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Ovarian cancer (OVCA) is one of the most lethal malignancies with a five-year relative
survival below 50% by virtue of its high recurrence rate and inadequate early detection
methods. For OVCA patients, modern approaches include debulking surgery,
chemotherapies, angiogenesis inhibitors, poly ADP-ribose polymerase (PARP)
inhibitors, and immunotherapies depending on the histological type and staging of the
tumor. However, in most cases, simple standard treatment is not satisfactory. Thus, a
more effective way of treatment is needed. Ferroptosis is a newly recognized type of
regulated cell death marked by lipid peroxidation, iron accumulation and glutathione
deprivation, having a connection with a variety of disorders and showing great potential in
anti-tumor therapy. Intriguingly, a possible connection between ferroptosis and OVCA is
shown on the basis of previously published findings. Furthermore, a growing number of
ferroptosis protection pathways have been identified during the past few years with
increasing ferroptosis regulators being discovered. In this review, we summarized several
major pathways involved in ferroptosis and the study foundation of ferroptosis and ovarian
cancer, hoping to provide clues regarding OVCA treatment. And some important issues
were also raised to point out future research directions.
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INTRODUCTION

Ovarian cancer (OVCA), which frequently manifests as abdominal distension, abdominal or pelvic
bloating and abdominal mass at advanced stages (1), is one of the most lethal malignancies by virtue
of its high recurrence rate and inadequate early detection methods (2), placing a heavy burden on
patients and the society. Histologically, OVCA contains a wide range of tumors, including those of
epithelial, sex cord-stromal and germ cell origin, among which, epithelial ovarian cancer is the most
Abbreviations: OVCA, ovarian cancer; PARP, poly ADP-ribose polymerase; ROS, reactive oxygen species; H2O2, hydrogen
peroxide; GSH, glutathione; Nrf2, nuclear factor erythroid 2-related factor 2; PD-1, programmed death-1; PD-L1,
programmed death ligand-1; SAS: sulfasalazine; PLT, platelet; GPX4, glutathione peroxidase 4; SLC7A11, solute carrier
family 7; FSP1, ferroptosis-suppressor-protein 1; AIFM2, apoptosis-inducing factor mitochondrial 2; CoQ10, coenzyme Q10;
GCH1, GTP cyclohydrolase 1; BH4, tetrahydrobiopterin; SPIO, superparamagnetic iron oxides; TAZ, transcriptional
coactivator with PDZ-binding motif; FZD7, Frizzled-7; ABCB1, ATP binding cassette subfamily B member 1.
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common type. Although a significant decline in the incidence
and mortality of ovarian cancer has been witnessed during the
past few decades due to the improvement of treatment, OVCA
still possesses a high mortality rate with a five-year relative
survival below 50% (3). It was reported that there were
approximately 313,959 new OVCA cases in 185 countries in
2020 with 207,252 new OVCA deaths, accounting for 1.6% and
2.1% of all new cancer cases and new cancer deaths, respectively
(4). Furthermore, great efforts have been made to uncover the
potent therapeutic strategies and the pathogenesis of OVCA, but
the mystery of OVCA is not yet unraveled and still catches many
researchers’ eyes.

Modern approaches to patients with OVCA vary from person
to person according to the histological type and staging of the
tumor, comprising debulking surgery, chemotherapies
containing platinum and docetaxel etc., angiogenesis inhibitors,
poly ADP-ribose polymerase (PARP) inhibitors, and
immunotherapies. Generally speaking, standard treatment for
OVCA involves debulking surgery followed by combination
chemotherapies based on platinum (5). However, for some
patients, especially the ones with recurrent diseases, simple
standard treatment is not satisfactory in most cases.

