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A B S T R A C T

The genus Cyrtopodium, from the Orchidaceae family, is widely used for its therapeutic properties in the treatment 
of tuberculosis, abscesses, urinary infection, and colds. C. glutiniferum, one of the species of this genus, is endemic 
in Brazil and largely used in herbal medicine. Thus, it is of great interest to recognize its composition, the 
properties of the molecules found in it. This study aimed to perform the in silico analysis of the main compounds 
from C. glutiniferum, on the platforms pKCSM, SwissADME, LAZAR, CLC-pred, ToxTree, DIGEPred, STRING, and 
Cytoscape. Further than this, the molecular docking was performed. The compounds present in the aqueous 
extract of C. glutiniferum were identified by UHPLC-MS/MS, finding Arbutin, Caffeic acid 4-O-glucoside, and 
Dihydroformononetin as the three most abundant molecules. The evaluation of the gastrointestinal absorption of 
Dihydroformononetin is given as high, also managing to cross the blood-brain barrier, while Arbutin can only be 
absorbed by the gastrointestinal tract and Caffeic acid 4-O-glucoside had very low absorption. Further analysis 
showed that Arbutin and Dihydroformononetin are possible leading molecules for drug synthesis, according to 
the prediction. Toxicological aspects were analysed, and no adverse effects were noted, but there were di-
vergences in the mutagenic prediction of Arbutin and Dihydroformononetin, having different results in the used 
platforms, demonstrating that a cautious analysis and data insertion is needed in these tools to optimize them. 
The analysis of the differentially expressed genes predicted that the compounds can regulate several genes, 
including some genes associated with carcinogenesis and inflammation. The Molecular docking analysis showed 
high binding affinities of the molecules with different proteins. Therefore, C. glutiniferum demonstrates the po-
tential to be used as a phytotherapeutic. The same was given through the in silico analysis of the three compounds 
found in the orchid, that show good individual potential.

1. Introduction

Since the beginning of medicine, plants have been used due to their 
therapeutic activity. With the development of new technologies, there is 

a renewed interest in exploring the therapeutic potential of different 
plants and their molecules, looking for their safety, efficiency, and 
quality [1,2]. So, herbal medicine is an important source for the dis-
covery of new molecules, since many plants metabolites databases have 
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been originated within this analysis, making possible the synthesis of 
new complex molecules from the known ones, increasing the database of 
new compounds [3,4].

Orchids are a family that is largely used for their phytotherapeutic 
properties [5]. Cyrtopodium glutiniferum is an orchid from the genus 
Cyrtopodium. This genus is used in folk medicine for its gastroprotective 
and anti-inflammatory properties, in the treatment of urinary infections, 
burns, and colds, some of these aspects were observed in a couple of 
studies [6–9]. Cyrtopodium glutiniferum is frequently used in the treat-
ment of abscesses, burns, tuberculosis, and boils, and as an 
anti-inflammatory. It was elucidated that this action happens because of 
the control of the inflammation promoted by this plant [10].

In our previous work, we identified the most abundant compounds in 
Cyrtopodium glutiniferum: Arbutin, Caffeic Acid 4-O-glucoside, and 
Dihydroformononetin [11]. The anti-inflammatory activity of the plant 
extract was observed using in vitro models. Exploring and analysing the 
potential of these prevalent molecules for new drug development is 
particularly intriguing due to their recognizability. The in silico 
approach, utilizing structure–activity relationships (SARs) and quanti-
tative structure–activity relationships (QSARs), is crucial in the drug 
discovery process [12]. These models enable the virtual screening of 
potential new drugs by predicting their physicochemical, biological, and 
environmental properties, thereby reducing the need for animal testing 
in toxicology studies [13,14].

These compounds showed notable potential in previous studies, both 
in vitro and in vivo activities. Arbutin is already used in the skin beauty 
field and exhibited anticancer and anti-inflammatory activity, and po-
tential in the treatment of diabetes, osteoporosis, and CNS disorders 
[15–17]. The Caffeic Acid 4-O-glucoside showed effectivity in the axonal 
regeneration in vivo, this might be helpful in memory deficits associated 
with Alzheimer’s disease [18]. Dihydroformononetin is a reduced 
metabolite of Formononetin [19], and this last molecule shows several 
therapeutic properties such as hepatoprotection, good perspective in the 
treatment and prevention of obesity, cancer, atherosclerosis, and 
neurodegenerative diseases [20–23]. However, their ADMET properties, 
toxicity, and molecular interactions have been poorly explored, with 
most studies focusing primarily on Arbutin [24,25].

Observing the potential of the compounds found in this orchid and 
knowing the relevance of in silico approaches for drug discovery, it is 
important to analyse whether these molecules are good candidates for 
new drugs or how they modulate the gene expression, concomitant, 
their safety. Thus, this research aims perform in silico analysis and 
molecular docking of the main compounds from Cyrtopodium glutinife-
rum to evaluate their pharmacokinetic properties, toxicity, molecular 
interactions, and potential for gene regulation, thereby assessing their 
suitability for drug development.

2. Materials and methods

2.1. Pharmacokinetic analysis

The pharmacological properties of Dihydroformononetin, Arbutin, 
and Caffeic acid 4-O-glucoside were analysed through the in silico al-
gorithms pkCSM and SwissADME. Their canonical SMILES sequence was 
obtained in PubChem (https://pubchem.ncbi.nlm.nih.gov/) [26] and 
used as input in each platform. The pkCSM (http://biosig.unimelb.edu. 
au/pkcsm/prediction) makes its predictions based on the molecule 
graph-based signatures and gives data about the pharmacokinetic and 
toxicological characteristics of the molecules [27]. Swiss ADME (http: 
//www.swissadme.ch/) predicts pharmacokinetic properties and inter-
esting aspects of a new drug. For its prediction, this algorithm uses a 
method results in-house, directly calculated from non-commercial exe-
cutables or implemented from publications [28].

2.2. Toxicological analysis

The toxicologic analysis was performed with the algorithm LAZAR, 
which is based on QSAR (quantitative structure-activity relationship) to 
make its predictions [29]. Some toxicological results were also obtained 
in the previous pkCSM analysis, as mentioned before. The cytotoxicity 
prediction was performed in CLC-pred (http://www.way2drug.com/c 
ell-line/), an analysis based on the Prediction of Activity Spectra for 
Substances (PASS) [30]. ToxTree software was used for a few toxico-
logical parameters [31]. To perform the predictions, these decision trees 
were selected: “in vitro mutagenicity (AMES test)”, “structural alerts for 
the in vivo micronucleus assay in rodents” and “carcinogenicity”. So the 
software is able to provide different decision trees to estimate the toxic 
effect [32,33]. For all of them, the input was the same, the Canonical 
SMILES sequence obtained in PubChem.

