cousin once removed, and second cousin relative pairs that had evidence of being

related through more than one lineage [55].

Family-based phasing implicitly infers IBD regions, and in the presence of data for a com-

plete nuclear family, this inference is very accurate, as explained in Results and demonstrated

using simulated data (S1 Fig). For this analysis, we utilized HAPI [38] version 1.89.2, a method

that performs efficient minimum recombinant phasing for nuclear families. This form of phas-

ing is the same as that of the Lander-Green algorithm [56] when the probability of crossover

between informative markers is identical at each position. To ensure reliable results, we per-

formed this inference on 116 nuclear families for which data from both parents and three or

more children were available, and we excluded one member of likely monozygotic twin pairs

that had IBD2 rates >0.95 (three pairs). We also ran with the --no_err_max 1 option,

which filters sites where one or more children inherit a recombination relative to the previous

site and where the next informative site reverts to the original transmitted haplotypes.

To infer IBD regions, we parsed the inheritance vector output from HAPI to locate IBD1

and IBD2 segments, assigning genetic positions to the start and end of each such region using

the same sex averaged map we used for the simulated data [16]. (The genetic map is undefined

for 102 SNPs and we omitted these positions from analysis.) The exact boundaries of crossover

positions are uncertain in real data due to the fact that not all sites are genotyped and positions

that are homozygous in a parent are uninformative. We therefore estimated the start and end

positions as the midpoint in genetic units between two informative sites that descend from dis-

tinct parental haplotypes and therefore bound the region in which a crossover broke an IBD

segment. To ensure the IBD intervals are real and not due to genotyping error, we also merged

short regions (including non-IBD intervals) comprised of< 10 informative SNPs with the

adjacent segments so that they cover the interval. We assign these to have the same IBD type as

the preceding segment (typically the two flanking segments are of the same type). On average

each pair had 6.75 merged regions across all autosomes (S16 Fig), and we removed pairs that

had more than 100 merged regions. This filter removed a total of eight pairs from three fami-

lies. Given this enrichment, we removed all siblings in these families from the analysis, leading

to the further exclusion of seven full sibling pairs. Finally, we removed two outlier full sibling

pairs that had low IBD proportions of 0.356 and 0.368. This yielded 1,128 pairs of full siblings

for analysis.

For non-sibling relatives, we leveraged IBD segments previously inferred [55] using Refined

IBD [37] version 4.1. In total, the SAMAFS relatives consist of 5,384 pairs of first cousins,

6,342 first cousins once removed, and 2,584 second cousins. Here as well we converted physi-

cal positions of the IBD segments to sex averaged genetic positions using the same sex aver-

aged map as in other analyses [16].

While the SAMAFS relationships are reliable [55], the statistics we consider are sensitive

and can be meaningfully affected by small numbers of mislabeled pairs. We therefore sought

to identify a validated set of relative pairs whose relationships are nearly certain to be correct.

For validation, we required pairs to be descended from a pair of full siblings that are genotyped

and inferred as first degree relatives by Refined IBD. We further required data for all parent-
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child relatives that fall between those full sibling ancestors and their descendants, and ensured

that Refined IBD inferred the parent-child pairs as first degree relatives (S8A Fig). Subsetting

the data in this way produces a validated set of 3,722 first cousins, 2,869 first cousins once

removed, and 906 second cousins. Only one pair of the full sibling ancestors were not inferred

as first degree relatives by Refined IBD, while Refined IBD inferred all the relevant parent-

child pairs as first degree relatives.

We noted that the mean IBD rates for the real relatives are slightly elevated, potentially due

to background relatedness or false positive IBD segments. For first cousins, the mean amount

of IBD shared exceeds the theoretical expectation by 11.3 cM, and 19.5 cM in the validated set

(0.17% and 0.29% above the expectation, respectively). For first cousins once removed, the

observed means are greater than supported by theory by 0.17 cM (0.0026%), and 15.9 cM

(0.24%) for the validated set. Finally, the excess for second cousins is 17.6 cM (0.26%), and 6.8

cM (0.10%) for the validated set. We subtracted off these mean excesses for each of these (non-

sibling) relationship types in Fig 1, S2 and S3 Figs and associated analyses; the unmodified sta-

tistics are in S1 Dataset. We did not mean-shift the kinship coefficients used to map the

SAMAFS samples to degrees of relatedness (S9 Fig).

