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Abstract: We aimed to evaluate the stability of radiomic features in the liver of healthy individuals
across different three-dimensional regions of interest (3D ROI) sizes in T1-weighted (T1w) and T2-
weighted (T2w) images from different MR scanners. We retrospectively included 66 examinations of
patients without known diseases or pathological imaging findings acquired on three MRI scanners
(3 Tesla I: 25 patients, 3 Tesla II: 19 patients, 1.5 Tesla: 22 patients). 3D ROIs of different diameters
(10, 20, 30 mm) were drawn on T1w GRE and T2w TSE images into the liver parenchyma (segment
V–VIII). We extracted 93 radiomic features from the different ROIs and tested features for significant
differences with the Mann–Whitney-U (MWU)-test. The MWU-test revealed significant differences
for most second- and higher-order features, indicating a systematic difference dependent on the ROI
size. The features mean, median, root mean squared (RMS), 10th percentile, and 90th percentile
were not significantly different. We also assessed feature robustness to ROI size variation with
overall concordance correlation coefficients (OCCCs). OCCCs across the different ROI-sizes for mean,
median, and RMS were excellent (>0.90) in both sequences on all three scanners. These features,
therefore, seem robust to ROI-size variation and suitable for radiomic studies of liver MRI.
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1. Introduction

Radiomics analysis translates a medical image into quantitative features that are
otherwise not perceptible to the human eye [1,2]. Since these features have quantitative
values, they can be statistically linked to various biological and diagnostic endpoints [2,3].
For example, Jajodia et al. built prediction models to evaluate the outcome in cervical
cancer based on radiomic features derived from ADC maps [4]. Bobholz et al. revealed
parallels between MR-derived radiomic features of brain tumors and their texture in the
histopathological specimen to conclude the underlying tissue histology [5]. There are plenty
of radiomic studies attempting to characterize liver abnormalities with the aim to predict
their outcome [6]. Contrary to the growing body of published data, radiomics analysis is
still not applicable in clinical routine, possibly because of the lack of reproducibility [2,7].

Numerous factors influence radiomic features, such as image acquisition parameters,
reconstruction algorithms, segmentation, and applied software [3,8–13]. Inter-scanner
and inter-vendor variability of radiomic features have been observed for CT and MR
imaging [14,15]. Ammari et al. found that field strength and the signal-to-noise ratio
influences many radiomic features investigating brain phantoms and volunteers’ brains on
1.5 Tesla and 3 Tesla MRI [16].
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Furthermore, several studies indicated that the volume of a segmented lesion influ-
ences the features’ quantity. Lu et al. found CT-derived radiomics of malign kidney tumors
influenced by tumor size and suggested removing confounded features in successive steps
to establish a radiomics signature [17]. Traverso et al. detected a strong correlation between
feature quantity and tumor volume in 30% of 841 CT-derived radiomic features from lung
and head and neck tumors [18]. Roy et al. observed that tumor volume, noise, and image
resolution significantly impacts MR-derived radiomic features in breast cancer lesions in
both T1-weighted (T1w) and T2-weighted (T2w) images [19]. And as the developers of
PyRadiomics software state, features such as energy, total energy, and root mean squared
are volume confounded by design [20]. A recent study compared radiomics derived from
various ROI sizes in CT and MR images of a water phantom, showing that the majority of
first-, second-, and higher-order features differed significantly [21].

This study, therefore, aimed to identify MR-derived radiomic features of healthy liver
parenchyma that are stable across different 3D ROI sizes considering T1- and T2-weighted
sequences on different MR scanners and field strengths.

