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Autoimmune disease results from the immune response against self-antigens, while cancer
develops when the immune system does not respond to malignant cells. Thus, for years,
autoimmunity and cancer have been considered as two separate fields of research that do
not have a lot in common. However, the discovery of immune checkpoints and the
development of anti-cancer drugs targeting PD-1 (programmed cell death receptor 1)
and CTLA-4 (cytotoxic T lymphocyte antigen 4) pathways proved that studying autoimmune
diseases can be extremely helpful in the development of novel anti-cancer drugs. Therefore,
autoimmunity and cancer seem to be just two sides of the same coin. In the current review,
we broadly discuss how various regulatory cell populations, effector molecules, genetic
predisposition, and environmental factors contribute to the loss of self-tolerance in
autoimmunity or tolerance induction to cancer. With the current paper, we also aim to
convince the readers that the pathways involved in cancer and autoimmune disease
development consist of similar molecular players working in opposite directions.
Therefore, a deep understanding of the two sides of immune tolerance is crucial for the
proper designing of novel and selective immunotherapies.

Keywords: immune tolerance, autoimmune diseases, cancer immunology, tumor microenvironment,
regulatory cells
INTRODUCTION

Immune tolerance is a state of unresponsiveness of the immune system to self-tissues with a
concomitant ability to identify and respond against non-self and dangerous antigens. Multiple
mechanisms shape and control this state, including the elimination of autoreactive receptors from
the system in bone marrow and the thymus (central tolerance). However, not all autoreactive cells
are deleted in the primary lymphoid organs. For example, the naive T-cell repertoire that leaves the
thymus contains up to 40% of low-avidity self-reactive T cells. These cells can potentially trigger an
autoimmune response; therefore, several mechanisms of peripheral tolerance evolved to prevent
their activation (1). Specialized cell subsets, such as regulatory T (Tregs) and B cells (Bregs),
org May 2022 | Volume 13 | Article 7932341
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tolerogenic dendritic cells (tolDCs), and M2 macrophages,
participate in keeping the balance between tolerance and
activation. However, genetic predispositions and epigenetic
modifications combined with exposure to environmental
factors can disrupt this status, resulting in the development of
autoimmunity. Therefore, an increasing number of approaches
that boost the immune tolerance have been evaluated and were
already implemented for the treatment of autoimmune diseases
in humans. On the other hand, the same mechanisms can be
exploited by cancer to set up cancer tolerance (2). In fact, the
attraction of tolerogenic cell subsets and evading immune
response is considered as one of the hallmarks of cancer. The
malignant cells used to express immune checkpoint proteins
show impaired antigen presentation, undergo epithelial-to-
mesenchymal transition (EMT), or present alterations in RNA
editing. In consequence, the presence of a tumor-specific antigen
(TSA) or tumor-associated antigen (TAA) does not elicit
immune responses to malignant cells (3). Therefore, multiple
approaches have been already made to break cancer tolerance
and awaken the immune system for the fight against cancer.
These strategies were based on monoclonal antibodies, adoptive
cell therapies, or therapeutic anti-cancer vaccines. Nevertheless,
there is still a lack of full understanding of the complex network
of mechanisms leading to tolerance induction or its breakdown.
Therefore, with the current review, we aim to discuss the
mechanisms involved in the development of autoimmunity
and cancer, shedding a light simultaneously on two sides of the
same coin. We hope that our paper will sort out the current
knowledge in the field and inspire future studies on
immune tolerance.
MICROBIOME AND IMMUNE RESPONSE

Gut microbiota imbalance is associated with the development
and progression of multiple diseases, such as gastrointestinal
cancers or inflammatory bowel disease. The link between gut
dysbiosis and tumor development has been already reported with
Helicobacter pylori being the best studied pathogen in this
context (4, 5). However, this is definitely not the only
component of the digestive tract microbiome involved in
carcinogenesis. However, not only the composition of
microbiota but also its activity have an impact on cancer
development. Microbial metabolites, such as short-chain fatty
acids (SCAFs) or N-nitroso compounds (NOCs) showed anti-
and procarcinogenic effects, respectively (6, 7). The microbiome,
as well as its metabolites, also affects the function of the immune
system and, in this way, may contribute to cancer tolerance or
the stimulation of anti-cancer responses. For instance, the fungal
genus Candida, which is detected in 74% of oral cancer patients,
was reported to increase the proliferation of myeloid-derived
suppressor cells (MDSCs) known to dampen the anti-cancer
response (8). Therefore, not surprisingly, gut microbiota may
affect the efficacy of anti-cancer management as it was reported
for immunotherapy with immune checkpoint inhibitors. For
instance, the abundance of Bifidobacterium species or
Frontiers in Immunology | www.frontiersin.org 2
Akkermansia muciniphila (next-generation probiotic bacteria)
was associated with slow tumor growth and beneficial responses
to anti-PD-1 (programmed death receptor 1) therapy (9–11).
Therefore, the modulation of gut microbiota may positively affect
treatment efficiency and thus patient survival.

On the other hand, the interactions between immunological,
microbial, and environmental factors in genetically susceptible
individuals are involved in the etiopathogenesis of Crohn’s disease
(12, 13). Dysbiotic microbial alterations, such as low gut
microbiota diversity, as well as a decreased amount of bacteria
belonging to the Firmicutes phylum, are observed in patients with
Crohn’s disease (14). The link between mutations in TLR4 (Toll-
like receptor 4) (rs4986790) and the IL-10 receptor with
Mycobacterium avium subspecies paratuberculosis in these
patients was also noted (15).

The nucleotide-binding oligomerization domain-containing
protein 2/caspase recruitment domain-containing protein 15
(NOD2/CARD15) gene located on chromosome 16q12 was the
first described gene connected with Crohn’s disease pathogenesis
(16, 17). It encodes the NOD2 protein, which is mainly expressed
not only by dendritic cells (DCs) and monocytes but also
enterocytes and Paneth cells. The molecule is known to play a
significant role in the intestinal innate immune response against the
bacterial cell wall. More than 30 variants of the NOD2/CARD15
gene have been identified, while an increased risk of Crohn’s disease
development was connected to R702W, G908R, and L1007fs
variants, as well as P268S and IVS8+158 polymorphisms (17).

The role of microorganisms in autoimmunity development
was also extensively studied for type 1 diabetes (T1D). Molecular
mimicry is described as the structural similarity between self-
and foreign (microbial) antigens and has been connected with
the break of tolerance to pancreatic beta cells in T1D (18).
Researchers described a number of homologies between the
antigens of beta cells and microorganisms such as
Coxsackievirus (19) or Rotaviruses (20). These data
demonstrate a big dynamism of the immune status and suggest
that tuning the microbial repertoire may skew the immune
response to the desirable profile to fight the cancer or restore
immune tolerance to self-antigens.
ESCAPE FROM CENTRAL TOLERANCE
MECHANISMS AND CANCER IMMUNE
EVASION

There is a considerable body of literature presenting the different
genetic factors that are associated with specific disease phenotypes
as well as with the risk of the disease occurrence (21). Various alleles
of human leukocyte antigen (HLA) class I and class II molecules
were reported to be associated with a particular autoimmune disease
occurrence, including T1D, multiple sclerosis (MS), rheumatoid
arthritis (RA), or celiac disease (22, 23). The exact mechanism of
how HLA polymorphisms predispose to autoimmunity remains
poorly understood. However, it is suggested that differences in the
binding affinity of HLA molecules to autoantigens might be
involved (24). Nevertheless, the association between autoimmune
May 2022 | Volume 13 | Article 793234
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disorders and the polymorphisms of other genes involved in
immune cell antigen recognition and activation like protein
tyrosine phosphatase non-receptor type 22 (PTPN22), cytokines,
chemokine receptors, costimulatory molecules, and inhibitory
checkpoints were also identified (25).