Number of standard errors separating real and simulated data

To compare IBD sharing statistics from the real and simulated data (including the standard

deviations, 25th and 75th percentiles [Fig 1], and the rates of inferring pairs to their true degree

of relatedness [S9 Fig]), we quote distances in terms of number of standard errors that separate

the values. We calculated this distance as

D ¼
ymodel � yrealffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2

model þ SE2

real

q ;

where θmodel and θreal are point estimates of the statistic being compared in the simulated and

real data, respectively, and SEmodel and SEreal are the corresponding simulated and real stan-

dard errors of θ, respectively. We obtain these standard errors by bootstrapping with 1,000

samples.

IBD detection in SAMAFS half-siblings

To detect IBD segments shared between SAMAFS half-siblings (S11B Fig), we identified pairs

listed as half-siblings in the SAMAFS pedigrees and contained in the 2,485 samples used for

other analyses. Next, we retained pairs Refined IBD inferred as second degree relatives [55].

We then ran IBIS [57] version 1.02 to detect IBD segments using genetic positions from the

SA map and default parameter settings (minimum segment length of 7 cM, minimum number

of markers per segment of 500, and an error threshold of 0.004).

Using kernel density estimation to infer degrees of relatedness

We generated four degree of relatedness classifiers based on KDEs, each trained using simu-

lated data from one of the four Ped-sim models (here using Ped-sim version 1.0.2). For each

classifier, the training data consist of 4,000 pairs of relatives that share IBD with each other of

each degree from first to seventh, i.e., from parent-child to third cousin pairs. We included

two relative types for each degree—one in which the pair shares two common ancestors (a

couple), and the other in which they share one common ancestor. (We consider full sibling

and parent-child pairs for first degree relatives.) The KDEs use the IBD sharing fraction and

number of segments a pair shares as features, and we rescaled each feature to have range
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between 0 and 1 by dividing by the maximum value in the training data. We used five-fold

cross validation to decide the optimal bandwidth and kernel function for each degree.

To test the classifiers, we used an independent set of 4,000 first through sixth degree pairs

simulated under the SS+intf model. Note that we do not report accuracy results for seventh

degree relatives; we included seventh degree relationships in the classifiers to act as an “unre-

lated” class that provides bounds on sixth degree relatedness classification. The estimated den-

sity functions enable calculation of the posterior probability that each pair of relatives belongs

to a given degree (where we use a uniform prior), and we classified relatives to their maximum

posterior probability degree. We also generated calibration curves to evaluate the reliability of

these predicted probabilities for each classifier.

Estimating time since admixture corrected for finite chromosomes

We simulated admixed individuals using the pedigree structure depicted in S14 Fig, wherein

half the first generation ancestors descend from one source population and half from another.

We identified local ancestry segments by inspecting the IBD segments that the admixed indi-

viduals share with these first generation ancestors and merging adjacent segments that descend

from the same population. To estimate the time since admixture based on the resulting local

ancestry segment lengths, we assumed the segments derive from a Poisson process—and thus

segment lengths follow an exponential distribution—and used the following maximum likeli-

hood approach.

Suppose a two-way admixture event occurred T generations ago, with all couples in that

generation including one member of each population (S14 Fig). Note that crossovers only

introduce ancestry switches when a parent is heterozygous for ancestry, which will be the

case for half (on average) of such crossovers for the more recent T − 2 meioses since, on

average, these ancestors will inherit half their genome from each population [58]. At the

same time, for individuals in the second generation, all positions are heterozygous for ances-

try, so all crossovers produce ancestry switches. Thus, the Poisson rate at which ancestry

switches occur is (T − 2)/2 + 1 = T/2 per Morgan, and the likelihood of a segment of Morgan

length x is hence (T/2)e−Tx/2 Eq (1) in [58]. However, segments bounded by the end of the

chromosomes are “censored,” and we only know they are longer than x, and thus they have

likelihood e−Tx/2. Assuming the segments are independent, the likelihood of all segments is

ðT=2Þ
n� me� ðT=2Þ

Pn

i¼1
xi , where there are n segments of lengths x1, . . ., xn, m of which are cen-

sored by chromosome ends. Equating the derivative of the log-likelihood to zero, we obtain

the maximum likelihood estimate T̂ ¼ 2ðn � mÞ=
Pn

i¼1
xi.