2.3. Differentially expressed gene (DEG) analysis

For the analysis of the effect on the gene expression of each molecule, 
DIGEP-Pred was used to perform each prediction. The results were 
inserted in the STRING database (version 11.5) and organized according 
to their protein-protein interaction (PPI), after, on Cytoscape. On 
DIGEP-pred, the Canonical SMILES sequence was the input for the 
prediction of genes that were up or downregulated [34]. The data ob-
tained was the new input for STRING (https://string-db.org/) [35], 
where it was possible to enrich the gene network connection via auto-
mated text mining and previous knowledge in databases, the confidence 
score was high (0.700). The obtained network was inserted at Cytoscape 
[36] and used with the plugin Cytohubba [37] for the prediction of the 
centrality measures Degree and Betweenness. The Degree measures how 
many direct connections a node has, the ones that are highly connected 
are called "hubs" of a PPI network and they play a fundamental role in 
the exchange of information [38]. The Betweenness centrality evaluates 
the extent of the shortest paths between vertices that, in the network, 
pass through a node, therefore, a node with high betweenness connects 
subnets of a network, being essential for the propagation of information 
they are called “bottlenecks” [39]. The nodes with high degree and high 
betweenness are called “hub-bottleneck” (N-HB) and can play an 
elementary role in the regulation of biological processes, deregulation in 
them may lead to network fragmentation, which makes important the 
analysis of transcriptional expression when affected by different 
compounds.

2.4. Ligand and receptor preparation

The 3D structure of the Arbutin, Caffeic acid, and Dihy-
droformononetin were downloaded from PubChem database (https://p 
ubchem.ncbi.nlm.nih.gov/) in SDF format. The structures were further 
converted into PDBQT format using Open Babel Software (version 
2.3.1). MMFF94 force field and conjugate gradient optimization algo-
rithm were used to minimize the ligand energy in 200 steps using PyRx- 
Python prescription 0.8.

The 3D crystal structure of the N-NBs was retrieved from RCSB 
protein data bank (https://www.rcsb. org/). The resolution of the ob-
tained structures was approximately 1.18 Å. The file was opened using 
the Discovery Studio Visualizer (DSV) Client Program (v17.2.0.16349). 
Water molecules were removed with AutoDock tools, and subsequently, 
polar hydrogen atoms, Gasteiger partial charges, and Kollman charges 
were added to the targets. Thereafter, the protein was then saved in pdb 
format.

2.5. Molecular docking

The original ligand was re-docked on the target receptor to validate 
the docking method. The DSV was used to remove this ligand from the 
receptor. The grid box parametric dimension values were provided in 
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the Supplementary material 2 and were used as coordinate centers. The 
exhaustiveness value was set as 8 to obtain an efficient binding 
conformation pose of the protein–ligand complex. Afterward, the 
retrieved phytochemicals were docked against their respective N-HBs. 
Auto Dock Vina was used to perform dock simulation. Auto Dock Vina 
generated a docked complex for each ligand and respective N-HBs with 
different conformation and affinity scores (in kcal/mol) and ordered 
according to the lowest binding energy theory (kcal/mol) of docked 
complexes, thus, more negative values mean higher binding affinity. 
Thereafter, the DSV was used to analyse and graphically visualize the 
best protein-ligand complex docked pose.

3. Results

Dihydroformononetin can permeate the Blood-Barrier Brain (BBB) 
and be well absorbed by the Gastrointestinal Tract (GIT) (Fig. 1). Still, 
according to the predictions, Arbutin can be absorbed by GIT but cannot 
permeate thee BBB. Caffeic acid 4-O-glucoside showed neither of these 
properties. Some desirable characteristics for a drug like liposolubility, 
size, polarity, insolubility, unsaturation, and flexibility were predicted 
in the Radar Graphic (Fig. 2), the Caffeic acid 4-O-glucoside polarity was 
bigger than the desirable, like the unsaturation number of 
Dihydroformononetin.

Different pharmacokinetic properties (ADME) were predicted in two 
algorithms: pKCSM and SwissADME. The water solubility of Arbutin was 
0.86 mmol/L according to pKCSM and 2.083 in SwissADME. The 
gastrointestinal absorption (GI) prediction in pKCSM was 38.02 %, 
while for SwissADME it was predicted as highly absorbed. The skin 
permeability was − 2.087 log Kp and − 8.98 log Kp in pKCSM and 
SwissADME, respectively. Arbutin was not predicted as a substrate or 
inhibitor of P-glycoprotein. The pKCSM predicted the volume of distri-
bution (VDss) as 1.07 L/kg, the fraction unbound as 0.784 Fu, and the 
Central Nervous System (CNS) permeability as − 3.557 log PS. The BBB 
permeability prediction was − 0.962 log BB in pKCSM and for Swis-
sADME the molecule cannot premeate the BBB. The molecule did not 
show any interactions with the predicted CYPs. The total clearance was 
3341 log mL/min/kg and did not show interaction with renal OCT2 
substrate according to pKCSM (Table 1).

The water solubility of Caffeic acid 4-O-glucoside was predicted as 
4.456 mmol/L in pKCSM and 2.862 mol/L in SwissADME. The GI ab-
sorption was 14.025 % in pKCSM and Low by SwissADME. The skin 

permeability was predicted as − 2.735 log Kp and − 9.06 log Kp in 
pKCSM and SwissADME, respectively. The molecule did not show 
interaction with P-glycoprotein. The VDss prediction was 0.171 L/kg, 
the fraction unbound of 0.654 Fu, and the CNS permeability of 
− 4.103 log PS according to pKCSM. The BBB permeability prediction in 
pKCSM was − 1.261 log BB and for SwissADME the molecule cannot 
permeate the BBB. Like Arbutin, Caffeic acid 4-O-glucoside did not show 
any interactions with the predicted CYPs. The prediction in pKCSM of 
the total clearance was 0.134 log mL/min/kg and did not show inter-
action with renal OCT2 substrate (Table 2).