The hallmark of autoimmunity is the presence of autoreactive
T and B cells that were not deleted by the mechanisms of central
tolerance (26). One of the most studied defects of T-cell-negative
selection is mutations in the transcriptional autoimmune
regulator gene (AIRE). AIRE is mainly expressed by the thymic
medullary epithelial cells (mTECs) and is responsible for the
expression of tissue-restricted antigens within the thymus. The T
cells responding to these antigens are considered self-reactive
and eliminated through negative selection. Thus, when AIRE is
defective, the T cells specific to self-antigens leave the thymus
and enter circulation. This results in a variety of autoimmune
disorders (27, 28). The mouse models of Aire knockout showed
that the AIRE expression prevents multiorgan lymphocyte
infiltration, various organ-specific autoantibodies, and
infertility (29). In humans, AIRE mutations lead to a severe
condition called autoimmune polyendocrinopathy syndrome
type 1 (APS1) (30, 31). In addition, it was observed that AIRE
expression is regulated by sex hormones, leading to sexual
dimorphism in autoimmune diseases (32, 33). For example, the
castration of male animals led to a lower thymic expression of
AIRE, while estrogen treatment resulted in the downregulation
of AIRE in cultured human thymic epithelial cells (TECs). In
addition, AIRE levels in the human thymus grafted into
immunodeficient mice differed according to the sex of the
recipient (32, 33). Therefore, AIRE has also been extensively
studied in the context of reproductive system cancers. Kalra et al.
reported that the AIRE expression in prostate cancer is
responsible for resistance to anti-cancer therapy and increased
invasiveness. AIRE+ prostate cancer cells were shown to secrete
increased levels of IL-6 and prostaglandin 2 (PGE2), which
polarized the tumor-associated macrophage toward the M2
phenotype with an increased expression of CD206 and CD163
antigens . In addit ion, prostate cancer growth and
lymphadenopathy after subcutaneous tumor engraftment were
only observed in the AIRE+/+ animal model. On the contrary,
AIRE-/- mice showed small benign tumors (33).

The defects of the central tolerance mechanism of B cells,
observed in a number of autoimmune diseases, result in the
accumulation of autoreactive B cells in the periphery. The
mutations of PTPN22, Bruton’s tyrosine kinase (BTK), adenosine
deaminase (ADA), impaired BCR light-chain rearrangements, and
Toll-like receptor (TLR) alterations were observed to contribute to
the increase in autoreactive B cells (34). Recently, PTPN22 also
emerged as a potential target for cancer immunotherapy. It is not
surprising as PTPN22 plays an inhibitory role in the antigen-specific
responses of both T and B cells; dectin-1 signaling in DCs; the
development and function of Tregs; the macrophage functions
mediated via TLRs, NOD2, and NLRP3; and neutrophil
adherence and mast cell activation in an IgE-dependent manner
(35). Several single-nucleotide polymorphisms in the PTPN22 gene
were identified. Themost extensively studied is a missense mutation
Frontiers in Immunology | www.frontiersin.org 3
at position 1858 (C3T), resulting in the substitution of an Arg (R) at
position 620 to Trp (W). The generation of the Lyp620W variant
(also identified as rs2476601) of the protein was found to impair the
negative selection of autoreactive T and B cells during their
development in the thymus and bone marrow, respectively, and
the generation of self-reactive antibodies (36, 37). In consequence,
the Lyp620W variant of PTPN22 was identified in multiple
autoimmune diseases, including T1D, RA, systemic lupus
erythematosus (SLE), Graves’ disease, and myasthenia gravis (38–
41). On the other hand, the same variant of PTPN22 was reported
to augment antitumor responses and be associated with lower
cancer incidence (35, 42). For example, the carriers of the
PTPN22(C1858T) variant have a lower risk of non-melanoma
skin cancer, while the homozygotes for the PTPN22(C1858T)
have improved survival when treated with atezolizumab (anti-
PDL1 antibody). These data underline again that immune
tolerance is indispensable for preventing autoimmunity, but
lowering the threshold of T-cell activation can improve tumor
control and the efficacy of anti-cancer treatment.

Cancer immune evasion and autoimmunity prevalence can also
be affected by sex hormones. Differences in the male and female
endocrine systems lead to discrepancies in the quality and quantity
of their immune responses. It was reported that while the female
immune system provides better antimicrobial and anticancer
responses, it is also more prone to autoimmune diseases (43).
Estrogen levels are higher during pregnancy and are correlated
with an increased proportion of Tregs in peripheral blood (44).
Accordingly, the incidence of relapses of MS in pregnant women
decreases significantly (45). Both innate and adaptive immune cells
express estrogen receptors a and b (higher expression was observed
in B cells than T cells, NK cells, and monocytes) that activate
protolerogenic effects (46). Estrogens drive the polarization of T cells
into Th2 and Treg cells; increase the production of IL-4, IL-10, and
transforming growth factor-b (TGF-b); induce the expression of
GATA-3, FoxP3, PD-1, and CTLA-4 (cytotoxic T-lymphocyte
antigen 4) on T cells; and reduce the Tfh (T follicular helper cell)
response (47, 48). On the other hand, SLE patients experience more
flares during pregnancy (49). Interestingly, B-cell tolerance is
regulated by estrogens at the maturation stage by engaging
estrogen receptor a. Estradiol was shown to be responsible for
decreased B-cell lymphopoiesis while expanding the population of
splenic marginal-zone B cells through the increase of BAFF
concentration (50). Estrogens were also shown to influence
immune cells in the tumor microenvironment (TME). Certain
mutations in the estrogen receptor result in an increase of tumor-
infiltrating Tregs and T helper cells (51). It was also reported that
estrogens influence tumor-associated macrophages, directing their
polarization into the M2 phenotype and thus promoting their
immunosuppressive activity (52, 53).
IMMUNE CHECKPOINTS

Immune checkpoints are inhibitory receptors that convey
negative signals to immune cells, preventing autoimmunity
(54). The importance of immune checkpoints in supporting
May 2022 | Volume 13 | Article 793234
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tolerance and preventing autoimmunity development is best
observed in knockout mice models. For instance, the lack of
CTLA-4, PD-1, BTLA (B- and T-lymphocyte attenuator), TIGIT
(T-cell immunoreceptor with immunoglobulin and ITIM
domain), and VISTA (V-domain Ig suppressor of T-cell
activation) was shown to cause massive lymphoproliferation,
an onset of autoimmune diseases, or fatal multiorgan tissue
destruction (notably CTLA-4 deficiency) (55–61). In humans,
several polymorphisms of immune checkpoint genes were
identified and reported to be associated with susceptibility to
autoimmune diseases (62–70).

CTLA-4 is a critical regulator of T-cell responses expressed by
Tregs and activated conventional T cells. The main role of the
receptor is to inhibit antigen presentation and the following
activation of naive T cells by competitive binding to
costimulatory receptors CD80 and CD86 on antigen-presenting
cells (APCs) (71, 72). It was reported that CTLA-4 not only binds
its ligands but also captures and removes them from APCs by a
process of trans-endocytosis. In consequence, these costimulatory
molecules are degraded inside CTLA-4-expressing cells resulting
in a temporary lack of CD80/CD86 on APCs and thus impaired
costimulation via CD28 (73). CTLA-4 is indispensable for
preventing autoreactivity (74, 75). Its deficiency in humans is a
common hallmark of primary immune deficiencies associated
with immune dysregulation and prominent autoimmunity with
highly variable features. The clinical symptoms probably result
from the aberrant activation of polyclonal T cells. In addition, the
deficiency of CTLA-4 results in increased CD28 co-stimulation
that triggers self-reactive T cells against a variety of tissues. Treg
dysfunction plays a vast role in the immune activation associated
with CTLA-4 loss-of-function mutations (75). On the contrary,
CTLA-4 expression on tumor cells was recognized as a prognostic
factor of poor outcome in breast, pancreatic, and nasopharyngeal
cancers (76–78). The application of therapeutic antibodies
targeting CTLA-4 such as ipilimumab became a breakthrough in
cancer therapy. Anti-CTLA-4 antibodies were shown to unlock
the immune response to cancer, as well as lead to the depletion of
tumor-infiltrating Tregs via antibody-dependent cell-mediated
cytotoxicity. This way, anti-CTLA-4 demonstrated durable
clinical activity in a subset of patients with solid malignancies
including advanced melanoma (79–81).