2. Materials and Methods
2.1. Study Population

The institutional review board approved our retrospective study [EA1/104/19]. We
retrospectively screened MR examinations that were conducted between April 2012 and
August 2020 to rule out chronic inflammatory bowel disease. We included healthy patients
without any present or preexisting disease and without structural or parenchymal liver
abnormalities. Furthermore, patients with benign liver lesions such as cysts and patients
with abdominopelvic metal implants (e.g., dorsal instrumentation of the spine or hip
replacement) were excluded to avoid an influence by artifacts. We also excluded patients
with apparent signal alterations between in- and opposed phase in the spoiled gradient
echo sequences (T1w GRE FLASH in our study, equivalent to T1 FFE or SPGR sequences)
to preclude influence by fatty degeneration or iron deposition. We included examinations
from three MR scanners: two 3 Tesla MRI scanners of the same model (Magnetom Skyra,
Siemens Healthineers, Erlangen, Germany) and one 1.5 Tesla MRI scanner (Magnetom Aera,
Siemens Healthineers, Erlangen, Germany). The patient groups on the three scanners were
tested for significant differences that could impact the results. Patient gender distribution
was tested with a chi-square test (p = 0.85) and age distribution with the Kruskal-Wallis
test (p = 0.12). Thus, significant differences in gender and age between the patient groups
were excluded.

Details of the patient population are summarized in Table 1.

Table 1. Details of the patient population.

MRI Scanner 3 Tesla I 3 Tesla II 1.5 Tesla

66 patients without pathologic findings 25 19 22
Female patients 15 13 14
Male patients 10 6 8

Age (y) 34.32 (17–62) 28.05 (15–49) 30.86 (15–49)

2.2. Image Acquisition

All 66 patients were examined in clinical routine. The patients had to be fasting for
at least 4 h before the examination and were required to fractionally drink 0.75 L of 2.5%
mannitol solution one hour before the examination. All patients were examined using the
modified Sellink technique with a duration of approximately 40 min scanning time. The
T2w Turbo Spin Echo (TSE) Half Fourier Acquisition Single Shot Turbo Spin Echo (HASTE)
axial and the T1w Gradient Echo (GRE) Fast Low Angle Shot (FLASH) axial sequences that
we analyzed were acquired within the first ten minutes of the scan and before intravenous
contrast administration in a fixed examination protocol with a multi-breath-hold regimen
for each sequence. Patients were placed into the scanner headfirst and with a phased-array
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body coil placed on the abdomen. The field of view was adapted to the individual patient’s
size. All scanners were used in clinical routine imaging and are calibrated regularly by
controlling the homogeneity of the B0 field.

Details of the MRI scanning parameters are listed in Table 2.

Table 2. Details of the MRI scanning parameters.

MRI Scanner 3 Tesla I 3 Tesla II 1.5 Tesla

Sequence T1w GRE
FLASH

T2w TSE
HASTE

T1w GRE
FLASH

T2w TSE
HASTE

T1w GRE
FLASH

T2w TSE
HASTE

TR/TE (ms) 168/2.46 1000/95 168/2.46 1600/95 167/2.39 850/81
Flip angle (deg.) 70 155 70 180 70 180
Slice thickness (mm) 5 5 5 5 6 6
Spacing between slices 5.5 5.5 5.5 5.5 6.6 6.6
Pixel spacing 1.125/1.125 1.125/1.125 1.125/1.125 1.125/1.125 1.09375/1.09375 1.3671875/1.3671875
Acquisition Matrix 320/158 320/194 320/210 320/194 320/203 256/167
Number of phase
encoding steps 158 124 210 124 203 111

In plane phase
encoding direction anterior-posterior

Patient position Head first (phased-array body coil)
Fat-saturation None
Breathing regimen Multi-breath-hold

T1w: T1-weighted. T2w: T2-weighted. GRE: Gradient Echo. TSE: Turbo Spin Echo. FLASH: Fast Low Angle Shot. HASTE: Half Fourier
Acquisition single Shot Turbo Spin Echo. TR: repetition time. TE: echo time. Deg.: degree.

2.3. Image Analysis

In each included examination, three-dimensional sphere-shaped regions of interest
(3D ROIs) were drawn in liver segment V, VI, VII or VIII. ROIs were not copied between
sequences since the position of the liver is slightly altered according to the multi-breath-
hold regimen. We visually correlated the slices and used anatomic landmarks to place the
center of the ROI identically between slices. The segments were chosen to exclude large
blood vessels and bile ducts while only including hepatic parenchyma. 3D ROIs were
drawn using 3D Slicer ([22]; 3D Slicer, Version 4.10.0, http://www.slicer.org, accessed on
21 April 2021) by a radiologist with over four years of experience in MR imaging. ROI
diameters were set to 10, 20, and 30 mm. By choosing the 3D ROI diameters of 10, 20, and
30 mm, we aimed to cover typical sizes of liver lesions. With larger ROIs, it also becomes
more and more difficult to exclude large blood vessels and bile ducts.