The ADME properties of Dihydroformononetin were predicted too. 
The water solubility according to pKCSM was 0.3 mmol/L and 0.266 in 
SwissADME. The GI absorption was 95.51 % in pKCSM and predicted as 
high absorbed in SwissADME. The skin permeability was − 2.817 log Kp 
and − 6,04 log Kp in pKCSM and SwissADME, respectively. Like the 
other molecules, Dihydroformononetin was not predicted as a substrate 
or inhibitor of P-glycoprotein. The prediction of the VDss was 1.044 L/ 
kg, the fraction unbound was 0.058 Fu, and the CNS permeability of 
− 2.131 log PS, according to pKCSM. The BBB permeability was 
0.207 log BB in pKCSM prediction and SwissADME predicted that 
Dihydroformononetin can permeate BBB, differently from the other 
molecules. The prediction of the interaction with different CYPs showed 
that Dihydroformononetin can be a substrate of CYP3A4 and inhibit 
CYP1A2, CYP2C19, CYP2C9, and CYP3A4. The total clearance was 
1.25 log mL/min/kg and did not show interaction with renal OCT2 
substrate according to pKCSM (Table 3).

Toxicological aspects were predicted by pKCSM and LAZAR 
(Table 4). The Ames toxicity had divergent results in the predictions of 
Arbutin and Dihydroformononetin, while Caffeic acid 4-O-glucoside was 
predicted as non-mutagenic. Arbutin was not predicted as an hERG in-
hibitor, hepatotoxic, or skin sensitizer in pKCSM. The LD50 of Arbutin 
was 1.641 mol/kg, of Caffeic acid 4-O-glucoside was 2.342 mol/kg and 
of Dihydroformononetin was 2.579 mol/kg, according to pKCSM pre-
diction. Arbutin LOAEL prediction was 3140 mg/kg/day in pKCSM and 
871 mg/kg/day in LAZAR. Dihydroformononetin’s LOAEL was 
103.5 mg/kg/day in pKCSM and 102 mg/kg/day in LAZAR. Caffeic acid 
4-O-glucoside LOAEL was 11.428 mg/kg/day in pKCSM prediction. The 
Arbutin maximum tolerated dose for humans was 3.07 mg/kg/day in 
pKCSM and 33.7 mg/kg/day in LAZAR. For Caffeic acid 4-O-glucoside, 
it was predicted as 3.273 mg/kg/day in pKCSM and 15.1 mg/kg/day in 
LAZAR. Dihydroformononetin’s maximum tolerated dose for humans 
was 1.67 mg/kg/day in pKCSM and 6.67 mg/kg/day in LAZAR. None of 
them was predicted as carcinogenic in rodents by pKCSM.

According to ToxTree prediction, none of them showed carcinoge-
nicity too (Table 5).

The three molecules showed at least one structural alert for micro-
nucleus. None of them showed alerts for inducing mutagenicity by the 
Ames test in this predictor.

The CLC-pred predicted that Arbutin can be cytotoxic for 111 tu-
moral cell lines and 9 non-tumoral. Caffeic acid 4-O-glucoside was 
predicted as cytotoxic for 77 tumoral cell lines and 6 non-tumoral, while 
Dihydroformononetin was cytotoxic to 51 tumoral cell lines and 10 non- 
tumoral according to CLC-pred prediction (Table 6).

The prediction of drug inducing changes in gene expression profiles 
was also performed. According to this, each molecule was capable of 
regulating the expression of many genes. First, the gene network was 
formed using STRING (results not shown), showing the connections 
between the genes that were regulated by the three molecules and their 
connections with others. Genes that played significant roles in modu-
lating the gene network were identified by their Degree and Between-
ness, as the value increases, the color becomes progressively redder. 
Conversely, as the value decreases, the color shifts towards yellow. The 
gene names are describes in Supplementary Material 1 and the values of 
the hub-bottlenecks are available in the Supplementary Material 3. The 
predicted genes upregulated by Arbutin were NOTCH1, RBPJ, HIF1A, 
EP300, CTNNB1, HES1, HSP90AA1 and SRC (Fig. 3). The upregulated 

Fig. 1. SwissADME Boiled-egg graphic with the three analysed compounds. 
The yellow area indicates the substances that are capable of permeate the BBB, 
like Dihydroformononetin. The white area indicates the compounds that can be 
absorbed by the GIT, like Arbutin and Dihydroformononetin. Caffeic acid 4-O- 
glucoside did not show any of these properties. All the substances are in red 
dots, which means that they are not substrates for glycoprotein P.
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by Caffeic acid 4-O-glucoside were: HIF1A, ITGB1, RBPJ, EP300, 
NOTCH1, PSEN1, ITGA3, CREBBP, CTNNB1 and ITGA5 (Fig. 4). The 
ones upregulated by Dihydroformononetin were: CDC20, GMNN, CDC6, 
AURKB, and AURKA (Fig. 5).

The downregulation of gene expression was evaluated as well. The 
main genes predicted to be downregulated by Arbutin were: SKP1, 
DBB1, RBX1, GSK3B, NEDD8, APC, AXIN1, and PSMD3 (Fig. 6). The 
downregulated by Caffeic acid 4-O-glucoside were RBX1, AXIN1, APC, 

SKP1, NEDD8, HSP90AA1, PSMD3 and HDAC1 (Fig. 7). The down-
regulated by Dihydroformononetin were CASP8, FADD, and EXOC8 
(Fig. 8).

The molecular docking analysis was performed for the three mole-
cules, Arbutin, Caffeic acid 4-O-glucoside and Dihydroformononetin, 
and the proteins of the found hub-bottlenecks that would be affected by 
the DIGEP. The results are expressed on Tables 7, 8 and 9. It is possible to 
notice that the binding energy of some of the complex protein-ligands 

Fig. 2. SwissADME radar graphic of each molecule analysed. The desirable characteristics of a drug are inside the blue part of the graphic. LIPO = liposolubility, size, 
POLAR = polarity, INSOLU = insolubility, INSATU = unsaturation and FLEX = flexibility.