Programmed cell death receptor 1 (PD-1) is another immune
checkpoint significant for self-tolerance and the cessation of the
immune response that became a target of cancer immunotherapy.
Upon engagement by its ligand (PD-L1, Programmed cell death
ligand 1), PD-1 acts as a brake to the immune system that induces
the apoptosis of activated T cells (82). PD-L1 expression can be
detected in pancreatic islets, vascular endothelial cells, and
placenta where it is responsible for tissue protection from
autoimmune responses (83). For example, in T1D, PD-L1 was
observed to be upregulated in insulin-producing beta cells under
an autoimmune attack and correlated with the intensity of CD8+

T-cell infiltration in the pancreas (84, 85). In addition, PD-1/PD-
L1 interaction was reported to be involved in the generation of
inducible Tregs (iTregs). Francisco et al. showed that PD-L1-
negative APCs had an impaired ability to generate Tregs, either in
Frontiers in Immunology | www.frontiersin.org 4
vitro or in vivo (86). The failure of APCs isolated from SLE
patients to upregulate PD-L1 expression validates these findings in
humans (87). The blockade of PD-1 or PD-L1 in experimental
models of autoimmunity led to disease onset and exacerbation (88,
89), indicating the essential role of these immune checkpoints in
tolerance and, specifically, in Treg maintenance. Recent reports on
autoimmune-related adverse events in oncologic patients treated
with PD-1/PD-L1 axis blockers support these findings (90, 91).

In cancer, effector T cells, which are persistently exposed to
antigen stimulation in TME, express PD-1 at high levels, in the long
term, causing T-cell functional exhaustion. It results in the inability
of T cells to eliminate tumor cells and facilitates cancer progression
(34, 92). Additionally, cancer cells actively exploit PD-L1 to evade
the immune system and hijack the immunosurveillance
mechanisms with PD-L1 expression (93). Moreover, the results
presented by Chen et al. (2018) revealed that apart from cell surface
expression, PD-L1 was present in extracellular vesicles (exosomes)
produced by melanoma cells, suggesting its systematic
immunosuppressive impact (94). As a result, it leads to the
transcriptomic changes and the exhaustion of CD4+ (95) and
CD8+ (96) T cells that are unable to eliminate cancer cells
effectively. In a vast number of cancers, lymphocyte infiltration is
in positive correlation with PD-L1 expression, which is simply an
adaptive mechanism of the tumor to escape an immune response.
Even though tumor PD-L1 expression usually suggests poor
prognosis, then higher levels of tumor PD-L1 expression correlate
with a better efficiency of immunotherapy (97).

Another molecule involved in central and peripheral tolerance is
Fas. Fas/FasL ligation on TCR-stimulated lymphocytes restricts the
overactivation of immune cells after an antigenic challenge, called
activation-induced cell death (AICD). It is one of the main
mechanisms in restoring immune homeostasis (98). The Fas/
FasL-induced apoptosis of B cells was shown to be important in
germinal center reactions (98). FasL can be expressed on non-
immune cells in immune-privileged sites such as the eye, brain, and
placenta, restricting the access of activated immune cells to these
tissues (99). Alterations in Fas-mediated apoptosis were implicated
in the pathogenesis of autoimmune diseases. Mutations in Fas/FasL
axis-related genes lead to a striking lymphoproliferation with
autoimmune cytopenias in humans termed autoimmune
lymphoproliferative syndrome (ALPS) (100, 101). An interesting
feature of ALPS is an accumulation of double-negative T cells that
are terminally differentiated, with the markers of immune
exhaustion (102). On the other hand, increased expression of
FasL was observed in T1D (103), autoimmune thyroid diseases
(104), and in MS (105, 106). An interesting feature of Fas/FasL
signaling is the opposite outcome of ligation with membrane-bound
versus soluble forms of these molecules where the soluble Fas and
FasL do not induce apoptosis (107, 108). This discovery prompted
studies investigating the levels of serum Fas/FasL molecules in
autoimmune diseases, revealing elevated levels in SLE patients
(107, 109) and Sjögren’s syndrome (SS) (110). Excessive Fas
signaling in the tumor microenvironment, majorly caused by high
levels of the Fas ligand released by myeloid-derived suppressor cells
(MDSCs), leads to the apoptosis of tumor-infiltrating lymphocytes
(TILs) and was described as one of the core reasons for the failure of
May 2022 | Volume 13 | Article 793234
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cancer immunotherapy (111). In addition, FasL was reported to be
expressed in numerous cancer types with a potential to induce the
apoptosis of immune cells in the TME and was associated with poor
prognosis. On the other hand, there is still controversy when it
comes to the role of Fas/FasL axis in cancer cells. Several in vitro
studies suggest that the ultimate effect may depend on the level of
FasL expression by tumor cells. As elevated levels of FasL cause
neutrophil-mediated inflammation that leads to tumor rejection,
surprisingly low levels of FasL seemed to facilitate tumor growth.
The Fas/FasL role in cancer is still not fully understood and brings a
lot of controversies but surely requires further investigation as
targeting Fas may significantly improve the efficiency of
immunotherapy and tumor rejection (112, 113).

Other known immune checkpoints include BTLA, T-cell
immunoglobulin and mucin domain-3 (TIM-3), and TIGIT (114,
115). In general, all were shown to inhibit the responses of activated
T cells, while BTLA also demonstrated an impact on B cells (116). It
was observed that patients with SLE and MS present a low
expression of BTLA on B and T cells (117–119). Its decreased
expression on naïve B cells was associated with increased IFN-g and
autoantibody levels in SLE patients that could suggest alterations in
B-cell activation during the course of the disease (118). In
conditions where Th17/Treg balance is shifted, the involvement of
immune checkpoint signaling pathways was also implicated. A
study by Wu et al. described a lower frequency of TIM-3 positive
T cells together with increased IL-17 levels in patients suffering from
autoimmune hepatitis, and experiments on mice confirmed that the
blockade of TIM-3 signaling aggravated liver injury (120). TIGIT
has been recently associated with Treg biology through the
transcriptional profiling of these cells. It was suggested to be a
marker of natural thymus-derived Tregs (tTregs) with strong
suppressive activity and lineage stability (121). It competes with
the CD226molecule for binding a costimulatory poliovirus receptor
(PVR) CD155 and inhibitory CD112 (Nectin-2) expressed on DCs
(121). TIGIT-CD226 signaling in T cells was shown to be
implicated in the pathogenesis of experimental autoimmune
encephalomyelitis (EAE). CD226 knockout EAE mice showed
favorable Th17/Treg proportion and increased TIGIT and CTLA-
4 expression on Tregs (122). On the other hand, the lack of TIGIT
resulted in increased levels of proinflammatory cytokines and
hindered IL-10 production by T cells (61). Recently, a novel
ligand for TIGIT was discovered on cancer cells. Nectin4 was
reported to bind exclusively to the TIGIT molecule (123). TIGIT-
Nectin4 interaction inhibits natural killer (NK) cell activity, which is
a crucial element of the anti-cancer immune response. In addition,
antibodies blocking Nectin4 induced enhancement of tumor killing
in vitro and in vivo (123).
REGULATORY T CELLS

Central tolerance is crucial for the development of a small subset of
intermediate-affinity, self-reactive T-cell clones that are rescued
from deletion and become (tTregs) (124, 125). Apart from tTregs,
Tregs can be induced on the periphery from naïve or effector T cells,
becoming peripheral Tregs (pTregs). In addition, specific Treg
Frontiers in Immunology | www.frontiersin.org 5
subpopulations can be distinguished based on secreted cytokines,
such as type 1 regulatory T cells (Tr1), T-helper type 3 cells (Th3),
and IL-35-producing regulatory T cells (iTr35). They secrete IL-10,
TGF-b, and IL-35, respectively (126–128). Functionally, follicular
Tregs (Tfr) can also be distinguished within the FoxP3+ population
(129). Tfr cells have a TCR repertoire resembling tTregs and were
shown to be able to control germinal center reactions and antibody
production (130, 131).