Deriving the distribution of IBD segment lengths under the Housworth-

Stahl interference model

Background. We assume a sex-averaged genetic map and that the chromosome is infi-

nitely long (we will relax this assumption later). Under the Housworth-Stahl two-pathway

model [14], a proportion p of crossovers escape regulation (referred to as “free” crossovers

below), and are thus distributed along the chromosome as a Poisson process with rate p per

Morgan. Regulated crossovers are generated independently of the unregulated crossovers by

first drawing the positions of chiasmata as a stationary renewal process [42] along the chromo-

some, with gamma distributed inter-chiasma distances (in Morgans) with shape ν and rate 2ν
(1 − p). Then, each chiasma becomes a crossover on the modeled gamete with probability 1/2,

since it affects only one of the two sister chromatids. The latter process is called thinning and
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assumes no chromatid interference. The average inter-crossover distance is 1 Morgan, as per

the definition of the Morgan unit.

In the regulated process, if k − 1 chiasmata are skipped between crossovers, the distance to

the next crossover is distributed as gamma with shape kν and rate 2(1 − p)ν. After thinning,

the distance between regulated crossovers is distributed as

fregðxÞ ¼
X1

k¼1

1

2

� �k xkn� 1e� 2ð1� pÞnx½2ð1 � pÞn�kn

GðknÞ
: ð3Þ

The free process has inter-crossover distances distributed as

ffreeðxÞ ¼ pe� px: ð4Þ

Below, we study the distance between crossovers across 2T meioses. As explained in Results,

the IBD segment length distribution is expected to be similar to that of the inter-crossover dis-

tance distribution, as IBD segments are a random subset of the inter-crossover regions. To

proceed, we will first compute the properties of the distance from a fixed point to the nearest

downstream crossover, and then use these results to derive the distribution of inter-crossover

distances across multiple meioses.

The distance from a fixed point to a crossover in one meiosis. The process of placing

chiasmata is assumed to be a stationary renewal process [14]. In one meiosis, the distance

between a randomly selected site and the next crossover to the right (or left) due to the regu-

lated process is distributed as [42]

gregðxÞ ¼
1

mreg
½1 � FregðxÞ�; ð5Þ

where Freg(x) is the CDF of freg(x), i.e., FregðxÞ ¼
R x

0
fregðyÞdy, and μreg is the mean distance

between regulated crossovers (i.e., mreg ¼
R1

0
xfregðxÞdx). As mreg ¼ 1=ð1 � pÞ, we have

gregðxÞ ¼ ð1 � pÞ½1 � FregðxÞ�: ð6Þ

This can be written explicitly as

gregðxÞ ¼ ð1 � pÞ
Z 1

x
fregðyÞdy

¼ ð1 � pÞ
Z 1

x

X1

k¼1

2� kykn� 1e� 2ð1� pÞny½2ð1 � pÞn�kn

GðknÞ
dy:

ð7Þ

Changing variables, z = 2(1 − p)νy, we obtain

gregðxÞ ¼ ð1 � pÞ
X1

k¼1

2� k

GðknÞ

Z 1

2ð1� pÞnx
zkn� 1e� zdz

¼ ð1 � pÞ
X1

k¼1

2� k
G½kn; 2ð1 � pÞnx�

GðknÞ
;

ð8Þ

where Γ[a, x] is the upper incomplete gamma function. We denote the CDF of greg(x) as

Greg(x).

For the free process, as it is memory-less,

gfreeðxÞ ¼ pe� px; ð9Þ
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and the CDF of gfree(x) is

GfreeðxÞ ¼ 1 � e� px: ð10Þ

The distance from a fixed point to a crossover across multiple meioses. The

previous subsection described the distance to the next crossover of a given type (regulated/

free) for a single meiosis. Given a focal site, the distance to the next crossover across 2T
meioses and both processes is the minimum of the distance to 2T regulated processes

and 2T free processes. We model all processes as independent, which is clearly true for

meioses in different individuals, and holds for the regulated and free processes under the