Table 1 
Comparison between pKCSM and SwissADME pharmacokinetic (ADME) prop-
erties prediction of Arbutin.

pKCSM SwissADME

Model name Unit Prediction Unit Prediction

Water solubility 
(consensus)

Numeric 
(mmol/L)

0.86 Numeric (mol/ 
L)

2.083

GI absorption 
(human)

Numeric (% 
Absorbed)

38.02 Categorical 
(Low/High)

High

Skin 
Permeability

Numeric (log 
Kp)

− 2.087 Numeric (log 
Kp)

− 8.92

P-glycoprotein 
substrate

Categorical 
(Yes/No)

No Categorical 
(Yes/No)

No

P-glycoprotein 
inhibitor

Categorical 
(Yes/No)

No n.a. —

VDss (human) Numeric (L/kg) 1.07 n.a. —
Fraction 
unbound 
(human)

Numeric (Fu) 0.784 n.a. —

BBB 
permeability

Numeric (log 
BB)

− 0.962 Categorical 
(Yes/No)

No

CNS 
permeability

Numeric (log 
PS)

− 3.557 n.a. —

CYP2D6 
substrate

Categorical 
(Yes/No)

No n.a. —

CYP3A4 
substrate

Categorical 
(Yes/No)

No n.a. —

CYP1A2 
inhibitor

Categorical 
(Yes/No)

No Categorical 
(Yes/No)

No

CYP2C19 
inhibitor

Categorical 
(Yes/No)

No Categorical 
(Yes/No)

No

CYP2C9 
inhibitor

Categorical 
(Yes/No)

No Categorical 
(Yes/No)

No

CYP2D6 
inhibitor

Categorical 
(Yes/No)

No Categorical 
(Yes/No)

No

CYP3A4 
inhibitor

Categorical 
(Yes/No)

No Categorical 
(Yes/No)

No

Total Clearance Numeric (log 
mL/min/kg)

3341 n.a. —

Renal OCT2 
substrate

Categorical 
(Yes/No)

No n.a. —

GI: gastrointestinal; VDss: volume of distribution at steady state; BBB: brain 
blood barrier; CNS: central nervous system; CYP: cytochrome P; OCT: organic 
cation transporter; n.a.: not analysed.

Table 2 
Comparison between pKCSM and SwissADME pharmacokinetic (ADME) prop-
erties prediction of Caffeic acid 4-O-glucoside.

pKCSM SwissADME

Model name Unit Prediction Unit Prediction

Water solubility 
(consensus)

Numeric 
(mmol/L)

4.456 Numeric (mol/ 
L)

2.862

GI absorption 
(human)

Numeric (% 
Absorbed)

14.025 Categorical 
(Low/High)

Low

Skin 
Permeability

Numeric (log 
Kp)

− 2.735 Numeric (log 
Kp)

− 9.06

P-glycoprotein 
substrate

Categorical 
(Yes/No)

No Categorical 
(Yes/No)

No

P-glycoprotein 
inhibitor

Categorical 
(Yes/No)

No n.a. —

VDss (human) Numeric (L/kg) 0.171 n.a. —
Fraction 
unbound 
(human)

Numeric (Fu) 0.654 n.a. —

BBB 
permeability

Numeric (log 
BB)

− 1.261 Categorical 
(Yes/No)

No

CNS 
permeability

Numeric (log 
PS)

− 4.103 n.a. —

CYP2D6 
substrate

Categorical 
(Yes/No)

No n.a. —

CYP3A4 
substrate

Categorical 
(Yes/No)

No n.a. —

CYP1A2 
inhibitor

Categorical 
(Yes/No)

No Categorical 
(Yes/No)

No

CYP2C19 
inhibitor

Categorical 
(Yes/No)

No Categorical 
(Yes/No)

No

CYP2C9 
inhibitor

Categorical 
(Yes/No)

No Categorical 
(Yes/No)

No

CYP2D6 
inhibitor

Categorical 
(Yes/No)

No Categorical 
(Yes/No)

No

CYP3A4 
inhibitor

Categorical 
(Yes/No)

No Categorical 
(Yes/No)

No

Total Clearance Numeric (log 
mL/min/kg)

0.134 n.a. —

Renal OCT2 
substrate

Categorical 
(Yes/No)

No n.a. —

GI: gastrointestinal; VDss: volume of distribution at steady state; BBB: brain 
blood barrier; CNS: central nervous system; CYP: cytochrome P; OCT: organic 
cation transporter; n.a.: not analysed.
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are low, revealing a high binding affinity. The interactions with lower 
binding energy are displayed on Figs. 9, 10 and 11. All the lowest 
binding energies are displayed in red, according to its expression status.

The lowest binding energy of Arbutin is with CTNNB1 at − 7.5 kcal/ 
mol. Among those with downregulation status, DDB1 has the lowest 
binding energy at − 7.0 kcal/mol. For Caffeic acid 4-O-glucoside, the 
lowest binding energy is with ITGA3 at − 8.1 kcal/mol, and among the 
downregulated, APC shows the lowest at − 6.8 kcal/mol. Dihy-
droformononetin has the lowest binding energy with AURKB at 
− 8.9 kcal/mol, while CASP8 and EXOC8 have the lowest binding en-
ergies among the downregulated targets, both at − 6.8 kcal/mol.

4. Discussion

Many molecules are being studied for their therapeutic potential. A 
lot of them have origin in natural products, with notorious relevance for 
drug discovery. Given the vast array of new molecules, prioritizing those 
with significant potential to evolve into new medicines is crucial. 
Therefore, bioinformatics has become an important tool in the screening 
of these molecules before the in vitro and in vivo analysis [4]. Many 
parameters were analysed evaluating the pharmacokinetics, toxicology, 
interference in gene expression and molecular docking of the three 
molecules.

The pharmacokinetic analyses showed that Arbutin and Dihy-
droformononetin may be well absorbed by the GIT, but Caffeic acid 4-O- 
glucoside cannot, as shown in the Boiled-egg graphic and the 

pharmacokinetic properties table. The prediction showed also that only 
Dihydroformononetin can permeate the BBB. This is an important aspect 
that can be well used with caution since this molecule can interact with 
the Central Nervous System and leads to unintended effects [40]. The 
radar graphic prediction showed that most of the properties, like insa-
turation, insolubility, polarity, molecule size, liposolubility and flexi-
bility were in the criteria for a potential new drug, except for Cafeic acid 
4-O-glucoside polarity and Dihydroformononetin insaturation.

None of the molecules serves as an inhibitor or substrate for P- 
glycoprotein, a protein that functions in protecting against xenobiotics 
by facilitating their efflux from cells, thereby diminishing their 
bioavailability. [41]. The metabolism aspects exhibited that Arbutin and 
Caffeic Acis 4-O-glucoside did not interact with the family of enzymes 
from Cytochrome P450, but Dihydroformononetin shows different in-
teractions with them, as an inhibitor and as a substrate of these enzymes. 
It is important to consider the generation of metabolites, how they will 
interact with the organism, and the consequences of the inhibition of the 
activity of some enzymes, since the metabolism of other molecules may 
not happen for this reason [42]. An example of the modulation that some 
molecules can cause in the functionality of the P450 enzyme is described 
by Jacobson [43], in which simvastatin and atorvastatin had different 
drug interaction profiles when co-administered with Cytochrome P450 
inhibitors, what did not happen with pravastatin.