Tregs exert their immune-suppressive effects using diverse
mechanisms. The most important are (1) a high expression of
immune checkpoint inhibitors; (2) infectious tolerance, where
Tregs exert and transfer suppressive activity toward other
immune cells when activated by autoantigens (132); (3) the
secretion of anti-inflammatory cytokines (133), (4) IL-2
deprivation, and (5) adenosine accumulation via CD39 and
CD73 activities (134). Apart from cytokines, extracellular
vesicles are recently gaining attention as a way of efficient
intercellular communication with a significant role in the
regulation of the immune system (135, 136).

Tregs are crucial for preventing autoimmune reactions
(Figure 1). They play an important role in immune tolerance
maintenance, as their deficiency causes immune dysregulation,
polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome,
leading to multiorgan autoimmune damage when not treated (137,
138). Numerous studies described quantitative Treg changes in
autoimmune diseases. A decrease in the Treg population was shown
in juvenile idiopathic arthritis (139) and RA (140). However, in
some diseases, such as systemic sclerosis (SSc), Tregs were shown to
be increased (141). The results from SLE patients regarding Treg
frequencies are conflicting, which may arise from differences in the
analyzed phenotypes of Tregs (142). Numerous studies suggested
the decreased immunosuppressive potential of Tregs in
autoimmune diseases (143–147). The main limitation of studying
Tregs in human organ-specific diseases is usually the lack of insight
into the damaged tissue, as systemic and local immune responses
may differ dramatically. Nevertheless, several studies pursued this
problem. For instance, Marazuela et al. reported lower numbers of
Tr1 and higher proportions of tTregs in the thyroid glands of
patients with autoimmune thyroid disease (AITD) as compared
with peripheral blood (145, 146). In patients with relapsing–
remitting MS (RR-MS), higher frequencies of Tregs were present
in cerebrospinal fluid (CSF) rather than in the peripheral blood. The
same group of patients had decreased peripheral blood Treg levels
compared to the patients with secondary-progressing MS and other
neurological diseases, suggesting themigration of Tregs to the site of
autoimmune inflammation (148). In addition, the primary role of
tTregs, as opposed to pTregs, was demonstrated to control T1D
development. However, the deficiency in pTregs increased the
incidence of insulitis (149). In the synovial fluid of arthritis
patients, high frequencies of iTregs and tTregs were present;
however, tTregs presented an unstable FoxP3 expression.
Moreover, FoxP3- Tregs were converted to IL-17-producing cells
under the environment of the inflamed joint (150, 151). The Th17
cytokine profile (IL-17, IL-12, IFN-g) influences the organ tissue
environment, causing chronic inflammation and, ultimately, organ
failure (152). Considering the close transcriptional programs of
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Th17 and Tregs, both depending on TGF-b, Tregs in the presence
of IL-6 were shown to be converted into Th17 cells, or IL-17+ ex-
regulatory T cells (exTregs). This plasticity of Tregs results in the
blunting of suppressive capacity and the secretion of
proinflammatory IL-17 and IFN-g (153–155). On the other hand,
cytokines IL-10 and TGF-b enable the differentiation of immune
cells into anti-inflammatory Tregs, Bregs, tolDCs, and M2
macrophages (155).

Indisputably, within the TME, Tregs are present in high
frequencies. Treg presence is accommodated by the
immunosuppressive cytokine milieu at the site as well as the
chemotactic factors produced in TME. High numbers of FoxP3+-
expressing Tregs infiltrating TME in lung, breast, and pancreatic
cancers were associated with poor prognosis (156). Tregs express
various chemokine receptors, like CCR4 and CCR5, that allow
migration to TMEmore efficiently (157, 158). TME is rich in TGF-b
and promotes the differentiation of conventional CD4+ T cells into
pTregs (159). Resting Tregs are not immunosuppressive unless they
become activated through TCR engagement and signaling
molecules. The Tregs found in TME are, however, highly
activated and immunosuppressive, characterized by upregulated
levels of the master regulatory transcription factor FoxP3 (160).
This subsequently leads to the suppression of CD8+ T cells, NK cells,
Frontiers in Immunology | www.frontiersin.org 6
NKT cells, and M1 macrophages and the maturation of DCs
through IL-10, TGF-b, and indoleamine-pyrrole 2,3-dioxygenase
(IDO) (161–163). In addition, Tregs not only bind IL-2
competitively to conventional T cells but also release soluble
CD25 (IL-2R subunit) that eliminates IL-2 and alters cytotoxic T-
cell functions. Tregs in TME may also release IL-35 that increases
the expression of inhibitory receptors like PD1, TIM-3, and
lymphocyte-activation gene 3 (LAG-3). This leads to the
exhaustion of TILs (164–166). Interestingly, Treg elimination that
was followed by cancer antigen vaccination generated effective anti-
tumor CD4+ and CD8+ T-cell responses in cancer patients with
advanced malignancies (167). However, as mentioned before,
systemic Treg depletion would lead to severe autoimmune
disorders, emphasizing the need for more selective methods that
would specifically target intratumoral Tregs.
REGULATORY B CELLS

B-cell maturation mechanisms require consecutive checkpoints
to develop tolerance: clonal deletion, receptor editing, and
anergy. Immature B cells transmitting an overly strong signal
FIGURE 1 | Autoimmunity and cancer as two sides of the same coin. The figure depicts how tuning of immune system regulatory mechanisms can contribute to
autoimmunity, health, or cancer development. A decrease in regulatory cell populations like Tregs, Bregs, M2 macrophages, and MDSCs leads to autoimmune
disease onset. However, an increase in the same cell subsets is associated with cancer development and progression. Effector molecules involved in immune
tolerance induction are downregulated in autoimmunity but overexpressed in cancer. The most important molecules mentioned in the text are listed. AIRE,
autoimmune regulator; CTLA-4, cytotoxic T-lymphocyte antigen 4; PD-1, programmed cell death receptor 1; PD-L1, programmed cell death ligand 1; BTLA, B-
and T-lymphocyte attenuator; TIM-3, T-cell immunoreceptor with immunoglobulin and ITIM domain; TIGIT, T-cell immunoglobulin and ITIM domain; TGF-beta,
transforming growth factor beta; IL, interleukin; ARG-I, arginase I; IDO, indoleamine-pyrrole 2,3-dioxygenase; PNT, peroxynitrite; LAG-3, lymphocyte-activation
gene 3 (figure created with BioRender.com).
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through the B-cell receptor (BCR) in response to self-antigen
undergo clonal deletion. A tolerance mechanism unique to B
cells is the possibility of repeated immunoglobulin light-chain
gene recombination. Such rearrangements lead to alterations in
BCR specificity to ideally avoid the formation of self-reactive B-
cell clones (168, 169). The subsets of B cells expressing PD-1
(170), TIM-3 (171), and BTLA (117) were described as Bregs, an
important element for the maintenance of peripheral tolerance
(Figure 1). However, a consensus regarding the definition and
detailed phenotype of Bregs has not yet been reached. The
distinct methods for identification in various disease models
and different tissues complicate the general classification. IL-10,
TGF-b, and IL-35 have been identified as the main suppressive
cytokines produced by Bregs; thus, some authors used to classify
the cells into IL-10+, TGF-b+, and IL-35+ Bregs (172). Among IL-
10+ human Bregs, the following phenotypes of Bregs were
reported: CD1dhi CD5+ (173), CD5+ (174), CD24hiCD27+

