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1  |   INTRODUCTION

The COVID-19 world-wide pandemic continues to have 
devastating socioeconomic impact with limited therapeutic 
options. As for any disease, in case of COVID-19 too, de-
tailed understanding of pathogenic mechanisms is critical 

for development of new therapies. Hence, it is natural that 
researchers around the world have used various approaches 
to explore and understand the COVID-19 morbidity (Sparks 
et al., 2020; Wang et al., 2020). Among these, arguably most 
notable are studies focusing on inflammatory mechanisms, 
pro-inflammatory cytokines, and “cytokine storm,” since 
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Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), continues to be a world-wide pandemic with over-
whelming socioeconomic impact. Since inflammation is one of the major causes of 
COVID-19 complications, the associated molecular mechanisms have been the focus 
of many studies to better understand this disease and develop improved treatments for 
patients contracting SARS-CoV-2. Among these, strong emphasis has been placed 
on pro-inflammatory cytokines, associating severity of COVID-19 with so-called 
“cytokine storm.” More recently, peptide bradykinin, its dysregulated signaling or 
“bradykinin storm,” has emerged as a primary mechanism to explain COVID-19-
related complications. Unfortunately, this important development may not fully cap-
ture the main molecular players that underlie the disease severity. To this end, in this 
focused review, several lines of evidence are provided to suggest that in addition to 
bradykinin, two closely related vasoactive peptides, substance P and neurotensin, are 
also likely to drive microvascular permeability and inflammation, and be responsible 
for development of COVID-19 pathology. Furthermore, based on published experi-
mental observations, it is postulated that in addition to ACE and neprilysin, peptidase 
neurolysin (Nln) is also likely to contribute to accumulation of bradykinin, substance 
P and neurotensin, and progression of the disease. In conclusion, it is proposed that 
“vasoactive peptide storm” may underlie severity of COVID-19 and that simultane-
ous inhibition of all three peptidergic systems could be therapeutically more advanta-
geous rather than modulation of any single mechanism alone.

K E Y W O R D S

cytokine, inflammation, neurolysin, neurotensin, substance P, vascular permeability

www.wileyonlinelibrary.com/journal/phy2
mailto:﻿￼
https://orcid.org/0000-0003-0050-6047
http://creativecommons.org/licenses/by/4.0/
mailto:vardan.karamyan@ttuhsc.edu


2 of 9  |      KARAMYAN

they are fundamentally associated with progression of the 
disease and mortality of COVID-19 patients (Mahmudpour 
et al., 2020; Rossi et al., 2020).

By now, it is well-recognized that the entry of SARS-
CoV-2 to the host cell is mediated by peptidase ACE2 (an-
giotensin converting enzyme 2 (Hoffmann et al., 2020)), 
which is an important member of the renin-angiotensin sys-
tem (RAS) primarily responsible for conversion of angio-
tensin II into angiotensin-(1-7) (Karamyan & Speth, 2007a; 
Xia & Lazartigues, 2010). This link between SARS-CoV-2 
and ACE2 has led to many experimental and clinical stud-
ies to explore the potential alteration of the RAS function 
in this disease, extend understanding of the pathology and 
guide the use of RAS-modulating drugs in COVID-19 pa-
tients (Sparks et al., 2020; Speth, 2020). Notably, a smaller 
number of investigators have recognized the intricate asso-
ciation of another peptidergic system, that is, bradykinin or 
kallikrein-kinin system, with the RAS within the context of 
COVID-19 (Ghahestani et al., 2020; Roche & Roche, 2020; 
van de Veerdonk et al., 2020). Since angiotensin converting 
enzyme (ACE), which converts angiotensin I into angioten-
sin II (Karamyan & Speth, 2007a; Moraes et al., 2017; Speth 
& Karamyan, 2008), is also central in degradation of bra-
dykinin (Byrd et al., 2006; Israili & Hall, 1992), alteration 
of the RAS function in COVID-19 could also mean changed 
activity of the bradykinin system. This was timely recognized 
by several groups of investigators early during the pandemic 
(Roche & Roche, 2020; van de Veerdonk et al., 2020) and 
most recently was confirmed by a preliminary gene expres-
sion analysis study focusing on detailed evaluation of the 
RAS members, bradykinin and associated systems in sam-
ples from COVID-19 and control patients (Garvin et al., 
2020). This is a critical development, because bradykinin 
is a potent inflammatory mediator that has been associated 
with a number of pathophysiological conditions including 
angioedema (Patel & Pongracic, 2019), vasculitis (Karpman 
& Kahn, 2009), asthma (Ricciardolo et al., 2018), autoimmu-
nity (Dutra, 2017), acute brain injury and neuroinflammation 
(Albert-Weissenberger et al., 2013).