The prediction of mutagenicity (Ames Test) showed divergent results 
for Arbutin and Dihydroformononetin, and ToxTree’s prediction indi-
cated that all three molecules possessed at least one structural alert for 
inducing micronuclei. In previous studies conducted in vitro, the Cyrto-
podium glutiniferum aqueous extract only showed mutagenic activity in 
the higher concentration, 5000 µg/plate, and only in the TA100 strain 
with metabolic activation among five strains analysed with and without 
S9. The in vitro Micronucleus assay was performed and none of the tested 
concentrations induced micronuclei [11].

These findings indicate the potential limitations in the current in 
silico platforms. The in silico analyses relied on structures to predict most 
toxic endpoints using structural alerts (SAs) [44]. However, SAs utilize 
binary features and qualitative endpoints, which can lead to incomplete 
and inaccurate predictions. The list of SAs and rules is potentially 
incomplete, resulting in possible false negatives or positives in the pre-
dictions. This underscores the need for optimization and enhancement 
of these predictive models, as accurate mutagenicity and genotoxic as-
sessments are crucial for evaluating human health risks [45].

Arbutin was not predicted as a skin sensitizer, what possibilities for 
its notorious use in the cosmetology field, being used in skin care 
treatments [46]. The evaluation of the selective cytotoxic of the com-
pounds on cancer cell lines exhibited that the three molecules have an 
important effect against tumor cell lines, a necessary attribute for new 
drugs in the treatment of cancer [30].

Analysing the other parameters, no harm was observed according to 
the prediction, this has importance for the preliminary risk assessment. 
Predictions of the LOAEL (Lowest Observed Adverse Effect Level) and 
LD50 (Lethal Dose for 50 %) serve as crucial tools in refining animal 
testing protocols, ensuring the administration of more accurate doses in 
the assays. [12]. The lowest LOAEL and LD50 are from Dihy-
droformononetin, indicating that this molecule can induce an adverse 
effect in a lower dose, needing more caution in the dosage than Arbutin 
and Caffeic Acid 4-O-glucoside.

It is possible to notice the downregulation of genes involved in the 
regulation of Wnt signal transduction, is important for the regulation of 
nuclear transcription. Arbutin downregulates GSK3B, APC, and AXIN1; 
Caffeic acid 4-O-glucoside downregulates APC and AXIN. As seen, APC 
needs a low binding energy of 6.9 and − 6.8 kcal/mol, respectively. 
These genes are involved in the destruction complex of B-catenin. In this 
sense, it is possible to notice that CTNNB1, a gene responsible for B- 
catenin expression, is upregulated by Arbutin and Caffeic acid 4-O- 
glucoside and shows a high binding affinity, of − 7.5 and − 5.3 kcal/ 
mol, respectively. Together they can increase the levels of B-catenin in 

Table 3 
Comparison between pKCSM and SwissADME pharmacokinetic (ADME) prop-
erties prediction of Dihydroformononetin.

pKCSM SwissADME

Model name Unit Prediction Unit Prediction

Water solubility 
(consensus)

Numeric 
(mmol/L)

0.3 Numeric (mol/ 
L)

0.266

GI absorption 
(human)

Numeric (% 
Absorbed)

95.51 Categorical 
(Low/High)

High

Skin 
Permeability

Numeric (log 
Kp)

− 2.817 Numeric (log 
Kp)

− 6.04

P-glycoprotein 
substrate

Categorical 
(Yes/No)

No Categorical 
(Yes/No)

No

P-glycoprotein 
inhibitor

Categorical 
(Yes/No)

No n.a. —

VDss (human) Numeric (L/kg) 1.044 n.a. —
Fraction 
unbound 
(human)

Numeric (Fu) 0.058 n.a. —

BBB 
permeability

Numeric (log 
BB)

0.207 Categorical 
(Yes/No)

Yes

CNS 
permeability

Numeric (log 
PS)

− 2.131 n.a. —

CYP2D6 
substrate

Categorical 
(Yes/No)

No n.a. —

CYP3A4 
substrate

Categorical 
(Yes/No)

Yes n.a. —

CYP1A2 
inhibitor

Categorical 
(Yes/No)

Yes Categorical 
(Yes/No)

Yes

CYP2C19 
inhibitor

Categorical 
(Yes/No)

Yes Categorical 
(Yes/No)

Yes

CYP2C9 
inhibitor

Categorical 
(Yes/No)

Yes Categorical 
(Yes/No)

Yes

CYP2D6 
inhibitor

Categorical 
(Yes/No)

No Categorical 
(Yes/No)

No

CYP3A4 
inhibitor

Categorical 
(Yes/No)

Yes Categorical 
(Yes/No)

Yes

Total Clearance Numeric (log 
mL/min/kg)

1.25 n.a. —

Renal OCT2 
substrate

Categorical 
(Yes/No)

No n.a. —

GI: gastrointestinal; VDss: volume of distribution at steady state; BBB: brain 
blood barrier; CNS: central nervous system; CYP: cytochrome P; OCT: organic 
cation transporter; n.a.: not analysed.
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the cytoplasm and so, the nuclear transcription. However, the deregu-
lated activation of the Wnt pathway is associated with the generation of 
human tumors [47,48]. Even so, some studies exhibited that Wnt 

signaling may act as a tumor suppressor by interfering in the differen-
tiation of tumor cell lines in the mature lineage [49]. It was shown that 
the stimulation of this pathway in osteosarcoma cell lines inhibits cell 
proliferation and differentiation, indicating its role as a tumor sup-
pressor, what can lead to beneficial impacts [50].

NEDD8, a gene responsible for neddylation and crucial in proteaso-
mal degradation, operates alongside RBX1, a regulator of this process 
[51]. Notably, both have emerged as promising targets for anticancer 
therapies. Inhibition of NEDD8 has shown considerable efficacy in in 
vivo studies of neuroblastoma, while RBX1’s pivotal role in cell prolif-
eration and its association with poor prognosis in esophageal and gastric 
cancers underscore its significance [52,53]. Remarkably, Arbutin 
downregulates both NEDD8 and RBX1, suggesting a potential mecha-
nism for its antitumoral effects. In docking studies, NEDD8 exhibits a 
binding affinity of − 5.8 kcal/mol, indicating a potential disruption in 
neddylation-mediated processes. Similarly, RBX1 demonstrates a bind-
ing energy of − 6.4 kcal/mol, further supporting its role in 
Arbutin-mediated effects on cancer-related pathways.

NEDD8 has become a focal point for developing anticancer drugs. Its 
downregulation significantly suppressed tumor growth in vitro and in 
vivo, inducing cell cycle arrest, DNA damage, and apoptosis in 

Table 4 
Comparison between pKCSM and LAZAR toxicity prediction.