(175), CD24hiCD38hi (176–178), CD25+CD71+CD73−, and
CD25+CD71+CD73lowPD-L1+ (179) , CD154+ (180) ,
CD5hiCD38lowPD-1hi (181), CD27intCD38+ (182). Up to now,
2 subsets of TGF-b+ Bregs have been identified in humans:
CD25hiCD27hiCD86hi CD1dhi (183) and CD24hiCD38hi (178).
Despite the fact that IL35+ B cells have been identified in
humans, up to now, specific surface markers have not been
reported for these cells in men (172, 184). The manipulation of
the Breg compartment through the adoptive transfer of isolated
or ex vivo-induced cells was explored in the murine models of
autoimmune diseases. For example, IL-10+ Bregs were shown to
suppress inflammation in the mice models of RA, EAE, and SLE.
The most prominent therapeutic effects were observed when
Bregs were administered early in the disease course (183, 185–
188). The mechanisms used by Bregs have not been studied
extensively. Nevertheless, in vitro studies performed by Kessel
et al. resulted in several interesting observations. Human Bregs
defined as CD25high CD27high CD86high CD1dhigh IL-10high TGF-
bhigh cells were shown to significantly decrease the proliferation
of autologous conventional CD4+ T cells in a dose-dependent
manner. In addition, Bregs were found to upregulate FoxP3 and
CTLA-4 expression in Tregs in cell-to-cell-dependent contact.
The effect was even stronger when Bregs were pretreated with a
TLR-9 agonist (oligodeoxynucleotide) and CD40L (183). The
other groups also reported the suppressive effects of Bregs on DC
and macrophage cytokine production and antigen presentation
(175, 189). Increased frequencies of IL-10+ B cells and their
progenitors were found in patients with various autoimmune
diseases, such as SLE, RA, SS, autoimmune vesiculobullous skin
disease, and MS. However, the significance of Bregs in the
pathogenesis of human autoimmune diseases is yet to be
determined (175).

The impact of B cells in cancer is still unclear and ambiguous
as they were shown to play a role in both cancer promotion and
anti-cancer responses (190). Significant B-cell infiltration was
found in breast cancer, non-small cell lung cancer (NSCLC),
ovarian cancer, melanoma, and renal cell carcinoma. Bregs have
been also identified in a number of cancers including lung (191),
gastric (192), and breast cancers (193). Increased infiltration with
Frontiers in Immunology | www.frontiersin.org 7
Bregs results in the inhibition of effector T-cell responses and
their impaired proliferation. It was suggested that the tumor and
TME can direct tumor-infiltrating B cells into tumor-induced
Bregs (tBregs) (194) by the direct tumor cell: B-cell contact (195).
Lindner et al. reported that tumor-infiltrating Bregs use
Granzyme B for the degradation of the CD3 z-chain in CD4+

T cells. The phenomenon results in a limited proliferation of the
target CD4+ T cells (196). Interestingly, tBregs were also shown
to play a substantial role in the education of MDSCs, enhancing
cancer-induced immune suppression (197). In addition, Breg-
derived IL-10 leads to the conversion of conventional B cells into
Bregs and contributes to Treg expansion (183). tBregs were also
found to direct conventional CD4+ T cells into Tregs in breast
and gastric cancers (177, 198). Another study utilizing a mouse
model showed that tumor-educated Bregs suppress not only the
proliferation of helper and cytotoxic T cells but also the secretion
of Th-1 cytokines and the expansion of NK cells in a TGF-b- or
PD-L1-dependent manner (195). A similar immunosuppressive
activity was reported for IL-35+ Bregs. Breg-derived IL-35 was
shown to stimulate cancer (199), as well as convert both T and B
cells into Tregs and Bregs, respectively. Several surface molecules
have been identified to be involved in direct cell-to-cell
interactions between Bregs and the target immune cells, like
Bregs CD40/CD40L, CTLA-4/CD80 and CD86, PD-L1/PD-1, or
Fas/FasL (200–203).
MYELOID-DERIVED SUPPRESSOR CELLS

A significant population of cells identified within the tumor was
described as activated immature myeloid cells with
immunosuppressive function, termed myeloid-derived
suppressor cells (MDSCs). These cells, in general, can be
divided into 2 populations: mononuclear (M-MDSCs;
CD11b+Ly6G−Ly6Chi) and polymorphonuclear/granulocytic
MDSCs (PMN-MDSCs; CD11b+Ly6G+/hiLy6Clow/int) (204).
The granulocyte monocyte-colony stimulating factor (GM-
CSF), vascular endothelial growth factor (VEGF), stem cell
factor (SCF), prostaglandins, TNF-a, IFN-g, and IL-18 were
shown to promote the differentiation of functional MDSCs that
contributed to the establishment of immunosuppressive niche
and tumor progression (205–209). MDSCs were shown to be
engaged in the suppression of TIL activity, EMT, and
angiogenesis and participate in establishing a pre-metastatic
niche (210, 211). In addition, the increased production of
nitric oxide (NO) by MDSCs resulting from inducible nitric
oxide synthase (iNOS) overexpression was reported to be
responsible for T-cell apoptosis and proliferation suppression,
as well as the inhibition of antigen presentation by DCs (212,
213). Moreover, MDSCs isolated from tumor-bearing animals
showed significantly higher levels of reactive oxygen species
(ROS) than the cells isolated from healthy controls. Further
studies demonstrated that ROS are crucial for the MDSC
suppression of T-cell proliferation, survival, and TCR signaling
(214–216). It was also reported that MDSCs express elevated
levels of arginase I (ARG-I; Figure 1). This way, they can deplete
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TME from indispensable amino acids, such as L-arginine or
cysteine affecting T-cell activation and proliferation (217, 218).
One of the mechanisms that stands behind this T-cell
suppression is the downregulation of the CD3 z-chain of the
TCR complex (219). Tumor-derived MDSCs are also a potent
source of IDO, an L-tryptophan-degrading enzyme that induces
the suppression of T-cell proliferation and survival, as well as
promotes Treg induction (220–222). Another important effector
molecule used by MDSCs is peroxynitrite (PNT). The
production of PNT in TME was shown to nitrate the TCR
complex, leading to the unresponsiveness of tumor-infiltrating
cytotoxic T lymphocytes to the specific antigens presented by
MDSCs (223–225).

It is also recognized that MDSCs participate in the generation
of immunosuppressive adenosine (226, 227). MDSCs express the
ectoenzymes triphosphate diphosphohydrolase 1 (NTPDase 1/
CD39) and ecto-5’-nucleotidase (5’-NT/CD73). The first
ectoenzyme is responsible for the hydrolysis of extracellular
ATP or ADP into AMP, which is then degraded by CD73 into
adenosine. Adenosine is known to inhibit the activation and
effector function of T cells, mainly by A2A and A3 adenosine
receptors (228). However, these receptors can also be found at
the surface of MDSCs. The blockade of the A2B receptor was
shown to reduce the secretion of IL-10 and monocyte
chemoattractant protein 1 (MCP-1) by MDSCs in mice with
melanoma (229). Aside from IL-10, TGF-b is another cytokine
important for MDSC function. MDSC-derived IL-10 and TGF-b
promote the differentiation of T cells into Tregs and suppress T-
and NK-cell activation as well as DC function (230, 231). TGF-b
was reported to induce EMT in cancer cells (211, 232), generate
pro-tumorigenic M2 macrophages (233), and drive pro-
tumorigenic neutrophil polarization (234). In NSCLC, higher
levels of TGF-b were associated with an increased expression of
inhibitory molecules such as CTLA-4 and TIM3 on cancer cells
(235). It was suggested that MDSCs are responsible for the
induction and recruitment of the Treg population in the TME.
While the process of Treg induction is not fully elucidated and
was suggested to depend on cytokine milieu and cell-to-cell
contact, the Treg recruitment was shown to be largely dependent
on the production of CCL2 and CCL5 chemokines (236, 237).
On the other hand, MDSCs may also limit the T-cell infiltration
of the tumor by metalloproteinase 17 (ADAM17), which cleaves
L-selectin (CD62L) present on the surface of naïve T cells. In
consequence, T cells are not able to infiltrate tumor or enter
peripheral lymph nodes (238).