Figure 1 shows example slices of a 3D ROI.

2.4. Radiomic Feature Extraction

Radiomic features were extracted using PyRadiomics (Version 3.0) [20], following
the instructions of the Image Biomarker Standardisation Initiative (IBSI) [20,23,24]. The
settings used for feature extraction can be found in the Supplemental File SF1a, the IBSI
reporting guidelines and the checklist in SF1b.

93 features were extracted: 18 first-order features (energy, total energy, entropy, kur-
tosis, maximum, minimum, mean, median, interquartile range (IQR), skewness, range,
mean absolute deviation (MAD), robust mean absolute deviation (RMAD), root mean
squared (RMS), variance, uniformity, 10th percentile, and 90th percentile) as well as
75 second- and higher-order features (24 gray level co-occurrence matrix (GLCM) fea-
tures, 14 gray level dependence matrix (GLDM) features, 16 gray level run-length matrix
(GLRLM) features, 16 gray level size zone matrix (GLSZM) features, and five neighboring
gray tone difference matrix (NGTDM) features [20]). Shape features were not considered
since ROI sizes intentionally varied.

http://www.slicer.org
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Figure 1. Example slices of 3D ROIs of one healthy individual, acquired on the 3 Tesla I scanner, are shown. Images (A–
C) are from a T2-weighted TSE HASTE sequence, (D–F) are from a T1-weighted GRE FLASH sequence. (A,D) show 10-
mm diameter ROIs, (B,E) 20 mm, and (C,F) 30 mm ROIs. While drawing ROIs manually throughout all included patients, 
we aimed to only include hepatic parenchyma while excluding any apparent blood vessels or bile ducts. 
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2.5. Statistical Analysis 
We used R for the statistical analysis (version 4.0.3, R Foundation for Statistical 

Computing) [25]. All analyses were done scanner-wise and subsequently compared. 
We applied a pairwise Mann–Whitney U (MWU)-test with Bonferroni correction to 

evaluate differences between the ROI sizes. All possible pairs were tested (10 vs. 20 mm, 
10 vs. 30 mm, and 20 vs. 30 mm). A p-value < 0.05 was considered to indicate statistical 
significance. 

Overall concordance correlation coefficients (OCCCs) for agreement of continuous 
measures according to Lin et al. [26] and Barnhart et al. [27] were calculated using the epiR 
package for R [28]. We chose to use the OCCC as an equivalent to the generalized CCC 
[27] to measure agreement between more than two variables of interest (i.e., three ROI 
sizes). Concordance coefficient values range from 1 to −1, 1 indicating complete agreement 
and −1 indicating reverse agreement [29]. OCCCs ≥ 0.90 were considered to show excellent 
reproducibility, according to reported studies [8,29]. 

We calculated OCCCs twice. Once we assessed agreement among the ROI sizes 10, 
20, and 30 mm (OCCCs10–30) and once for the ROI sizes 20 and 30 mm (OCCCs20,30). By 
excluding the smallest 10 mm ROIs, we intended to analyze if a small ROI size degrades 
the results. 

Figure 1. Example slices of 3D ROIs of one healthy individual, acquired on the 3 Tesla I scanner, are shown. Images
(A–C) are from a T2-weighted TSE HASTE sequence, (D–F) are from a T1-weighted GRE FLASH sequence. (A,D) show
10-mm diameter ROIs, (B,E) 20 mm, and (C,F) 30 mm ROIs. While drawing ROIs manually throughout all included patients,
we aimed to only include hepatic parenchyma while excluding any apparent blood vessels or bile ducts.

2.5. Statistical Analysis

We used R for the statistical analysis (version 4.0.3, R Foundation for Statistical
Computing) [25]. All analyses were done scanner-wise and subsequently compared.

We applied a pairwise Mann–Whitney U (MWU)-test with Bonferroni correction to
evaluate differences between the ROI sizes. All possible pairs were tested (10 vs. 20 mm, 10 vs.
30 mm, and 20 vs. 30 mm). A p-value < 0.05 was considered to indicate statistical significance.