Model Name pKCMS LAZAR

Unit Prediction Unit Prediction

Arbutin AMES toxicity Categorical (Yes/No) No Categorical (Yes/No) Yes
hERG inhibitor Categorical (Yes/No) No n.a. —
Oral Rat Acute Toxicity (LD50) Numeric (mol/kg) 1.641 n.a. —
Oral Rat Chronic Toxicity (LOAEL) Numeric (mg/kg/day) 3.140 Regression (mg/kg/day) 871
Carcinogenicity (Rodents) n.a. — Categorical (Yes/No) No
Hepatotoxicity Categorical (Yes/No) No n.a. —
Skin Sensitisation Categorical (Yes/No) No n.a. —
Max. tolerated dose (human) Numeric (mg/kg/day) 3.07 Numeric (mg/kg/day) 33.7

Caffeic acid 4-O-glucoside AMES toxicity Categorical (Yes/No) No Categorical (Yes/No) No
hERG inhibitor Categorical (Yes/No) No n.a. —
Oral Rat Acute Toxicity (LD50) Numeric (mol/kg) 2.579 n.a. —
Oral Rat Chronic Toxicity (LOAEL) Numeric (mg/kg/day) 11.428 n.a. —
Carcinogenicity (Rodents) n.a. — Categorical (Yes/No) No
Hepatotoxicity Categorical (Yes/No) No n.a. —
Skin Sensitisation Categorical (Yes/No) No n.a. —
Max. tolerated dose (human) Numeric (mg/kg/day) 3.273 Numeric (mg/kg/day) 15.1

Dihydroformononetin AMES toxicity Categorical (Yes/No) Yes Categorical (Yes/No) No
hERG inhibitor Categorical (Yes/No) No n.a. —
Oral Rat Acute Toxicity (LD50) Numeric (mol/kg) 2.342 n.a. —
Oral Rat Chronic Toxicity (LOAEL) Numeric (mg/kg/day) 103.5 Regression (mg/kg/day) 102
Carcinogenicity (Rodents) n.a. — Categorical (Yes/No) No
Hepatotoxicity Categorical (Yes/No) No n.a. —
Skin Sensitisation Categorical (Yes/No) No n.a. —
Max. tolerated dose (human) Numeric (mg/kg/day) 1.67 Numeric (mg/kg/day) 6.67

hERG: human Ether-a-go-go-Related Gene; LD50: lethal dose of 50 %; LOAEL: lowest observed adverse effect level.

Table 5 
Toxicological prediction through structural alerts of ToxTree.

Carcinogenicity Micronucleus Mutagenicity 
(Ames)

Arbutin No alerts At least one No alerts
DHFN No alerts At least one No alerts
Caffeic acid 4-O- 
glucoside

No alerts At least one No alerts

Table 6 
Cytotoxicity prediction of CLC-pred.

Tumoral Non-tumoral

Arbutin 111 9
DHFN 51 10
Caffeic acid 4-O-glucoside 77 6

Fig. 3. Arbutin Upregulation Centrality Measures. In black, the hub-bottleneck genes.
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esophageal squamous cell carcinoma (ESCC) cells [54,55]. Conversely, 
RBX1 overexpression correlates with poor outcomes in patients with 
triple-negative breast cancer (TNBC), promoting TNBC cell metastasis 
both in vitro and in vivo [56]. These findings underscore the intricate 
regulatory networks influenced by Arbutin and highlight the potential 
therapeutic implications of targeting NEDD8 and RBX1 in cancer 
treatment strategies.

The gene DDB1 codifies the Damage DNA-binding protein 1, which 
operates in DNA repair. The deletion of this gene, downregulated by 
Arbutin and with a low binding energy of − 7.0 kcal/mol, can promote 
tumor through cell proliferation and increase chemoresistance, as 

observed in pancreatic adenocarcinoma [57]. Another gene undergoing 
downregulation is SKP1, a prime target in cancer therapy. Its elevation 
correlates with unfavorable prognosis in colon cancer patients [51], 
underscoring the significance of seeking methods to reduce SKP1 
expression. PSMD3 is a member of the proteasome family and is upre-
gulated in breast cancer, which is linked to the shorter overall survival of 
the patients [58]. HDAC1 codifies histone deacetylase 1. The over-
expression of this gene is related to resistance in cancer therapies [59]. 
The downregulation of DDB1, SKP1, PSMD3, and HDCA1 shows inter-
esting mechanisms to be exploited for the treatment of cancer.

HIF1α is upregulated by Arbutin and Caffeic acid 4-O-glucoside. Its 

Fig. 4. Caffeic acid 4-O-glucoside Upregulation Centrality Measures. In black, the hub-bottleneck genes.

Fig. 5. Dihydroformononetin Upregulation Centrality Measures In black, the hub-bottleneck genes.

Fig. 6. Arbutin Downregulation Centrality Measures. In black, the hub-bottleneck genes.
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protein has a binding energy of − 5.7 kcal/mol with Arbutin and 
− 5.5 kcal/mol by Caffeic acid 4-O-glucoside. This gene becomes active 
to promote cellular survival during hypoxic conditions, enhancing the 
expression of certain genes. Its interaction with signaling pathways such 
as Notch and Wnt, as previously mentioned, is well-established, and the 
great binding affinity displayed by the molecular docking emphasizes 
this relation [60]. While this gene is linked to cancer progression and 
development, it has been noted that the upregulation of Notch-Hifα 
plays a significant role in liver regeneration [61]. NOTCH1, a gene 
upregulated by Arbutin and Caffeic acid 4-O-glucoside too, has different 
roles in cancer development. NOTCH1 has high binding affinity with 
Arbutin (-6.5 kcal/mol) and Caffeic acid 4-O-glucoside (-6.4 kcal/mol), 
and this protein exhibits dual roles in cancer development, functioning 
as either a tumor suppressor or an oncogene depending on tissue context 
[62]. HES1, upregulated gene, is also a target for NOTCH, and its 
expression is increased in hypoxia, thus, associated with Notch-Hifα. 
Just like them, HES1 is overexpressed in breast cancer, contributing to 
cell proliferation [63]. RBPJ is an important regulator of the NOTCH 
pathway, activating the signalization when bound to NOTCH proteins. 
This gene, as NOTCH1, is upregulated by the same two molecules, and, 
as previously seen, its loss promotes tumorigenesis [64,65]. SRC, 
another gene boosted by Arbutin, functions as an oncogene crucial for 
tumor growth and advancement [66]. These intricate binding energies 
show the complex molecular mechanisms modulated by Arbutin and 
Caffeic acid 4-O-glucoside, implicating multiple pathways in their po-
tential therapeutic effects.