Tumor angiogenesis, which is the formation of novel blood
vessels in tumor entities to supply oxygen and nutrients, greatly
contributes to tumor growth, progression and metastasis (6). It
has been validated that angiogenesis occurs in many cancerous
disease contexts, including OVCA; thus, angiogenesis inhibitors,
such as bevacizumab should be considered to treat ovarian
cancer (7). On the other hand, the detrimental somatic
mutation of BRCA genes, which mainly function as a protector
in homologous recombination DNA repair pathway, is another
frequent molecular event that happens to patients with OVCA
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(8, 9). Consequently, drugs developed for targeting DNA
damage, PARP inhibitors for example, could be employed to
treat OVCA patients with such gene mutations. Interest in the
relationship between immunotherapies and OVCA is
burgeoning with many immune checkpoint pathways being
discovered, but there is still uncertainty in view of the poorly-
understood mechanisms in this malignancy (10).
ROS AND LIPID PEROXIDATION IN OVCA

Reactive oxygen species (ROS), a group of unstable molecules
generated by mitochondria through highly reactive electron
transport chain of the mitochondrial respiratory chain (11),
commonly consist of singlet oxygen, hydrogen peroxide
(H2O2), and hydroxyl radical, etc. ROS have been reported to
participate in various physiological or pathological processes,
where metabolism, inflammation and carcinogenesis are
involved (12, 13). Besides, an elevated level of ROS that could
be eliminated by antioxidative systems covering glutathione
(GSH) and nuclear factor erythroid 2-related factor 2 (Nrf2)
(14), is observed in cancer cells compared with that of normal
cells. Intriguingly, mitochondrial ROS can cause DNA damage
and lead to cell death through activating the mitochondrial
permeability transition pore pathway (15) whereas a high level
of ROS can also result in mitochondrial DNA mutations, giving
rise to neoplasm metastasis (16). With the contradictory effects
of ROS, anticancer therapies concerning this field should be
carefully designed (Figure 1).

It has been confirmed that the level of ROS was uplifted in a
concentration- and time-dependent manner in several types of
OVCA cell lines. A recent experiment conducted by Sun X et al.
FIGURE 1 | The mitochondria generated ROS and their contradictory effects in ovarian cancer cells. On the one hand, ROS cause DNA damage and thus lead to
cell death. On the other hand, ROS bring about mitochondrial DNA mutation, encouraging neoplasm metastasis. Antioxidative systems including GSH and Nrf2 with
their upstream and downstream molecules have antagonistic effects on ROS.
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demonstrated that SIRT5 could suppress ROS by positively
regulating Nrf2/heme oxygenase 1 signaling pathway,
promoting cell proliferation and cisplatin resistance in OVCA
(17) (Figure 1). Therefore, these observations suggest that
focusing on ROS is an effectual means of coping with OVCA.

Moreover, considerable kinds of lipids are sensitive to ROS-
induced oxidation. Under normal circumstances, a homeostasis is
maintained between the production and removal of ROS.However,
when the homeostasis is impaired with ROS molecules
accumulating, the lipid peroxidation process is likely to take place
via enzymatic or non-enzymatic processes (18, 19). The first step of
lipid peroxidation includes the abstractionof ahydrogenatomfrom
the methylene carbon of a fatty acid side chain, mostly
polyunsaturated fatty acids by ROS molecules (20). The crushing
level of ROS interacts with biological membranes by way of lipid
peroxidation, changing the membrane fluidity and permeability;
hence the structure and functionof a cell are altered (21).Numerous
studies have identified the crucial role of lipid peroxidation in
ovarian cancer, which provides an emerging strategy of OVCA
therapy for us (22, 23).
IMMUNOTHERAPY IN THE MANAGEMENT
OF OVCA

In the past dozen years, immunotherapies especially immune
checkpoint blockade treatment have been widely applied in
treating cancers, including non-small cell lung cancer (24) and
melanoma (25). Nevertheless, the promising immunotherapy in
managing OVCA is still not well understood. It is noteworthy
that a destructive tumor microenvironment exists in OVCA
patients where there are insufficient T cells, immune
suppressive networks and impaired capacity to recognize
tumor antigens (10). Hereof, many strategies have been
brought forth to regulate the immune system in cancer
patients which include immune checkpoint inhibitors targeting
programmed death-1 (PD-1)/programmed death ligand-1 (PD-
L1) pathway to reinstate an antitumor response, adoptive T cell
therapy as well as cancer vaccines etc. Interestingly enough, there
was an exhilarating connection between cancer immunotherapy
and ferroptosis, as suggested by Wang W et al., and could be
manipulated by CD8+ T cells (26). Furthermore, Jiang Q et al.
discovered that sulfasalazine (SAS)-loaded mesoporous magnetic
nanoparticles (Fe3O4) and platelet (PLT) membrane camouflage,
Fe3O4-SAS@PLT, was able to elicit ferroptosis in mice metastatic
tumor models, which then conspicuously potentiated the efficacy
of PD-1 immune checkpoint blockade therapy (27).
MECHANISMS OF FERROPTOSIS:
THE THREE MUSKETEERS