Both the original proposals about the potential involve-
ment of the bradykinin system in COVID-19 pathology 
(Roche & Roche, 2020; van de Veerdonk et al., 2020) and 
the recent gene expression analysis study conducted by 
Garvin and colleagues (Garvin et al., 2020) did an elegant 
job in explaining the close association of bradykinin with the 
RAS and linking it to many of the COVID-19 outcomes. The 
proposed “bradykinin storm” hypothesis by Garvin and col-
leagues (Garvin et al., 2020) is an intriguing and welcome 
development in deciphering the pathogenic mechanisms of 
COVID-19. Unfortunately, the presented picture may not 
be complete, since these investigators did not account for 
two other major peptidergic systems, substance P and neu-
rotensin, which are also inactivated by ACE and are potent 

mediators of microvascular permeability, edema formation 
and inflammation—mechanisms that are in the core of the 
“bradykinin storm” hypothesis. The need to take into consid-
eration involvement of substance P and neurotensin is further 
emphasized by Garvin et al. data suggesting downregulation 
of another peptidase neprilysin in COVID-19 patients, since 
this enzyme also, similar to ACE, inactivates bradykinin, 
substance P and neurotensin. Therefore, in this focused re-
view manuscript the most relevant published studies are sum-
marized to provide evidence about the potential involvement 
of substance P and neurotensin, in addition to bradykinin, in 
pathogenic mechanisms of COVID-19. Furthermore, a case 
is made that another peptidase known as neurolysin (Nln) is 
also likely to be affected in this disorder. Based on this, it 
is proposed that perhaps “vasoactive peptide storm” rather 
than “bradykinin storm” underlies many of the COVID-19 
outcomes. Lastly, potential therapeutic avenues that could 
be used to modulate the “vasoactive peptide storm” are 
discussed.

Since the investigative teams proposing involvement of 
the bradykinin system in COVID-19 pathology (Garvin et al., 
2020; Roche & Roche, 2020; van de Veerdonk et al., 2020) 
did a credible job in detailing the basics of the bradykinin 
and RAS systems, these will not be the primary focus of 
the present manuscript. Likewise, the readers are advised to 
refer to several excellent reviews covering the general func-
tion and role of the substance P and neurotensin systems in 
physiological and pathophysiological conditions (Datar et al., 
2004; Kleczkowska & Lipkowski, 2013; Mustain et al., 2011; 
Onaga, 2014).

2  |   ACE AND NEPRILYSIN IN 
DEGRADATION OF BRADYKININ, 
SUBSTANCE P,  AND NEUROTENSIN

Among the most recognized examples of adverse side effects 
afforded by ACE inhibitors are cough (experienced by 5–
20% of patients) and angioedema (experienced by 0.1–0.5% 
of patients), both of which are associated with elevated levels 
of bradykinin and substance P in patients taking these drugs 
(Byrd et al., 2006; Israili & Hall, 1992). This is because, in 
addition to conversion of angiotensin I to angiotensin II, 
ACE also inactivates bradykinin and substance P. Notably, 
a recent gene expression analysis by Garvin and colleagues 
has documented downregulation of ACE (Speth, 2020) in 
COVID-19 patients (Garvin et al., 2020) suggesting that not 
only bradykinin but also the levels of substance P could be 
elevated. This idea is further supported by substantially de-
creased expression of peptidase neprilysin, otherwise known 
as neutral endopeptidase in the same COVID-19 patient 
samples (Garvin et al., 2020), since this peptidase also de-
grades and inactivates bradykinin and substance P (Scholzen 
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& Luger, 2004; Skidgel & Erdos, 2004). Importantly, this is 
the main reason that development of a dual ACE/neprilysin 
inhibitor omapatrilat was halted, because the use of this drug 
was associated with considerably higher incidence of angi-
oedema in patients with cardiovascular disorders (Campbell, 
2018; Sulpizio et al., 2005).