Housworth-Stahl model. Thus, the distance to the next crossover across 2T meioses is dis-

tributed as

hðxÞ ¼ 2T½1 � GregðxÞ�
2T� 1
½1 � GfreeðxÞ�

2TgregðxÞ

þ2T½1 � GregðxÞ�
2T
½1 � GfreeðxÞ�

2T� 1gfreeðxÞ:
ð11Þ

In the first term, all free crossovers and all but one of the regulated crossovers have distance

larger than x, and one of the regulated crossovers has distance x. There are 2T possibilities

to choose which regulated crossover has the minimal distance, and hence the initial factor

of 2T. The second term is similar, with the minimal distance now coming from one of the

free crossovers. Eq (11) can be simplified based on gfree(x) and Gfree(x) from Eqs (9) and

(10) as

hðxÞ ¼ 2Te� 2pTx½~GregðxÞ�
2T� 1
ðgregðxÞ þ p~GregðxÞÞ; ð12Þ

where ~GregðxÞ ¼ 1 � GregðxÞ ¼
R1
x gregðyÞdy.

The length of a randomly chosen inter-crossover distance. Denote by ϕ(x) the density

of a randomly chosen inter-crossover distance. Cox and Smith [59] proved a result on super-

position of renewal processes that applies to our case. According to their Eq. (31), if the density

of the distance to the next event (crossover) across all processes (meioses) is h(x), then the den-

sity of the length of a randomly chosen inter-crossover interval is given by

�ðxÞ ¼ �
@hðxÞ
@x
� hxi; ð13Þ

where hxi is the mean inter-crossover length (across all meioses). In our case, hxi = 1/(2T), and

thus

�ðxÞ ¼ �
1

2T
@hðxÞ
@x

: ð14Þ

Substituting Eq (12), and using the facts that � @

@x
~GregðxÞ ¼ gregðxÞ and
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� @

@x gregðxÞ ¼ ð1 � pÞfregðxÞ,

�ðxÞ ¼ �
1

2T
@

@x
2Te� 2pTx½~GregðxÞ�

2T� 1 gregðxÞ þ p~GregðxÞ
� �n o

¼ �
@

@x
e� 2pTx½~GregðxÞ�

2T� 1gregðxÞ
n o

� p
@

@x
e� 2pTx½~GregðxÞ�

2T
n o

¼ e� 2pTx½~GregðxÞ�
2T� 1

2pTgregðxÞ þ
ð2T � 1Þg2

regðxÞ
~GregðxÞ

þ ð1 � pÞfregðxÞ þ 2p2T ~GregðxÞ þ 2pTgregðxÞ

" #

¼ e� 2pTx½~GregðxÞ�
2T� 1

4pTgregðxÞ þ
ð2T � 1Þg2

regðxÞ
~GregðxÞ

þ ð1 � pÞfregðxÞ þ 2p2T ~GregðxÞ

" #

:

ð15Þ

Eq (15) is our main result, and is summarized as Eq (1) in Results. We note that as opposed

to the Poisson model, inter-crossover distances under interference in a single meiosis are not

independent, which is a general property of a superposition of renewal processes. To evaluate

the various terms in Eq (15) in our simulations, we truncated all sums at k = 50 and calculated

all integrals using MATLAB’s integral function.

Finite chromosomes. The results above apply only to infinite-length chromosomes. To

determine the distribution of segment lengths for finite chromosomes, we use a result derived

by Gravel [58] in the context of local ancestry segments. Gravel showed that if a process along

the chromosome partitions it into segments with a stationary length density ϕ(x), the density

of segment lengths in a finite chromosome, ϕL(x), is given by

�LðxÞ ¼
2
R1
x �ðyÞdy þ ðL � xÞ�ðxÞ þ dðL � xÞ

R1
L ðy � LÞ�ðyÞdy

Lþ
R1

0
y�ðyÞdy

; ð16Þ

where δ(L − x) is the Dirac delta function, representing the probability that x spans the entire

chromosome.