Ferroptosis, coined by Dixon et al. was first revealed in 2012,
whose hallmarks were lipid peroxidation, iron accumulation and
glutathione deprivation (28). Ferroptosis is an important form of
Frontiers in Oncology | www.frontiersin.org 3
regulated cell death, which is biochemically, morphologically and
genetically distinctive from a great deal of well-known classes of
regulated cell death encompassing apoptosis, necroptosis and
autophagy (28). As its name indicates, ferroptosis mediates cell
demise in a caspase-independent but iron-dependent way.
Hitherto, significant strides have been made to detect the
specific mechanisms behind this innovative biological process
and the underlying link between ferroptosis and different courses
of diseases. Large quantities of evidence signify a close
correlation between ferroptosis and a variety of disorders that
embrace neurodegenerative diseases (29), ischemia/reperfusion
injury (30, 31), acute kidney injury (32), and tumors (33, 34), etc.
Additionally, a possible connection between ferroptosis and
OVCA is shown on the basis of previously published findings
(35, 36), and aiming at ferroptosis may serve as an elaborate
scheme to deal with it (37). Herein, we present three
predominant pathways that may be closely related to
ferroptosis process in ovarian cancer (Figure 2).

GPX4-GSH Protection Pathway
Together with the cystine/glutamate antiporter (system X−

c ),
glutathione peroxidase 4 (GPX4)-GSH axis was determined to
regulate ferroptotic cancer cell death by Stockwell et al. in 2014
(38), which is now considered as a classical pathway. The duty of
system X−

c , composed of the substrate-specific subunit xCT also
known as solute carrier family 7 (SLC7A11) and solute carrier
family 3 member 2, is to uptake cystine while evacuating
glutamate, which could be inhibited by erastin and
sulfasalazine, etc (39). The smuggled cystine is reduced to
cysteine and utilized to synthesize GSH, with which acting as a
cofactor of the key regulator, GPX4. In coordination with GSH,
GPX4 holds the ability to neutralize ROS and defy oxidation and
could be choked with the existence of RSL3 (28). As a matter of
course, ferroptosis process is suppressed (Figure 2). Thereby,
agents developed to fight against this axis will trigger ferroptosis
and may offer a potent approach to treating ovarian cancer. Also,
the exact responsibility of iron nevertheless stays unclear; as is
illustrated, the increased level of ferrous ion reacts actively with
H2O2, known as Fenton reaction and eventually the cancer cells
undergo ferroptosis (40) (Figure 2).

FSP1-CoQ10 Protection Pathway
Apart from GPX4, another dazzling star ferroptosis-suppressor-
protein 1 (FSP1) is rising in the field of ferroptosis. FSP1 which
was renamed from apoptosis-inducing factor mitochondrial 2
(AIFM2), was first found to be relevant to ferroptosis in 2019
stated by two back-to-back investigations (41, 42). Since the first
discovery of AIFM2, it has been proved to prompt cell death in a
caspase-independent way (43–45). Later AIFM2 was detected to
abrogate cell death via ferroptosis that strikingly resembles that
of GPX4; thereafter AIFM2 was changed into FSP1. A majority
of FSP1 is attached to outer membrane of mitochondrion while
the left is cytosolic protein. So when myristoylated, FSP1 moves
to plasma membrane to neutralize ROS, preventing lipid
peroxidation and subsequent ferroptosis. FSP1 exerts defensive
effects with the help of coenzyme Q10 (CoQ10), also known as
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ubiquinone, consumingNAD(P)Haswell (46). Briefly, ubiquinol is
obtainedby reduction of ubiquinone catalyzed byFSP1, anNADH-
dependent CoQ10 oxidoreductase and the produced ubiquinol
ameliorates oxidation through radical trapping. Ultimately, the
lipid peroxidation process is blocked and so is the ferroptosis
process (Figure 2). In short, medications downregulating FSP1
could be exploited to facilitate ferroptosis and become a potentially
curative measure to treat ovarian cancer.