The growing body of research onMDSCs and their suppressive
capacity in TME sparked interest for the exploration of their role
and potential therapeutic use in autoimmune diseases. In the aim
to diminish the heterogeneity of studied MDSCs, they used to be
divided into M-MDSC (CD11b+Ly6G−Ly6Chi) and PMN-MDSC
(CD11b+Ly6G+/hiLy6Clow/int) subsets as in cancer studies (239,
240). Multiple studies on the animal model of MS have pointed to
the beneficial role of MDSCs in autoimmunity. Moliné-Velázquez
et al. identified ARG-I positive MDSCs in the spinal cord during
the course of EAE. The cells showed tropism to demyelinated areas
in CNS. The density of ARG-I+ MDSC infiltrate, as well as the
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local proportion of the apoptotic T cells, correlated with the
disease course and clinical state. They peaked in parallel with
the clinical score, which were decreased significantly during
remission, and was not detectable in the chronic phase (240).
These data correspond with the previous studies that reported the
presence of ARG-I+ cells exclusively when the switch from
proinflammatory to anti-inflammatory conditions occurred and
the active phase was about to end (241–243). These data indicate
that MDSCs are involved in limiting inflammatory damage in MS
and contribute to relative recovery in the remitting phase of
the disease.

In humans, as in previously described animal studies, the
numbers of MDSCs were found to be an indicator of the disease
phase. For example, RR-MS was characterized by significantly
higher levels of the PMN-MDSC subset in the peripheral blood at
relapse than in the remission period or in healthy individuals.
Experiments in vitro revealed that PMN-MDSCs from patients
with RR-MS suppress autologous T-cell proliferation, suggesting
their beneficial role for remission induction (244).

However, higher proportions of M-MDSCs were observed to
be positively correlated with proinflammatory Th17 and Th1
cells, as well as with a worsened metabolic profile in the patients
with T1D and their relatives at elevated risk for the disease (245).
Similar patterns were described in RA (246) and SLE (247).
These data indicate that a detailed characterization of MDSC
subsets and their further stratification is inevitable if MDSCs are
planned to be harnessed to stop autoimmune diseases.
Nonetheless, the idea of utilizing the suppressive activity of
MDSCs in therapy prompted the experiments of adoptive
transfer of MDSCs to diabetes-prone mice that successfully
prevented the onset of autoimmune diabetes and established
tolerance to self-antigens via Treg induction (248).
MACROPHAGES

Macrophages can be divided into two main groups, classically
activated, proinflammatory macrophages (M1) and alternatively
activated macrophages (M2) with anti-inflammatory and
regenerative properties. M1 and M2 cells can be distinguished by
secreted cytokines, for example, INF-g, IL-1, IL-6, IL-12 and IL-10,
and TGF-b, respectively. However, macrophages exhibit exceptional
plasticity depending on the microenvironment (249). It has been
reported that tumor-associated macrophages (TAMs) are recruited
to TME by chemokines, such as CCL2 in different tumors, including
glioblastoma and breast and lung cancers (250–252). Moreover,
TAMs start to produce CCL2 and thus recruit more macrophages
and stimulate their polarization toward a pro-tumoral M2
phenotype (253–256). Targeting TAMs in pancreatic ductal
adenocarcinoma by inhibiting CCR2 has shown a therapeutic
benefit by restoring anti-tumor immunity in preclinical models
(257). Although TAMs can produce IL-8, a chemotactic factor for T
cells, high levels of IL-8 in plasma, peripheral mononuclear cells,
and TAMs were negatively correlated with clinical prognosis
regardless of high CD8+ T-cell infiltration in the tumor (258).
TAM-derived cytokines include IL-6, IL-10, and TGF-b.
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IL-6 combined with IL-6R can activate anti-apoptotic pathways in
tumor cells and prolong their survival (259). A meta-analysis
revealed that the serum levels of IL-10 are positively correlated
with tumor progression, showing the importance of TAMs in the
promotion of tumor development (Figure 1) (260). Additionally,
TAMs secrete inflammatory mediators, including prostaglandin E2
(PGE2) and matrix metalloproteinase-7 (MMP-7). These molecules
interfered with TLR-mediated or IFN-g-mediated DC and
macrophage activation. In addition, a direct induction of genes
that suppress APC function was observed. Thus, TAMs indirectly
impair the T-cell recognition of tumor antigens (261).

Macrophages are constantly present in peripheral tissues, where
they can rapidly act as APC, as shown in the T1D animal model
(262). In autoimmune diseases, the overreaction of the immune
system and the resulting highly proinflammatory environment lead
to tissue damage. Therefore, the imbalance in M1/M2 macrophage
subsets was observed in several autoimmune diseases, both organ
specific (MS) (263) and systemic with in-tissue manifestations (RA,
SLE, SSc; Figure 1) (264). Recent studies on human pancreata from
T1D patients, using multiparametric analyses, revealed the presence
of macrophages of mixed M1/M2 characteristics, confirming the
high plasticity of these cells (265, 266). Studies on EAE showed that
the polarization of macrophages follows the natural pattern of the
disease with the increase of M2 macrophages during the remission
phase (263). The adoptive transfer ofM2macrophages in themouse
model of SLE decreased the disease severity score (267) and
prevented diabetes in NOD mice (268). Importantly, these
transferred cells were homed to the site of ongoing insulitis (268).
These results suggest an attractive therapeutic opportunity.
FIBROBLASTS

TME contains a special subpopulation of fibroblasts with a
myofibroblastic phenotype. Cancer-associated fibroblasts
(CAFs) are activated, but unlike in a physiological wound-
healing process and tissue repair, they remain constantly
activated, leading to pathological fibrosis. Active fibroblasts
and myofibroblasts are the main effectors involved in the
initiation of fibrosis due to excessive collagen deposition and
the modulation of extracellular matrix (ECM) (269, 270).
Multiple mechanisms can be involved in their activation, like
the composition of the (ECM), DNA damage, physiological
stress (mediated by ROS), inflammatory signals (e.g., IL-1 and
IL-6), and growth factors, fibroblast growth factor (FGF) and
platelet-derived growth factor (PDGF) (271–273). Once
activated, they are sufficient not only to promote tumor growth
but also to further model ECM; produce proinflammatory
cytokines, proangiogenic VEGF, and the chemokine ligand
CXCL12 that is responsible for attracting immunosuppressive
cells into TME that indirectly assist in immune tolerance
establishment” as this part of the sentence is continuation of
the role of CXCL12 (274). It was reported that throughout the
secretion of TGF-b, CAFs induce the occurrence of EMT and
promote lung metastasis in breast cancer (275). Moreover, the
cytokine is involved in the synthesis of collagen and matrix
Frontiers in Immunology | www.frontiersin.org 9
modification by macrophages and fibroblasts, leading to local
tissue scarification, like pulmonary fibrosis (276). Tissue fibrosis
and the contractile properties of myofibroblasts stiffen ECM
subsequently, lowering blood circulation and leading to local
tissue hypoxia (277). These effects also reduce the possibility of
cytotoxic effectors to reach cancer cells, therefore reducing
immune surveillance and therapy efficacy. While using the
combinations of multiple biomarkers to help identify cell
subsets in TME, it has been found that the presence of CAFs is
negatively correlated with the prognosis in patients receiving
PD-1 immunotherapy in metastatic melanoma (266). This shows
that the combination of different biomarkers can not only help us
target CAFs as a potential clinical marker for the success of
therapy, but targeting CAFs can also improve the efficacy of
immunotherapy. Inhibiting the growth and proliferation of
CAFs and preventing or reversing their activation status are
potential ways to target CAFs in cancer therapy.