Overall concordance correlation coefficients (OCCCs) for agreement of continuous
measures according to Lin et al. [26] and Barnhart et al. [27] were calculated using the epiR
package for R [28]. We chose to use the OCCC as an equivalent to the generalized CCC [27]
to measure agreement between more than two variables of interest (i.e., three ROI sizes).
Concordance coefficient values range from 1 to −1, 1 indicating complete agreement and
−1 indicating reverse agreement [29]. OCCCs ≥ 0.90 were considered to show excellent
reproducibility, according to reported studies [8,29].

We calculated OCCCs twice. Once we assessed agreement among the ROI sizes 10,
20, and 30 mm (OCCCs10–30) and once for the ROI sizes 20 and 30 mm (OCCCs20,30). By
excluding the smallest 10 mm ROIs, we intended to analyze if a small ROI size degrades
the results.

3. Results
3.1. MWU-Test

For T1w images, features that concordantly did not show significant differences across
all ROI sizes on all scanners were mean, median, RMS, 10th percentile, 90th percentile, max-
imum, glcm_correlation, glcm_imc2, and glcm_mcc. All other features were significantly
different in at least one tested combination of ROI sizes.

For T2w images, features that concordantly did not show significant differences across
all ROI sizes on all scanners were mean, median, RMS, 10th percentile, and 90th percentile.

In addition, when we tested the 20 and 30 mm ROIs only while leaving out the 10 mm
ROIs, 25 additional features were not significantly different from T1w images and 32 addi-
tional features from T2w images. The summary of the MWU results on the different scanners
in Supplementary File 2 gives an overview (see Table SF2).

Figure 2 shows boxplots of the features mean, median, RMS, and uniformity derived
from T1w and T2w sequences from the 3 Tesla I MR scanner.
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Figure 2. Boxplots of the first-order features mean, median, root mean squared (RMS), and uniformity are shown as 
examples of the results. The ROI diameters 10, 20, and 30 mm are compiled on the x-axis, the numerical value of the feature 
on the y-axis. The upper row shows results derived from T2w TSE HASTE images, the lower row from T1w GRE FLASH 
images, both from 3 Tesla I. For mean, median, and RMS, there was no significant difference between the ROI sizes in the 
MWU-test. The first-order feature uniformity, as an example, differed significantly in both T1w and T2w sequences. 
Boxplots of all features, sequences and scanners are provided in the Supplementary File SF4. 

The results of all MWU tests between 10 vs. 20, 20 vs. 30, and 10 vs. 30 mm 3D ROIs 
are listed in Supplementary File 3 (see Table SF3). Boxplots of all MWU results are shown 
in Supplementary File 4 (see Figure SF4). 

  

Figure 2. Boxplots of the first-order features mean, median, root mean squared (RMS), and uniformity are shown as
examples of the results. The ROI diameters 10, 20, and 30 mm are compiled on the x-axis, the numerical value of the feature
on the y-axis. The upper row shows results derived from T2w TSE HASTE images, the lower row from T1w GRE FLASH
images, both from 3 Tesla I. For mean, median, and RMS, there was no significant difference between the ROI sizes in
the MWU-test. The first-order feature uniformity, as an example, differed significantly in both T1w and T2w sequences.
Boxplots of all features, sequences and scanners are provided in the Supplementary File SF4.

The results of all MWU tests between 10 vs. 20, 20 vs. 30, and 10 vs. 30 mm 3D ROIs
are listed in Supplementary File 3 (see Table SF3). Boxplots of all MWU results are shown
in Supplementary File 4 (see Figure SF4).

3.2. OCCCs

For T1w and T2w sequences, OCCCs10–30 and OCCCs20,30 for the first-order features
mean, median, and RMS concordantly showed excellent agreement in all possible com-
binations and on all scanners. OCCCs10–30 and OCCCs20,30 for 90th percentile and 10th
percentile were excellent in almost all combinations, except for OCCC10–30 of 10th per-
centile from T1w images acquired on the 3 Tesla I and for OCCC10–30 of 90th percentile
from T2w images acquired on the 1.5 Tesla scanner.