GCH1-BH4 Protection Pathway
Parallel to but independentofGPX4andFSP1protectionpathways,
recent advances highlighted the key role of GTP cyclohydrolase 1
(GCH1)-tetrahydrobiopterin (BH4) pathway in ferroptosis
regulation (47). Early reports have verified that GCH1 is a
governing rate-limiting enzyme in the synthesis of BH4, derived
from GTP (48) and having the outstanding capacity to eliminate
lipid peroxidation (47). Afterwards, ferroptosis is arrested. In
addition, Kraft et al. ascertained that the generation of BH4 could
be enhanced by GCH1 overexpression and that GCH1
overexpression abolished the deleterious effects of RSL3-induced
ferroptotic cell death.More importantly, it was also implied that the
level of GCH1 expression determined cancer cell resistance to
ferroptosis and that GCH1/BH4 enriched reduced CoQ10,
making further efforts to mitigate ferroptosis progression (47, 49)
(Figure 2).Despitemanyunknown facts, the appearance ofGCH1-
BH4 axis may accordingly represent a potential chemotherapeutic
tactic for ovarian cancer therapy.
Frontiers in Oncology | www.frontiersin.org 4
FERROPTOSIS: A RISING STAR
WITH GREAT THERAPEUTIC
POTENTIAL IN OVCA

It is known that TP53 is an outstanding tumor suppressor gene
with the capacity to induce apoptosis and has a strong
connection with ferroptosis as shown by a number of studies
(31, 50–52) while FSP1 is viewed as a p53-inducible gene and a
downregulated effector downstream of p53 in tumors (43, 53). A
recent experiment conducted by Zhang Y et al. confirmed the
relationship between ferroptosis and p53 in OVCA (54). The
inh i b i t ed v i ab i l i t y o f OVCA ce l l s i n cuba t ed in
superparamagnetic iron oxides (SPIO)-serum is mostly likely
to be associated with transfer of iron oxide nanoparticles to
mitochondria and then the intracellular iron accumulation
emerges. SPIO-serum facilitates the occurrence of ferroptosis
with p53 exerting synergistic functions through downregulating
ferroptosis-related proteins, SLC7A11 and GPX4 in OVCA cells.
As such, a recently published study validated SPIO nanoparticles’
role of ferroptosis induction in OVCA stem cells whereas cellular
autophagy is weakened (55). Despite the clarification of relation
between GPX4-GSH protection pathway of ferroptosis and p53
in OVCA, the interaction of p53 with other ferroptosis
protection pathways and regulators in OVCA still needs to be
interpreted to draw a full picture of p53 and ferroptosis network.
And the line between ferroptosis and other kinds of cell death
and their incentives remain a problem.
FIGURE 2 | Three prestigious protection pathways implicated in ferroptosis. Of note GPX4 protection pathway is the famous one. With the help of GSH, GPX4
downregulates ROS and inhibits forthcoming ferroptosis, which could be suppressed by RSL3. System X−

c , the cystine/glutamate antiporter, also functions to
synthesize GSH during this process, and can be counteracted by erastin or sulfasalazine. In the FSP1 protection pathway, the myristoylated FSP1 catalyzes the
reduction of CoQ10 to ubiquinol, consuming NAD(P)H and mitigating ferroptosis. In the GCH1 protection pathway, GCH1 acts as a rate-limiting enzyme to manage
the biosynthesis of BH4, while regulating ubiquinol as well. Therefore, ferroptosis progression is blocked. However, the Fenton reaction, the interaction between
ferrous ion and H2O2, triggers the occurrence of ferroptosis.
April 2021 | Volume 11 | Article 665945
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What is more, many studies have focused on oxidative stress
metabolism with regard to ferroptosis in OVCA cells. For example,
mitochondrial alterations, aberrant ROS production and
potentially ferroptosis are found to contribute to elevated
chemosensitivity in human OVCA (56). In one study, it was
found that the survival of ovarian clear cell carcinoma relies on
the access to cysteine and that cysteine depletion impairs the
cardinal protection pathway, namely the GPX4-GSH pathway of
ferroptosis, consequently eliciting oxidative stress-induced
ferroptosis concurrent with necrosis, another famous type of cell
demise. Furthermore, mitochondrial metabolism is also modified
resulting from lack of cysteine and so is the biogenesis of iron-sulfur
cluster, making further efforts to mitochondrial damage (57).
Divertingly, the continued activation of another notorious anti-
oxidative system Nrf2 was observed in ferroptosis-resistant OVCA
cells and a further step was made towards cysteine and ferroptosis
byLiuNet al. (58).Theyfigured that prolonged treatment of erastin
could induce ferroptosis resistance instead of inducing ferroptosis
inOVCAcells because of continuous upregulation ofNrf2 together
with its downstream effector cystathionine b-synthase, a crucial
enzyme for the biosynthesis of cysteine. Based on these two studies,
the intricate crosstalk between cysteine and other signals in OVCA
is worthy of detection.