The therapeutic application of fibroblasts in autoimmune
diseases has not been extensively studied. Jalili et al. reported
tolerance induction by fibroblasts in the animal model of T1D
and pancreatic islet transplantation. However, the therapeutic
fibroblasts were transduced with a lentiviral vector carrying IDO
cDNA. Thus, the cells artificially overexpressed IDO and
efficiently suppressed immune responses (278, 279)
Nevertheless, the data of Khosravi-Maharlooei et al. suggest
the potential therapeutic use of fibroblasts in autoimmune
diseases. They showed that fibroblasts can condition DCs to
express higher levels of co-inhibitory molecules and anti-
inflammatory cytokines. In addition, fibroblasts arrested the
ability of DCs to induce the proliferation of T cells in both
direct and indirect pathways. Fibroblast-primed DCs were also
reported to migrate to the regional lymph nodes and present
fibroblast-derived antigens. This study sheds light on the role of
fibroblasts in the maintenance of self-tolerance and regulation of
immune responses (280). Finally, the data provide inspiration for
the future therapeutic approaches.
EPITHELIAL-TO-MESENCHYMAL
TRANSITION IN CANCER AND
AUTOIMMUNE DISORDERS

Another complex phenomenon modulating immunity is EMT,
which induces morphological changes in epithelial cells, after
which, they start to resemble mesenchymal cells—fibroblasts
(281–284). As a result, cells undergoing EMT show increased
motility and invasiveness due to the degradation of extracellular
matrix, but it can also acquire other features, like stem cell
properties or the ability to escape the immune system, which
overall contributes to the aggressive phenotype of cancers (281,
285, 286). A direct connection between immunotolerance and EMT
was shown in breast and lung cancer in vitro studies, where upon
EMT induction, the expression of PD-L1 in cancer cells increased
(287, 288). Moreover, cells with a mesenchymal phenotype showed
higher levels of PD-L1 than cells of epithelial phenotype (288).
Hypoxic hepatoma cells, which undergo EMT, induce IDO
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expression in monocyte-derived macrophages and further suppress
the proliferation of T cells as well as promote the expansion of Tregs
(289). Pancreatic tumors with EMT features co-express PD-L1, and
melanoma cells with EMT features show increased NK
immunosuppressive function in comparison to epithelial
melanomas (290), which overall indicates that EMT in cancer
cells leads to a decreased immune response. On the other hand,
the EMT inducers present in the tumor microenvironment can
modify the activity and composition of the immune cells in the
tumor niche. TGF-b, a potent inducer of EMT in multiple cancers,
including breast (291, 292), lung (235, 293, 294), and colon (295,
296) cancers, exerts immunosuppressive function (235). In lung
adenocarcinoma, the EMT signature of the tumor was associated
with increased infiltration by CD4+ FoxP3+ Tregs (297), a decreased
infiltration of activated effector T cells (including Th17 cells), and
higher levels of activated B cells and gd T-cells (235). Similarly, in
patients with pancreatic ductal adenocarcinoma, tumors with
mesenchymal features have decreased the number of CD8+ T
cells and increased the frequencies of Tregs (298).

EMT develops in response to chronic inflammation where it can
lead to pathological fibrosis-the generation of myofibroblasts, which
actively deposit ECM, leading to a decreased functionality of the
affected organs (299–301). The triggers for EMT and fibrosis are
overlapping; most importantly, both require TGF-b (302, 303).
Chronic inflammation in autoimmune disorders such as RA,
Crohn’s disease, SLE, or scleroderma have been associated with
fibrotic tissue remodeling (300, 304, 305). The local
proinflammatory environment is not neutral for tissue-resident
mesenchymal cells/fibroblasts that become activated and, as
ECM-producing cells, exacerbate fibrosis. Signaling through the
proinflammatory IL-17A receptor was responsible for fibroblast
activation and the fibrosis of lung tissue in RA-associated lung
disease and idiopathic pulmonary fibrosis (306). It seems that
during chronic inflammation, overridden tolerance mechanisms
interfere in the natural process of healing and repair mediated by
fibroblasts, which can additionally support inflammation.
RNA EDITING

One of the mechanisms used by the innate immune response for
self- vs. non-self-recognition is the RNA-editing process. There are
two main types of RNA editing: (i) adenosine-to-inosine (A-to-I)
conversion catalyzed by adenosine deaminases acting on RNA
(ADAR) enzymes and (ii) cytidine to uridine (C-to-U)
deamination by apolipoprotein B mRNA-editing catalytic
polypeptide-like (APOBEC) family. A-to-I RNA editing allows
cells to mark the host RNA as self. This way, the cell is able to
recognize and tolerate edited self-RNAs with viral dsRNA sensors
(such as PKR, MDA5, and RIG-I) and simultaneously discriminate
non-edited dsRNAs present in the cells as viral genetic material
(307). This launches an innate immune response, and results in
death of cells where non-edited dsRNA was detected. Defects in
RNA editing may contribute to autoimmune diseases and are
observed in various cancers (308, 309).
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The role of RNA editing and the enzymes involved in this
process in cancer are currently being explored (308). Potentially,
RNA editing may lead to presentation of edited and thus changed
peptides by the MHC class I molecules of malignant cells. This
phenomenon was recently shown in melanoma, where TILs were
able to recognize the peptides derived from the ADAR1-edited form
of cyclin I (CCNI) presented on the surface of cancer cells (310).
These findings suggest that either the absence of or a higher
expression of ADAR1 can result in novel ADAR1-dependent
neoantigens that may be used as biomarkers in cancer or as
potential targets for cancer immunotherapy. The study of Asaoka
et al. supports this hypothesis. The increase of APOBEC3-mediated
RNA editing in breast cancer was correlated with a higher T-cell
infiltration of the tumor, improved survival, and better prognosis
(311). The role of RNA editing in immune regulation is also proven
by the fact that the expression of some RNA-editing enzymes is
dependent on IFN (312). The knockdown of Adar1 in mouse B16
melanoma cells was shown to increase the susceptibility of the
tumor cells to anti-PD1 therapy after engraftment to animal model
(313). Interestingly,Adar1 knockout does not disturb growth of B16
cells in culture but mediates killing of B16 Adar1-/- cells by T
lymphocytes in vivo. This effect is determined by abnormal
activation of the intracellular dsRNA sensors (Mda5 and PKR) by
unedited intracellular dsRNA mimicking virus infection (314). In
contrary to B16 mouse melanoma cells, in many human cancer cell
lines, loss of ADAR1 results in cell death, even in the absence of
innate immune cells. These ADAR1-dependent tumors usually
show high IFN induction, probably through the innate immune
DNA sensor STING (315) and have a higher expression of both:
IFN-stimulated genes (ISGs, including ADAR1) and innate immune
sensors for dsRNA, than other types of tumor cells. In addition, they
are sensitive to elevated levels of dsRNAs while ADAR1 knockdown
is lethal for these cells through the Mda5/MAVS and PKR
pathways (315).

RNA editing is also involved in autoimmune diseases
connected to the dysregulation of IFN signaling. For instance,
mutations in the ADAR1 gene were identified to be involved in
the development of type I interferonopathies, including Aicardi–
Goutieres syndrome (316), dyschromatosis symmetrica
hereditiaria (317), bilateral striatal necrosis (318), and spastic
paraplegia (319). ADAR1 expression was shown to be also
involved in RA or SLE (320, 321). The enzyme was over-
expressed in synovium of RA patients regardless of the disease
duration. In addition, the ADAR1p150 isoform was found to be
elevated in the blood of the patients with active RA. Interestingly,
decreased baseline ADAR1p150 expression and the individual
adenosine RNA editing rate of cathepsin S AluSx+ in RA were
indicators of a good clinical response to the treatment (320).
DISCUSSION