EP300 and CREBBP are critical tumor suppressors with significant 
roles in cancer biology. Our in silico results predicted that EP300 is 
upregulated by both Arbutin and Caffeic acid 4-O-glucoside, and its 

protein has a binding energies lower than − 6.0 kcal/mol in both cases. 
EP300, known for regulating cell adhesion, apoptosis, and stemness, has 
been previously shown to be downregulated in breast cancer [67]. 
Upregulation of EP300, as predicted in our study, could therefore be 
beneficial for cancer treatment due to its tumor-suppressive functions.

Similarly, CREBBP, which promotes the activity of other tumor 
suppressors like p53 and RB1 [68], was predicted to be upregulated by 
both molecules too. The molecular docking showed a high binding af-
finity of − 6.6 kcal/mol with Caffeic acid 4-O-glucoside. CREBBP’s role 
in stimulating the transcription of p53, particularly following DNA 
damage, underscores its importance in maintaining genomic stability 
and preventing tumorigenesis [69]. The predicted upregulation of these 
genes aligns with their established roles in tumor suppression, suggest-
ing a potential therapeutic benefit of Caffeic acid 4-O-glucoside and 
Arbutin in cancer treatment. These findings are promising as they 
indicate that these compounds could positively influence key tumor 
suppressor pathways. The strong binding affinities observed further 
support the potential effectiveness of these compounds.

PSEN1 is a gene highly associated with Alzheimer’s disease. This 
gene codifies presenilin 1, required for neural development. This gene 
showed a suppressor role in the chemoresistance of Bladder cancer [70], 
sensitizing cells to the treatment. PSEN1 is upregulated by Caffeic acid 
4-O-glucoside, exhibiting the potential to interfere positively in treat-
ments with chemoresistance.

Genes that are members of the integrin family, ITGA3, ITGA5, and 
ITGB1 are upregulated by Caffeic acid 4-O-glucoside and these integrins 
have binding energy lower than − 7.0 kcal/mol. They are important for 
cytoskeletal organization and cell survival [71]. These integrins are 
upregulated in some types of cancer. ITGA3 knockdown by miR199a-5p 

Fig. 7. Caffeic acid 4-O-glucoside Downregulation Centrality Measures. In black, the hub-bottleneck genes.

Fig. 8. Dihydroformononetin Downregulation Centrality Measures. In black, the hub-bottleneck genes.
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suppressed the proliferation, migration, and invasion in cases of colo-
rectal cancer, but when it is overexpressed, unfortunately these effects 
are restored [72]. ITGA5 is upregulated in oral squamous carcinoma, 
this role was explained by its contribution to epithelial-mesenchymal 

transition (EMT) [73]. These two alpha integrins are upregulated too 
in head and neck squamous cell carcinoma [71]. ITGB1 is upregulated in 
hepatocellular carcinoma (HCC), activating PXN and YWHAZ, mole-
cules associated with HCC tumor cell cycle progression, driving the cell 
cycle acceleration [74]. The role of these integrins in cancer 

Table 7 
The docking interactions characteristics of Arbutin with hit ligands.

Ligand Binding 
energy 
(kcal/ 
mol)

Expression 
status

H-Bond Other non- 
covalent 
interactions

CTNNB1 − 7.5 UP ASN121, 
PRO119, 
HIS118

ARG124, ALA145, 
ASP146, ARG194, 
LEU150, THR120, 
MET190, LYS149, 
LYS193

EP300 − 6.1 UP GLU564, 
GLN873, 
HIS839

GLN561, LEU566, 
SER565, GLN842, 
LEU883, ARG 838, 
VAL878, ASP837, 
SER881, ASN875, 
ARG927

HES1 − 4.2 UP ASN43, TYR8 ARG36, HIS40, 
GLN47, GLY11, 
ALA10, LYS7, 
CYS44, GLU14

HIF1A − 5.7 UP GLN148, 
SER91, 
THR149, 
GLN147

ILE806, SER184, 
GLN814, TYR93, 
TYR102, ASN803, 
ALA804, PRO805, 
LEU186

HSP90AA1 − 6.8 UP ASN106, 
SER52

ASP102, LEU107, 
PHE138, VAL186, 
ASN51, THR184, 
ASP93, ASP54, 
LYS58, MET98

NOTCH1 − 6.5 UP ASN24, 
GLY329, 
GLU328, 
GLY65

GLU28, ALA21, 
MET330, TYR327, 
GLY331, GLN32, 
LYS68, LYS69, 
ARG75, GLN72

RBPJ − 5.7 UP EDO507, 
GLN402, 
GLU363

EDO510, TYR364, 
ALA362, BU1522, 
LYS361, LYS185, 
VAL382, GLU384

SRC − 5.2 UP LYS109, 
HIS107, 
ARG86, 
SER88

PHE108, ARG67, 
SER96, ASP94, 
LEU111

APC − 6.9 DOWN ARG606 PHE23, SER103, 
GLY105, GLN18, 
VAL21, GLU19, 
LYS104, ALA112, 
LYS107, ASP90, 
ARG594, GLU91, 
LEU76, GLU92, 
PHE20

AXIN1 − 5.2 DOWN HIS127, 
GLN223, 
GLN227, 
GLU231

-

DDB1 − 7.0 DOWN ALA82, 
HIS1077, 
ARG111, 
GLY113, 
THR1078,

ARG1080, ARG570, 
ILE112, SER567, 
TYR84, ARG114, 
PRO115, GLN109, 
GLU1079

NEDD8 − 5,1 DOWN SER65, 
TYR45

SER46

PSMD3 − 6.4 DOWN ARG926 LYS860, ALA861
RBX1 − 4.9 DOWN ASN41, 

VAL38
ILE37, ALA43, 
ASP36, LEU96, 
PRO95, TRP35, 
ARG46

SKP1 − 6.0 DOWN SER139, 
ASP81, 
IHP601

ARG114, GLU165, 
SER138, LYS113, 
ARG164, ARG334, 
ARG403

Table 8 
The docking interactions characteristics of Caffeic Acid 4-O-glucoside with hit 
ligands.