Within the context of bradykinin and substance P, and 
their pro-inflammatory actions, it is important to recognize 
that that another bioactive peptide neurotensin is also de-
graded by ACE and neprilysin (Kanellopoulos et al., 2020; 
Skidgel & Erdos, 2004). However, the clinical significance of 
elevated neurotensin levels in response to inhibition of ACE 
or neprilysin has not been systematically studied.

3  |   MICROVASCULAR 
PERMEABILITY INDUCED BY 
BRADYKININ, SUBSTANCE P,  AND 
NEUROTENSIN

The role of bradykinin in inducing microvascular perme-
ability was well described by all three investigative teams 
linking this peptide to the pathogenic mechanisms of 
COVID-19 (Garvin et al., 2020; Roche & Roche, 2020; van 
de Veerdonk et al., 2020). Nevertheless, there is a large body 
of literature indicating that substance P and neurotensin also 
facilitate microvascular hyperpermeability. For example, 
numerous experimental studies documented the ability of 
substance P and neurotensin to induce microvascular perme-
ability, during intraarterial/-venous administration, in differ-
ent vascular beds including skin and mucosal tissues (Gyorfi 
et al., 1995; Inoue et al., 1996), gastrointestinal tract (Figini 
et al., 1997; Harper et al., 1984), lungs (Gitter et al., 1995; 
Rioux et al., 1983), and dura mater (Dux & Messlinger, 
2001; Ghabriel et al., 1999). Substance P and neurotensin 
exert these effects primarily through their respective NK-1 
(neurokinin-1 receptor) and NTR1 (neurotensin receptor 1) 
receptors; however, involvement of other receptor subtypes 
is also possible. Notably, analogous to bradykinin, a num-
ber of endogenous modulators and signaling molecules, re-
leased from endothelial or other cells, have been described 
to play a role in substance P and neurotensin-induced micro-
vascular hyperpermeability, including but not limited to his-
tamine, prostaglandins, nitric oxide, and VEGF (Carraway 
et al., 1982; Johnson et al., 2016; Katsanos et al., 2008; 
Osadchii, 2015; Shaik-Dasthagirisaheb et al., 2013). Our 
recent study carried out in human, induced pluripotent stem 
cell (iPSC)-derived brain microvascular endothelial cells 
(i.e., in vitro model of blood–brain barrier, BBB) adds to 
these observations by documenting increased BBB perme-
ability in response to substance P, neurotensin, and brady-
kinin (Al-Ahmad et al., 2021). Importantly, combination of 
these peptides at sub-effective concentrations also resulted 

in increased BBB permeability in this study indicating that 
substance P, neurotensin, and bradykinin can potentiate 
each other's effects at conditions when all three peptides are 
available concurrently.

It is noteworthy, that the enhanced microvascular perme-
ability induced by these peptides is directly linked to forma-
tion of edema in pathophysiological conditions (Castagliuolo 
et al., 1999; Donelan et al., 2006). Among these, perhaps 
best-documented are ACE inhibitor-induced angioedema 
(Byrd et al., 2006; Campbell, 2018) and pathogenic BBB 
opening and edema formation during acute neurodegen-
erative disorders such as stroke and traumatic brain injury 
(Donkin et al., 2009; Groger et al., 2005; Jayaraman et al., 
2020; Sorby-Adams et al., 2019; Trabold et al., 2010).