Beyond the above stated aspects, ferroptosis is in an intimate
relationship with the clinic. It was reported that overexpression of
transcriptional coactivator with PDZ-binding motif (TAZ), a
sensor of cell density, sensitizes OVCA cells to ferroptosis and
that in chemoresistant recurrent OVCA cells, lower level of TAZ
decreases OVCA cells’ sensitivity to ferroptosis (35). In platinum-
tolerant OVCA cells, one study inspected an expression of theWnt
receptor Frizzled-7 (FZD7), which positively alters glutathione
metabolism pathways including GPX4. Posterior to exposure to
GPX4 inhibitors, FZD7+ platinum-tolerant OVCA cells are more
likely to experience ferroptosis, opening new avenues for platinum-
tolerant OVCA treatment (59). In OVCA cells resistant to another
chemotherapy docetaxel due to ATP binding cassette subfamily B
member 1 (ABCB1) overexpression, erastin exhibits great ability to
reverse the effect of ABCB1, conferring ferroptosis and enhancing
the susceptibility to docetaxel in OVCA, proving the synergistic
activity of erastin and docetaxel (60). Other than chemotherapeutic
drugs, a lately published article shed light on correlation of
ferroptosis inducers and PARP inhibitors in BRCA-proficient
OVCA. PARP inhibition expedites ferroptosis via hampering
SLC7A11 in a p53-dependent manner in OVCA (61). With
certain studies centering on common treatment approaches
targeting GPX4-GSH protection pathway of ferroptosis, other
pathways however, are little studied. Delightingly, ferroptosis-
related mRNA and genes have been analyzed and identified as
therapeutic targets as well as prognostic indicators respectively,
Frontiers in Oncology | www.frontiersin.org 5
exposing new treatment vulnerabilities and offering promising
prognostic indicators in OVCA patients (62, 63).
DISCUSSION

Taken together, ferroptosis is a notable style of regulated cell death
that was recognized lately, with three prodigious protection
pathways substantiated in succession. The intensive study of
mechanisms underlying ferroptosis is of vital significance in
mapping its role in all kinds of related carcinomas with
compelling evidence denoting a close association between ovarian
cancer and ferroptosis. As we now know that docetaxel and PARP
inhibitors synergize with ferroptosis inducers in OVCA, studies
with respect to ferroptosis and other classical drugs such as
cyclophosphamide and vincristine in OVCA still await further
elucidation. In addition, it has been reported that mature drugs
including sulfasalazine could induce ferroptosis in cancer entities
like breast cancer and head and neck cancer (64, 65), their clinical
use inOVCAremains poor. Therefore, the expanding clinical usage
of those mature drugs towards other malignancies should be
considered. Although steady progress has been achieved in terms
of ferroptosis, mechanisms underlying the three predominant
protection pathways need to be improved and whether there are
some other important mechanisms is yet intangible.

Except for the above mentioned issues, a couple of in vitro
experiments have been conducted to exhibit extraordinary
antitumor effects of ferroptosis in OVCA, but a lack of in vivo
applicable ferroptosis inducers that could be designed as
promising drugs does exist. Subsequently, diverse cancer cells
display varied susceptibilities to ferroptosis. So it is inevitable to
take this consideration into account before making use of
ferroptosis regulators as an OVCA therapeutic method.
Another problem is the emergence of ferroptosis resistance in
OVCA and how to handle this possible misfortune.

Conclusively, the conspicuous exploration of ferroptosis and
its regulators may provide potential breakthrough points on anti-
OVCA therapies. With the unprecedentedly prosperous
investigations concentrating on ferroptosis, a broad application
prospect is worth waiting for.
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