Among the OCCCs10–30, we observed no excellent agreement considering second- and
higher-order features across all scanners. In the OCCCs20,30, several second- and higher-
order features showed excellent agreement in T1w and T2w sequences: eight features on
the 3 Tesla Scanner I and nine on the 3 Tesla Scanner II with an overlap of six features
between scanners. For these six features, there was neither excellent agreement in the
OCCCs10–30 nor in the OCCCs20,30 on the 1.5 Tesla Scanner. A summary of the OCCC
results on the different scanners is provided in Supplementary File 5 (see Table SF5).

Figure 3A shows OCCCs20,30 of the first-order features from T1w GRE images, 3B
shows OCCCs20,30 of the first-order features from T2w TSE images on the different scanners.
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Figure 3. (A). OCCCs20,30 of the first-order features derived from T1w images are shown for the three different MR scanners.
The red benchmark at 0.9 indicates excellent agreement in the OCCCs. Mean, median, RMS, 90th, and 10th percentile
showed excellent agreement on all three MR scanners. On the 3 Tesla MR scanner II, also maximum and minimum achieved
excellent agreement in the OCCCs. Mean, median, and RMS also showed excellent agreement in the OCCCs10–30 (not
shown), whereas excellent agreement of the 90th and 10th percentile was inconsistent. A summary of the numerical results
of the OCCCs on different scanners and pulse sequences is listed in Supplementary Material 5 (see Table SF5). Complete
figures of OCCCs of all features, scanners, and sequences are shown in the Supplementary Files 6–8 (see Figures SF6–SF8).
(B). OCCCs20,30 of the first-order features derived from T2w images are shown for the three different MR scanners. The
red benchmark at 0.9 indicates excellent agreement in the OCCCs. Mean, median, RMS, 90th, and 10th percentile showed
excellent agreement on all three MR scanners. On the 3 Tesla MRI I and the 1.5 Tesla scanner, also minimum achieved
excellent agreement in the OCCCs20,30. Mean, median, and RMS also showed excellent agreement in the OCCCs10–30

(not shown), whereas excellent agreement of minimum, 90th and 10th percentile was inconsistent. A summary of the
numerical results of the OCCCs on different scanners and pulse sequences is listed in Supplementary Material 5 (see
Table SF5). Complete figures of OCCCs of all features, scanners, and sequences are shown in the Supplementary Files 6–8
(see Figures SF6–SF8).

For the complete figures of OCCCs10–30 and OCCCs20,30 on the 3 T scanner I see
Supplementary File 6 (see Figure SF6), the 3 T scanner II see Supplementary File 7 (see
Figure SF7), and the 1.5 T scanner see Supplementary File 8 (see Figure SF8). Complete
numerical data of the OCCCs10–30 and OCCCs20,30 is listed in Supplementary File 9a,b (see
Table SF9a,b).

4. Discussion

Our results show that in healthy liver parenchyma, the first-order features mean,
median, and RMS were robust when the volume of the 3D ROI was altered. We observed
the robustness of these features on different MR scanners, field strengths (3 Tesla and
1.5 Tesla), and MR pulse sequences (T1w and T2w). These three features seem applicable
for MR radiomics studies of liver tissue without limitations to the segmented volume.

Across the varying ROI sizes, there was no excellent agreement for any other feature
considering all sequences on all scanners. Thus, on the contrary, most of the other radiomic
features, especially second- and higher-order features, were -confounded by volume, i.e.
when we modified the 3D ROI diameter between 10 and 30 mm, the numeric results
of these features differed significantly. This finding indicates a systematic difference
in the quantitative values of these features caused by different ROI sizes. The applied
3D ROI diameters were defined with two intentions: (1) we intended to cover typical
sizes of liver lesions. For example, a study on 516 metastatic liver lesions showed a
mean size of 28 mm of liver metastases [30]. Small hepatocellular carcinomas (HCCs)
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show diameters of <20 mm [31–33]. Furthermore, many benign liver lesions such as bile
duct hamartomas with usually 10–15 mm diameter [34] or most hepatic hemangiomas
(diameter ≤ 20 mm) [35] would be covered by our ROI spectrum. (2) We aimed to only
include liver parenchyma and exclude structures like bile ducts and blood vessels since
these could influence radiomics analysis. Considering larger ROIs would have been
interesting, but covering only healthy liver parenchyma with the 3D ROIs would have
been impaired.