The theoretical distribution for the Poisson model, for an infinitely long chromosome, is

ϕ(x) = 2Te−2Tx. Applying the finite chromosome correction of Eq (16), we obtain

�LðxÞ ¼
2Te� 2Tx½2þ 2TðL � xÞ� þ e� 2TLdðL � xÞ

2TLþ 1
: ð17Þ

Runtime analyses

To collect runtime statistics, we ran Ped-sim 1.0.1 and IBDsim 0.9-8 on a machine with

four Xeon E5 4620 2.20GHz CPUs and 256 GB of RAM. We report wall clock time averaged

from three runs of each program to produce IBD segments from 10,000 full siblings and 10,000

second cousins. To simulate the 10,000 full siblings with IBDsim, we used the following R code:

library(IBDsim)

quad <- nuclearPed(2)
res <- IBDsim(quad, sims = 10000,

query = list(’atleast1’ = 3:4))

To simulate the siblings in Ped-sim, we used the following def file:

def full-sibs 10000 2
2 1

IBDsim defaults to assigning all non-founders as male and their spouses as female. We sim-

ulated 5,000 second cousin pedigrees with the default non-founder sex assignment, and the

other 5,000 with female non-founders using the following R code:
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library(IBDsim)

second_cousin_nonfound_male <- cousinPed(2)
res_male <- IBDsim(second_cousin_nonfound_male, sims = 5000,

query = list(’atleast1’ = 11:12))

second_cousin_nonfound_female <-
swapSex(second_cousin_nonfound_male, c(3,4,7,8))

res_female <- IBDsim(second_cousin_nonfound_female, sims = 5000,
query = list(’atleast1’ = 11:12))

For Ped-sim, we simulated the same second cousin pedigree structures with the def file:

def second-cous-male 5000 4 M
4 1

def second-cous-female 5000 4 F
4 1

To benchmark Ped-sim’s time to produce genetic data for 4,450 full sibling pairs, we ran

version 1.0.2 of the tool under the SS+intf model using input haplotypes from the same 8,955

multiple sclerosis case-control samples described above [53] (see “IBD sharing fractions

between full siblings in simulated nuclear families”), and otherwise used default Ped-sim

options.

Ethics statement

This study makes use of deidentified individuals from the SAMAFS and received exemption

(#4) from IRB review from the Cornell University IRB (protocol 1408004874).

Supporting information

S1 Fig. Differences in true and predicted IBD sharing fractions of full siblings from simu-

lated nuclear families. IBD sharing fractions are from the full sibling pairs of 500 simulated

nuclear families with three children (left) and 500 with five children (right). We phased these

families and extracted IBD sharing estimates as described in Methods.

(TIF)

S2 Fig. IBD sharing fraction 25th and 75th percentiles in full siblings and standard devia-

tions in first through second cousins from real and simulated data. Points are from the

SAMAFS, SAMAFS-validated subset (except full siblings), Hemani20k set (only full siblings),

and the simulation models. The latter are labeled using abbreviations given in the main text.

Bars indicate 95% confidence interval (±1.96 standard errors) as calculated from 1,000 boot-

strap samples. SD indicates standard deviation.

(TIF)

S3 Fig. Mean, minimum, median, and maximum IBD sharing fractions in real and simu-

lated data for full siblings through second cousins. Points are from the SAMAFS, SAMAFS-

validated subset (except full siblings), Hemani20k set (only full siblings), and the simulation

models. The latter are labeled using abbreviations given in the main text. The SAMAFS and

SAMAFS-validated values are mean-shifted to match expectations for the first cousins, first

cousins once removed, and second cousins, but are unaltered for the full sibling and the full

sibling IBD2 quantities. Bars indicate 95% confidence interval (±1.96 standard errors) as calcu-

lated from 1,000 bootstrap samples.

(TIF)
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S4 Fig. First cousins simulated using sex-specific maps have visually similar distributions

of IBD sharing fractions relative to those simulated under a sex averaged map. Sex-specific

and sex averaged distributions heavily overlap both when using an interference (left) and a

Poisson (right) model for inter-crossover distances.

(TIF)

S5 Fig. Distributions of IBD sharing fractions for simulated full siblings and the real

SAMAFS and Hemani20k full siblings. Each simulation includes 10,000 full sibling pairs, the

SAMAFS data include 1,128 pairs (Methods), and the Hemani20k data total 20,240 pairs.

(TIF)

S6 Fig. Overlay of SAMAFS full sibling IBD sharing distribution with those of simulated

full siblings from each crossover model. Plots are histograms of the 1,128 SAMAFS pairs and

10,000 simulated pairs generated under each of the crossover models, as indicated.