4  |   INFLAMMATION 
POTENTIATED BY BRADYKININ, 
SUBSTANCE P,  AND NEUROTENSIN

As discussed earlier for bradykinin (Garvin et al., 2020; 
Roche & Roche, 2020; van de Veerdonk et al., 2020), both 
substance P and neurotensin are also well-known for their 
pro-inflammatory actions. Many of these effects are linked to 
the ability of substance P and neurotensin to stimulate release 
of pro-inflammatory cytokines, matrix metalloproteases, and 
other mediators from various cell types, including immune 
and mast cells (Alysandratos et al., 2012; Coll et al., 2020; 
Donelan et al., 2006; Miller et al., 1995; Theoharides et al., 
1998; Xiao et al., 2018; Yano et al., 1989). Additionally, 
enhanced expression of cell adhesion molecules, including 
CD44, in response to substance P and neurotensin has been 
documented in different cells (Meyer-Siegler & Vera, 2005; 
Robbins et al., 1995; Shahrokhi et al., 2010). Similar to mi-
crovascular permeability, these effects are mainly mediated 
through NK-1 and NTR1 receptors, however there is ex-
perimental evidence suggesting the potential involvement of 
other receptors (e.g., MRGPRX2 for substance P and NTR3/
sortilin for neurotensin) in transducing some of these effects 
(Green et al., 2019; Patel et al., 2016). It is important to note 
that these effects of substance P and bradykinin are often as-
sociated with formation of edema and pain sensation (clas-
sic symptoms of inflammation), and have been observed in 
both peripheral tissues and the CNS (Katsanos et al., 2008; 
O'Connor et al., 2004; Saiyasit et al., 2020; Sorby-Adams 
et al., 2017; St-Gelais et al., 2006; Suvas, 2017).

Similar to microvascular permeability and edema forma-
tion, the role of substance P and bradykinin in neurogenic 
inflammation and worsening of disease outcomes has been 
demonstrated in experimental models of stroke and traumatic 
brain injury (Albert-Weissenberger et al., 2013; Corrigan 
et al., 2016). It should be noted, that evidence on direct in-
volvement of neurotensin in neurogenic inflammation in 
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acute brain injury setting is more limited, however one study 
linked the increased levels of neurotensin as well as sub-
stance P and bradykinin in ischemic brain tissue with aggra-
vated stroke outcomes (Jayaraman et al., 2020). Furthermore, 
findings of several clinical studies support these preclinical 
observations by documenting that the severity of stroke and 
traumatic brain injury, and subsequent mortality, is asso-
ciated with elevated levels of bradykinin, substance P, and 
neurotensin (Januzzi et al., 2016; Kunz et al., 2013; Lorente 
et al., 2016; Nicoli et al., 2020; Zacest et al., 2010).

5  |   NLN IN DEGRADATION OF 
BRADYKININ, SUBSTANCE P,  AND 
NEUROTENSIN

Nln (EC 3.4.24.16) is a zinc endopeptidase from the same 
family of metallopeptidases (M3 family) as ACE, ACE2 and 
neprilysin (Checler & Ferro, 2018; Dauch et al., 1995), and 
is best known for hydrolysis of several extracellular bioactive 
peptides including bradykinin, neurotensin and substance P 
(Checler et al., 1995; Shrimpton et al., 2002; Wangler et al., 
2012, 2016). Experimental studies have documented al-
tered expression of Nln in several disease conditions includ-
ing stroke (Checler, 2014; Rashid et al., 2010, 2014), and 
suggested its cerebroprotective function via inactivation of 
bradykinin, substance P, and neurotensin, and formation of 
angiotensin-(1-7) and enkephalins (Jayaraman et al., 2020; 
Karamyan, 2019). In a stroke setting, pharmacological inhi-
bition of Nln after ischemia was accompanied by aggravated 
outcomes (brain infarction, edema formation, BBB impair-
ment, and neuroinflammation) and elevated levels of all 
three peptides, whereas viral vector-driven upregulation of 
Nln before stroke was associated with cerebroprotection and 
decreased levels of bradykinin, substance P, and neurotensin 
(Jayaraman et al., 2020; Karamyan, 2021).