Agreement across the different segmented volumes also improved for numerous
features when we excluded the smallest ROI diameter from the OCCCs. When we only
considered 20 and 30 mm ROIs, 25 additional second- and higher-order features from T1w
images and 32 additional second- and higher-order features from T2w images were no
longer significantly different. This finding may imply a required minimum ROI diameter
or at least a smaller difference of the ROI size for the stability of several features of at least
20 mm in diameter.

It is also remarkable that even though the two included 3 Tesla MR scanners were
of the identical model from the same manufacturer, OCCCs were different, especially
considering the T2w TSE HASTE-derived features. Within the T1w GRE FLASH-derived
features, there was an overlap of six second- and higher-order features with an excellent
agreement in the OCCCs. Since these features did not show excellent agreement on the
1.5 Tesla scanner, they cannot be considered reproducible in general. Ammari et al., who
investigated radiomic features from MRI scans of homogenous and heterogenous brain
phantoms and healthy volunteers’ brains with different field strengths (1.5 T and 3 T),
observed significant differences in most radiomic features with altering field strength [16].
As a plausible explanation for the features’ differences between the different field strengths,
they state increasing signal-to-noise ratio with increasing field strength, which is, however,
also influenced by the entire signal acquisition system of the scanner and influenced by
voxel size [16].

The developers of the PyRadiomics software applied in our study designate the fea-
ture root mean squared as volume-confounded. RMS is the square root of the mean of all
squared intensity values and a measure of the magnitude of the image values. Volume
confounding increases when the intensities are shifted to prevent negative values from
being squared [20]. In our study, RMS showed reproducible values in all settings: across
different segmentation volumes, on different scanners with different field strength, and
when derived from T1w and T2w MRI sequences. In 2015, a radiomics study with non-
contrast CT images to differentiate healthy liver parenchyma from diffuse liver diseases by
segmenting the whole liver found RMS as a powerful, decisive feature with convincing
AUCs [36]. Fusco et al. presented a quantitative imaging decision support tool for predict-
ing RECIST response in lung carcinomas and described RMS as a robust feature correlating
with lesion size changes in CT scans [37].

Our findings concerning mean, median, and RMS as robust features align with a
recent phantom study investigating radiomic features’ differences in 3D ROI size variations
in CT and MRI in a water phantom [21]. As mentioned above, Roy et al. investigated
the influence of tumor volume, noise, and resolution on MR-derived radiomic features
in breast cancer tumors [19]. They found second- and higher-order features more prone
to noise, which might be a possible explanation for our findings. Moreover, Roy et al.
detected 16 of 48 features to be volume-confounded by different tumor sizes and tried to
correct for that by modeling the data. Mean turned out as a robust parameter in their study,
congruent to our results, whereas median and RMS were not extracted. Nevertheless, they
highlighted dependency on volume as a significant consideration in the design of imaging
studies with radiomic analysis as an endpoint [19]. Rai et al., who investigated the stability
of radiomic features on eight different MR scanners in a phantom study, observed that
features of first-order statistics are more stable across scanners [15].

Several studies attempted to determine radiomics signatures of focal liver lesions.
For example, Ding et al. suggested MR-based radiomics to differentiate hepatocellular
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carcinoma from focal nodular hyperplasia applying a radiomics model with eight selected
features [38]. Yang et al. attempted modeling radiomic features of hepatocellular car-
cinomas to detect poorly differentiated tumors [39]. Both studies delineated the ROIs
around the tumors slice by slice. Since such studies ultimately examine pathologic liver
parenchyma, it remains unclear whether the segmented volumes influenced the results.
However, a normalization against radiomics of healthy liver parenchyma would be de-
sirable. Van Timmeren et al. suggested selecting only the repeatable and reproducible
features and pointed out the demand for standardization for radiomics [40].