(TIF)

S7 Fig. Overlay of Hemani20k full sibling IBD sharing distribution with those of simulated

full siblings from each crossover model. Plots are histograms of the 20,240 Hemani20k pairs

and 10,000 simulated pairs generated under each of the crossover models, as indicated.

(TIF)

S8 Fig. Example pedigree structures for SAMAFS-validated relatives and for relatives

descended from female-only non-founders. (A) SAMAFS-validated pairs are required to be

descended from a genotyped (black) full sibling pair and to have genotyped parent-child rela-

tives that directly connect them to the full siblings. We further require that both the ancestral

full sibling pair and all parent-child pairs be inferred as first degree relatives by Refined IBD.

(B) Plot of female-lineage fourth cousins.

(TIF)

S9 Fig. Rates of inferring real and simulated relatives to their true degree of relatedness.

Degrees are inferred from kinship coefficients, with the latter calculated using inferred (for

SAMAFS and SAMAFS-validated) or true (for the simulations) IBD segments (see Methods).

Bars indicate 95% confidence interval (±1.96 standard errors) based on 1,000 bootstrap sam-

ples over relative pairs.

(TIF)

S10 Fig. Detailed numbers of IBD segments that simulated third through sixth cousins

share under various modeling scenarios. Percentages above each bar indicate the fraction of

simulated relatives (of 10,000 for each scenario) that have at least one segment shared. Within

stacked colored bars, numbers are the percentage of relatives that share the indicated number

of IBD segments. Error bars above a given stacked bar is the 95% confidence interval (±1.96

standard errors) of the percentage of relatives that share the indicated number of segments

based on 1,000 bootstrap samples.

(TIF)

S11 Fig. Number of IBD segments maternal and paternal half-siblings share. (A) 10,000

simulated pairs for both types of half-siblings under the SS+intf model. (B) Number of IBD

segments shared between maternal and paternal half-siblings within SAMAFS.

(TIF)

S12 Fig. Classification rates for inferring degrees of relatedness using KDEs trained under

the four different crossover models. The sensitivity (left) and specificity (right) of the classifi-

ers, with the crossover model used to simulate the training data for each KDE indicated by line
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color. Rates are from 4,000 pairs of relatives in each degree, each simulated under the SS+intf

model.

(TIF)

S13 Fig. Calibration curves of the probabilities of classifying relatives to a given degree of

relatedness using KDEs trained under the four different crossover models. We binned the

predicted probabilities into bins of size 0.2. In each plot, the x-axis shows the per-bin mean

predicted probability and the y-axis indicates the proportion of pairs that are of the given

degree in the corresponding bin. The crossover model used to simulate the training data for

each KDE is indicated by line color.

(TIF)

S14 Fig. Pedigree structure used to simulate admixed samples. The number of generations

since admixture, T, varies, and the number of unadmixed ancestors in the first generation is

2T/2. Plot shows T = 3 (ignoring ellipses) with paternal ancestors. The simulated ancestors are

randomly either maternal or paternal. IBD segments between samples with filled shapes define

local ancestry regions.

(TIF)

S15 Fig. The effect of sex-specific maps on IBD segment lengths. We used Ped-sim to simu-

late half-cousins with a common ancestor T = 1, 2, 4, 6 generations ago (panels A-D, respec-

tively) under the SS+Poiss model, extracting IBD segment lengths in bp for chromosome 1.

Each panel shows the simulated distribution of IBD segment lengths (over 105 pairs for T = 1,

2 and 106 pairs otherwise; purple circles), the theory from Eq (2) (blue lines), and the expecta-

tion based on a sex-averaged map (red dashed lines). To evaluate Eq (2) we replaced the inte-

grals with sums over discrete coordinates, evenly separated by 104 bp.

(TIF)

S16 Fig. Change in cM length shared and number of regions merged in the SAMAFS full

siblings. Predicted IBD segments consisting of< 10 informative SNPs are potentially false,

and we merged these with the previous segment (Methods). On average, this resulted in a total

of 6.75 merged regions per pair across all autosomes, and an average increase of 0.0495 cM

shared. No pair gained or lost more than 4.3 cM of IBD regions.

(TIF)

S1 Dataset. Summary statistics and pairwise IBD proportions used to produce Figs 1, 3,

S2, S3, S5, S6, S7, S9, S10, S11, S16 Figs, and results given in the text.

(XLSX)
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