It is noteworthy, that within the context of the RAS, the 
role of Nln in conversion of angiotensin I to angiotensin-(1-7) 
is not well recognized (Karamyan & Speth, 2007a; Wangler 
et al., 2016). This is despite experimental data pointing out to 
~5-fold higher affinity of angiotensin I for Nln versus ACE, 
Ki values 5.35 µM versus 25.88 µM (Rioli et al., 2003), and 
~2-fold higher catalytic efficiency (kcat/Km value) of angio-
tensin I hydrolysis by Nln versus ACE–3.0 x 105  M−1  s−1 
versus 1.8 × 105 M−1 s−1 (Rice et al., 2004; Rodd & Hersh, 
1995). However, hydrolysis of angiotensin II by Nln is debat-
able, because some studies support inactivation of this pep-
tide (cleavage of Tyr4-Ile5 bond) by Nln (Dahms & Mentlein, 
1992; Rioli et al., 2003), while others do not (Barelli et al., 
1993; Vincent et al., 1996).

In regard to potential relevance to COVID-19, Nln is the 
only other peptidase, in addition to ACE and neprilysin that 
has been linked to both inactivation of these three vasoactive 

peptides (bradykinin, substance P, and neurotensin) and mi-
crovascular permeability, edema formation, neuroinflamma-
tion, and stroke. Since altered expression of Nln has been 
documented in several disease conditions including stroke 
(Rashid et al., 2014), Alzheimer's disease (Teixeira et al., 
2018), Parkinson's disease (Plum et al., 2020), and certain 
cancers (Mirali et al., 2020), it is plausible to suggest that ex-
pression of Nln is likely to be changed in COVID-19 patients. 
Given that Garvin and colleagues (Garvin et al., 2020) have 
documented decreased expression of ACE and neprilysin in 
COVID-19 patients, and expected elevated levels of brady-
kinin (i.e. inefficient degradation of the peptide), then it is 
likely that the expression of Nln is also decreased in these pa-
tients (otherwise, it could efficiently inactivate bradykinin).

6  |   CONCLUDING REMARKS

The original hypotheses proposed by van de Veerdonk 
et al. (van de Veerdonk et al., 2020) and Roche and Roche 
(Roche & Roche, 2020), and subsequent preliminary ex-
perimental confirmation and proposed mechanistic model 
by Garvin and colleagues (Garvin et al., 2020) placing 
bradykinin, that is, “bradykinin storm” hypothesis, in the 
center of COVID-19 pathology is scientifically intriguing 
and important for better understanding of this complex dis-
ease. Based on their new gene expression analysis data, 
Garvin and colleagues (Garvin et al., 2020) elegantly link 
the decreased expression of ACE to potential elevation of 
bradykinin levels and subsequently, to many of COVID-19 
outcomes. Furthermore, the observed upregulation of brad-
ykinin receptors and enzymes involved in its generation 
support the case for these hypotheses. Unfortunately, the 
presented picture may not be complete, since these inves-
tigators did not account for two other major peptidergic 
systems, substance P and neurotensin, which are also in-
activated by ACE and neprilysin (both downregulated in 
COVID-19 patients). Both peptides are well-recognized to 
be potent mediators of microvascular permeability, edema 
formation and inflammation—mechanisms that are in the 
core of the “bradykinin storm” hypothesis. Furthermore, 
it is likely that another key peptidase, Nln is also affected 
in COVID-19 patients, since it is the only other enzyme 
that inactivates all three peptides (bradykinin, substance 
P, and neurotensin) and has been associated with stroke, 
brain edema formation, increased brain microvascular per-
meability and neurogenic inflammation (part of COVID-
19-associated outcomes). The case for Nln is perhaps more 
strengthened by lack of strong evidence that angiotensin 
receptor blockers (ARBs) are better tolerated in COVID-19 
patients than ACE inhibitors (these drugs would further 
lower activity of ACE and hence result in increased levels 
of bradykinin) (Sparks et al., 2020; Speth, 2020). Moreover 
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combined use of a neprilysin inhibitor with an ARB (sacu-
bitril/valsartan) in COVID-19 patients is currently being 
investigated (Acanfora et al., 2020), although an opposing 
hypothesis (i.e., protective function of neprilysin) has also 
been suggested for COVID-19 therapy (Mohammed El 
Tabaa & Mohammed El Tabaa, 2020).