Our study has some limitations. One is that, our study group is relatively small. A
larger study group would have been desirable to emphasize our results. Also, the field of
view of every included examination was adapted to the individual patient’s size resulting
in different voxel sizes. Different voxel sizes following variation in matrix and field of view
size are considered to influence many radiomic features [16,19]. Since adaption of the FOV
to the patient’s size is inevitable in clinical routine imaging, features sensitive to voxel size
would only be applicable with a normalization algorithm, as proposed by Shafiq-Ul-Hassan
in CT images [41]. Another, more general problem of texture analysis and radiomics is
that the impact of different software on the features’ numerical values is not yet fully
understood [11]. Ultimately, studies that state robust radiomic features require validation
by feature extraction with additional software packages, as proposed by Lu et al. [13]. In
addition, subtle, invisible parenchymal changes in the subjects’ livers which could have
influenced the radiomic features, cannot be excluded entirely. It was taken into account
that there was no known disease and that the liver had no morphological abnormalities
(e.g., no apparent signal alterations in the spoiled gradient echo sequences, which excluded
fatty degeneration or iron deposition). Nevertheless, in a study focusing on focal liver
lesions, one would also expect these parenchymal changes between individuals. When
considering diffusely altered liver parenchyma, for example, in liver cirrhosis, parametric
maps of appropriate features could allow detection of subtle focal lesions [42].

5. Conclusions

In summary, the first-order features mean median and RMS are robust across varying
3D ROI diameters between 10–30 mm in healthy liver parenchyma in T1w and T2w MR
images on three different MR scanners. Although further influencing factors such as
software and reconstruction algorithm should not be omitted, the features mean, median
and RMS seem to be reproducible, reliable, and broadly applicable to radiomic studies
of liver MRI. Other features did not obtain consistent excellent agreement among the
different 3D ROI sizes in our study. The results of many features, especially for the second-
and higher-order, were significantly altered when the segmented volume was varied,
indicating a systematic difference of the feature quantity dependent on the segmented
volume. Consequently, in radiomics studies, we need to consider differences in segmented
volumes and scrutinize correlations with radiomic feature quantity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/tomography7040073/s1, Textfile SF1a: settings for feature extraction, Textfile SF1b: IBSI
reporting guidelines and checklist, Table SF2: summary of MWU results on the different scanners,
Table SF3: MWU results, Figure SF4: boxplots of MWU results, Table SF5: summary of the OCCC
results on the different scanners, Figure SF6a: OCCCs 3 Tesla I T1 GRE ROIs 10–30 mm, Figure SF6b:
OCCCs 3 Tesla I T1 GRE ROIS 20,30 mm, Figure SF6c: OCCCs 3 Tesla I T2 TSE ROIs 10–30 mm, SF6d:
OCCCs 3 Tesla I T2 TSE ROIs 20,30 mm, Figure SF7a: OCCCs 3 Tesla II T1 GRE ROIs 10–30 mm,
Figure SF7b: OCCCs 3 Tesla II T1 GRE ROIs 20,30, Figure SF7c: OCCCs 3 Tesla II T2 TSE ROIs
10–30 mm, Figure SF7d: OCCCs 3 Tesla II T2 TSE ROIs 20,30 mm, Figure SF8a: OCCCs 1.5 Tesla T1
GRE ROIs 10–30 mm, Figure SF8b: OCCCs 1.5 Tesla T1 GRE ROIs 20,30 mm, Figure SF8c: OCCCs
1.5 Tesla T2 TSE ROIs 10–30 mm, Figure SF8d: OCCCs 1.5 Tesla T2 TSE ROIs 20,30 mm, Table SF9a:
numerical OCCC results ROIs 10–30, Table S9Fb: numerical OCCC results ROIs 20,30.

https://www.mdpi.com/article/10.3390/tomography7040073/s1
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Abbreviations

3D ROI Three-dimensional region of interest
AUC Area under the curve
FLASH Fast Low Angle Shot
GLCM Gray level co-occurrence matrix
GLDM Gray level dependence matrix
GLSZM Gray level size zone matrix
GRE Gradient Echo
HASTE Half Fourier Acquisition single-Shot Turbo Spin Echo
IQR Interquartile range
MAD Mean absolute deviation
NGTDM Neighboring gray tone difference matrix
OCCC Overall concordance correlation coefficient
OCCCs10–30 OCCCs to assess agreement among the 3D ROI diameters 10 mm, 20 mm, and 30 mm
OCCCs20,30 OCCCs to assess agreement among the 3D ROI diameters 20 mm and 30 mm
RMAD Robust mean absolute deviation
RMS Root mean squared
T2w T2-weighted
T1w T1-weighted
TSE Turbo Spin Echo
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