Immune response and tolerance are vital for proper reaction
against pathogens and maintaining internal homeostasis. For
years, immunologists have been studying the mechanisms’
underlying tolerance to fight autoimmune diseases. However, a
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deeper understanding of immune tolerance in TME as well as the
mechanisms underlying autoimmunity may help to generate an
antitumor response and break tolerance to cancer. Phenomena,
such as the generation of tolerogenic immune cell populations or
EMT, are revealing pathways that lead to immunological changes
in the tumor milieu. Anti-cancer immunotherapies should
attempt to break immune tolerance toward the tumor;
otherwise, the efficacy of such treatments is greatly limited. On
the other hand, the immunotherapies aiming to combat
autoimmune diseases seek to induce immunological tolerance,
therefore, to limit the pathological immune reaction against self-
antigens. As potent tolerance to cancer and the lack of self-
tolerance in autoimmune diseases stand on two sides of the same
coin (Figure 1; Table 1), certain lessons can be learned from the
understanding of these two fields of medicine. We believe that
combining knowledge from research on autoimmune diseases
and cancer therapies will lead to a considerable progress in both
areas. The advantages of exchanging knowledge between these
two research fields can already be observed in the therapeutic
strategies that are being developed. For instance, while
genetically engineered super-activated CAR T cells have been
successfully applied for the therapy of non-solid malignancies
(322), the depletion of autoreactive immune cells gives promising
results in the treatment of autoimmune diseases (323, 324).
Moreover, the therapeutic potential of CAR Tregs is being
explored in the context of autoimmunity (325), as antigen-
specific Tregs proved to have better control over autoreactive
effector cells than polyclonal Tregs (326). The strategy has
already proved its efficacy in the animal models of MS (327),
colitis (328), and T1D (329). Another example of a similar
therapeutic approach in cancer and autoimmune diseases are
adoptive cellular therapies, such as those that use mature DCs in
cancer and tolDCs in autoimmune diseases. In cancer research,
DCs loaded with tumor antigens are used as a cancer vaccine
(330). In the therapy of autoimmune diseases, tolDCs presenting
synovial fluid-derived peptides have been recently tested in a
phase I clinical trial in RA patients (331). Many of the immune
regulatory axes can be targeted in both autoimmune diseases and
cancer, usually in an opposite manner—targeting different
cytokines (including IL-2, IL-6, IL-10, IL-15, IL-17, and TNF-
a) to manipulate the tolerance and increasing or decreasing the
regulatory populations of the cells. As presented in this review,
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cytokine imbalance is a vital component of TME or autoimmune
disorders that creates an opportunity for therapeutic
intervention. On the other hand, therapies depleting or
promoting the expansion of effector subsets of immune cells
are also valid therapeutical strategies, for example, the depletion
of effector cells in autoimmune diseases and adoptive cell therapy
in cancer patients (322).

Immune checkpoint inhibitors were found to be a milestone in
cancer therapy. Ipilimumab, the first immune checkpoint-
blocking antibody targeting CTLA-4, was approved by the FDA.
It was used for the first time in 2002 and later approved in 2011 for
treating unresectable melanoma (332). PD-1-inhibiting antibodies
have been also successfully used for the treatment of multiple
cancer types as they are at least partially able to reinvigorate
exhausted T-cells that regain the cytotoxicity against the cancer
(333). Mechanistically, PD-1 signaling acts as a brake to the
immune system but it can be stopped by implementation of
either PD-1 or PD-L1 blocking monoclonal antibodies that are
able to directly inactivate the PD-L1 inhibitory signaling in TME,
reverse T-cell exhaustion, and ultimately induce tumor regression
(334, 335). Nivolumab, pembrolizumab, and cemiplimab are
FDA-approved PD-1-blocking antibodies for the treatment of
various cancers including melanoma, renal cell carcinoma,
NSCLC, and squamous cell carcinoma. However, many other
indications are waiting for the approval (336). When it comes to
PD-L1 inhibitors, currently, FDA has approved the following
three: atezolizumab, durvalumab, and avelumab (337). At the
same time, immune checkpoint fusion proteins are arising as a
tool in the treatment of autoimmune diseases. The first promising
results of exploiting the inhibitory activity of CTLA-4 in animal
models of autoimmune diseases were presented over 25 years ago
(338, 339). Successful clinical trials in human patients with
psoriasis vulgaris, RA, and juvenile idiopathic arthritis led to the
FDA approval of abatacept in 2005 (340–342). CTLA-4Ig is also
tested in MS (343) and T1D (344, 345); however, these organ-
specific diseases were far less responsive to this therapeutic agent.
Experimental studies revealed that CTLA-4Ig induced the
suppression of tolDCs (346) and Treg differentiation (347),
improved the Treg function (348), and decreased the numbers
of Th2 cells (349). The fusion proteins of PD-1 also convey
immunomodulatory properties (350). Consequently, other
immune checkpoint fusion proteins or agonistic antibodies, such
TABLE 1 | Mechanisms involved in breaking tolerance to self-tissues and in induction of cancer tolerance.

Autoimmunity Cancer-induced tolerance

General tolerance mechanism Escape from central tolerance and impaired peripheral
tolerance

Escape from immune recognition and induction of peripheral
tolerance

Subsets of regulatory cells ↓ Function and/or quantity of tTregs and pTregs ↑ Tregs, induction of pTregs and Bregs in tumor microenvironment
↑ MDSCs during active disease ↑ Suppressive activity of MDSCs in tumor microenvironment

Activity of cells ↓ Migration of regulatory cells ↑ Migration of regulatory cells
↓ Immune checkpoint expression by immune cells ↑ Immune checkpoint expression by immune cells and tumor cells

Cytokines ↑ Proinflammatory cytokines ↑ Immunosuppressive cytokines
Chronic effects on immune
cells

Differentiation of Tregs into inflammatory IL-17+ exTregs Exhaustion of TILs
MDSC, myeloid-derived suppressor cell; Tregs, regulatory T cells; pTregs, peripheral Tregs; TIL, tumor-infiltrating lymphocyte; tTregs, thymus-derived Tregs; Bregs, B regulatory cells.
↓, decrease; ↑, increase.
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as TIGIT-Fc, TIGIT mAb, and VISTA mAb, are evaluated in pre-
clinical and clinical trials (351–353).

A particularly attractive therapeutic approach is the generation
of an antigen-specific response with antigen-based and cell-based
anti-cancer vaccines (354). These type of vaccines also constitute an
extensively investigated strategy to induce tolerance in autoimmune
diseases (355). Noteworthy, the combined use of different
therapeutic strategies proved to be a valid option for enhancing
the response to therapy in both—cancer and autoimmune disease
(356, 357). However, therapeutic strategies need to be focused on
restoring balance in the immune system and be applied with
caution, as the overstimulation of the immune system in cancer
may lead to the development of autoimmune disorders (358, 359).
On the other hand, over-suppression in the treatment of
autoimmune diseases might create a window of opportunity for
cancer growth and progression (360, 361).

We hope that with the current paper, we were able to give a
glimpse into the mechanisms that regulate tolerance to self-
tissues and cancer. A dynamic balance between the resting and
activation states is crucial to keep the organism safe from
external and internal threats like pathogenic microorganisms,
cancer cells, or hypersensitivity. We believe that a better
understanding of these mechanisms opens the opportunities
for novel and selective immunotherapies.
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125. Caramalho Í, Nunes-Cabaço H, Foxall RB, Sousa AE. Regulatory T-Cell
Development in the Human Thymus. Front Immunol (2015) 6:395.
doi: 10.3389/fimmu.2015.00395

126. Collison LW, Chaturvedi V, Henderson AL, Giacomin PR, Guy C, Bankoti J,
et al. IL-35-Mediated Induction of a Potent Regulatory T Cell Population.
Nat Immunol (2010) 11:1093–101. doi: 10.1038/ni.1952

127. Zeng H, Zhang R, Jin B, Chen L. Type 1 Regulatory T Cells: A New
Mechanism of Peripheral Immune Tolerance. Cell Mol Immunol (2015)
12:566–71. doi: 10.1038/cmi.2015.44

128. Weiner HL. Induction and Mechanism of Action of Transforming Growth
Factor-b-Secreting Th3 Regulatory Cells. Immunol Rev (2001) 182:207–14.
doi: 10.1034/j.1600-065X.2001.1820117.x

129. Ryba-Stanisławowska M, Sakowska J, Zieliński M, Ławrynowicz U,
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