Additional studies, including extended analysis of the 
gene expression data from Garvin et al. study (Garvin et al., 
2020), could shed light on whether substance P and neuroten-
sin (including their precursors and receptors) and peptidase 
Nln might also be affected and hence be part of the mecha-
nisms explaining the pathology of COVID-19. This is critical 
since bradykinin, substance P, and neurotensin may potentiate 
each other's effects throughout the body similar to their effect 
on permeability of BBB (Al-Ahmad et al., 2021). Notably, 
while interpreting gene expression data (Garvin et al., 2020), 
it is critical to recognize that neither the expression levels 
of the target proteins (precursors, enzymes, receptors), nor 
activity of these enzymes are being evaluated. For example, 
it is expected that SARS-CoV-2, similar to its counterpart 
SARS-CoV (Kuba et al., 2005), downregulates ACE2 during 
internalization to the host cell. However, gene expression 
data in COVID-19 patient samples indicates upregulation 
(199-fold) of this peptidase (Garvin et al., 2020). Evaluation 
of ACE2 protein expression and enzymatic activity could 
clarify this question, since downregulated ACE2 would lead 
to accumulation of des-Arg9-bradykinin, endogenous brady-
kinin B1 receptor agonist, (Guy et al., 2003) and be beneficial 
for the proposed “bradykinin storm” hypothesis. Importantly, 
ACE2 does not hydrolyze bradykinin, substance P, and neu-
rotensin (Guy et al., 2003; Vickers et al., 2002), and hence 
changes in its expression levels would not directly alter avail-
ability of these peptides. Furthermore, measurement of pep-
tide levels following proper sampling procedures (Basu et al., 
2015; Karamyan et al., 2009; Karamyan & Speth, 2007b) is 
important for complete delineation of the proposed mecha-
nisms. Such inclusive approach should allow to better under-
stand the potential interactions of these peptidergic systems 
with the RAS in COVID-19 patients, and enhance our under-
standing of viable therapeutic interventions as well as their 
possible adverse side effects. Whether ACE polymorphism 
and similar unrecognized features of neprilysin and Nln may 
play a role in these mechanisms is also important to consider. 
Lastly, it is critical to recognize that bradykinin, substance P, 
and neurotensin can be metabolized by other enzymes (e.g., 
thimet oligopeptidase, prolyl endopeptidase, dipeptidyl pep-
tidase-4), and that ACE, neprilysin and Nln process some 
other bioactive peptides.

In summary, based on the above-discussed evidence, it 
is likely that not just bradykinin but also substance P and 
neurotensin are responsible for many of COVID-19 out-
comes. If proved by additional data analyses and new stud-
ies, it could mean that “vasoactive peptide storm,” that is, 

bradykinin, substance P, and neurotensin together, are the 
major drivers of increased microvascular permeability and 
inflammation-induced complications of COVID-19 pathol-
ogy. Confirmation of this “vasoactive peptide storm” hy-
pothesis could mean that simultaneous inhibition of all three 
peptidergic systems would be therapeutically more advanta-
geous rather than modulation of any single mechanism alone. 
In this regard, the therapeutic potential of recombinant neu-
rolysin (Karamyan, 2021; Wangler et al., 2016) and nepri-
lysin (Mohammed El Tabaa & Mohammed El Tabaa, 2020; 
Walker et al., 2013), or small molecule activators of these 
peptidases may be considered (Karamyan, 2019; Kuruppu 
et al., 2016) while carefully evaluating their systemic effects.
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