Ligand Binding 
energy 
(kcal/ 
mol)

Expression 
status

H-Bond Other non- 
covalent 
interactions

CREBBP − 6.6 UP SER1179, 
ARD1112

SER1136, GLU1183

CTNNB1 − 5.3 UP HIS499, 
GLU310,*

ASN308, LYS496,*

EP300 − 6.3 UP SER565, 
GLN529, 
ASP571, 
LEU528,*

LEU566, ASN527,*

HIF1A − 5.5 UP ALA198 LEU101, VAL242, 
TYR230, SER240, 
THR97, PHE244, 
HIS199, ARG117, 
PHE114, PRO197, 
GLN239, ASP243, 
LYS99,*

ITGA3 − 8.1 UP GLU240, 
PHE238

LYS250, LEU222, 
HIS261, ARG246, 
ALA244

ITGA5 − 7.0 UP SER134, 
LEU225, 
ASN224, 
SER132, 
GLU229

PHE187, SER224, 
SER227

ITGB1 − 7.4 UP ASN288, 
LYS300, 
LYS303, 
GLU285

LEU304,*

NOTCH1 − 6.4 UP GLN74, 
GLU328

ALA21

PSEN − 5.6 UP GLU184,* TYR181
RBPJ − 7.2 UP CYS278, 

VAL231, 
LYS212, 
TRP243,*

LEU77, VAL280, 
ALA245,*

APC − 6.8 DOWN ASP252, 
LEU249, 
ASN250, 
CYS150, 
ARG77

-

AXIN1 − 5.9 DOWN THR224, 
ARG162

-

HDAC1 − 5.6 DOWN LYS91, 
LYS88, 
ARG71, 
ARG119,*

GLN124,*

HSP90AA1 − 5.5 DOWN GLU227, 
GLU332, 
ASN238

ARG222, MET285

NEDD8 − 5.8 DOWN ARG342. 
THR9, 
PRO338, 
GLN341, 
LYS327,*

GLY110, GLN339, 
ALA372,*

PSMD3 − 6.7 DOWN ARG856, 
ARG926, 
ASP924

-

RBX1 − 6.4 DOWN ASN41, 
VAL38

ALA43, LEU96

SKP1 − 6.7 DOWN SER510, 
LYS485, 
ARG484, 
LYS113

ARG509

* Other unknown bindings.
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development is crucial and when upregulated, like by Caffeic acid 
4-O-glucoside, it can enhance cancer cells growth.

The Cell Division Cycle (CDC) genes are pivotal in DNA replication 
initiation and cell division regulation. While inhibiting CDC20 has 
shown promise in suppressing metastasis in triple-negative breast cancer 

[75], Dihydroformononetin, upregulates its expression. Similarly, 
CDC6, associated with cancer development due to its abnormal 
expression [76], is also upregulated by Dihydroformononetin, indi-
cating potential implications for cell cycle dynamics. Moreover, Dihy-
droformononetin upregulates AURKA and AURKB, members of the 
Aurora kinase family crucial for mitosis regulation, with notably low 
binding energies, indicating strong binding affinity. Particularly, 
AURKB, responsible for kinetochore formation essential for proper 
chromosome disjunction, when upregulated, may safeguard against 
abnormal cell division, aligning with predictions of reduced micronuclei 
formation [77]. AURKB exhibits upregulation with a high binding af-
finity of − 8.9 kcal/mol, underscoring its potential role in 
Dihydroformononetin-mediated effects on cell division regulation. 
AURKA, with a binding energy of − 7.1 kcal/mol, further supports the 
intricate regulatory network influenced by Dihydroformononetin. The 
upregulation of these genes protect from abnormal division [77]. This 
aligns with the prediction of the absence of micronuclei, as illustrated in 
Table 5.

FADD and CASP8 are genes directly involved in the regulation of 
apoptosis and inflammation control and are downregulated by Dihy-
droformononetin. Together, they are essential for death receptor- 
induced apoptosis and the induction of proinflammatory responses 
[78,79]. Our in silico docking analysis revealed that CASP8 showed a 
high binding affinity with Dihydroformononetin, with a binding energy 
of − 6.8 kcal/mol, while FADD had a binding energy of − 5.9 kcal/mol. 
These strong interactions suggest that Dihydroformononetin could 

Table 9 
The docking interactions characteristics of Dihydroformononetin with hit 
ligands.

Ligand Binding 
energy 
(kcal/mol)

Expression 
status

H- 
Bond

Other non-covalent 
interactions

AURKA − 7.1 UP - VAL147, LEU263
AURKB − 8.9 UP - ALA217, LEU83, LEU207, 

PHE88
CDC6 − 7.0 UP - ARG237, ILE345, ASN352
CDC26 − 7.2 UP LEU449 SER448, ASN188, 

VAL190, ARG316, 
VAL232, ASP191, 
ALA233, SER275, TRP276, 
TRP234, LEU406, LYS359, 
LEU447, SER404

GMNN − 5.1 UP  GLU125, HIS121
CASP8 − 6.8 DOWN - ARG337, TRP403, HIS334, 

LEU333, TRP466, LEU405
EXOC8 − 6.8 DOWN - GLY171, ALA274, LYS278, 

LEU275, TYR173
FADD − 5.9 DOWN - LEU172, ILE295, LYS296

Fig. 9. 3D and 2D representations of ligand–protein interactions between Arbutin and the active site of CTNNB1.

Fig. 10. 3D and 2D representations of ligand–protein interactions between Arbutin and the DDB1 active site.
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effectively modulate their activity. Given that the extract of Cyrtopodium 
glutiniferum demonstrated anti-inflammatory properties in our previous 
studies [10], the negative modulation of CASP8 and FADD by Dihy-
droformononetin may explain these anti-inflammatory effects. The 
downregulation of these genes could reduce proinflammatory responses 
and apoptosis, contributing to the extract’s therapeutic potential. This 
highlights the importance of Dihydroformononetin in the 

pharmacological effects of Cyrtopodium glutiniferum and supports further 
investigation into its mechanisms of action.

HSP90AA1 gene codifies the Heat shock protein 90-alpha. This 
chaperone is mainly expressed in tumors, infections, and trauma. The 
HSP family of proteins is present in immune and inflammatory processes 
[80]. HSP90AA1 is upregulated in some types of cancer, and its inhibi-
tion was capable of promoting anti-tumor immunity, being an important 
target in cancer research [81]. In the gene regulation prediction, it was 
seen that HSP90AA1 is upregulated by Arbutin but downregulated by 
Caffeic acid 4-O-glucoside. Its upregulation must be seen carefully, and 
the downregulation shows great potential for cancer therapeutics and 
may justify the anti-inflammatory activity.

While the in silico analyses provide valuable insights into the thera-
peutic potential of compounds from Cyrtopodium glutiniferum, they come 
with limitations. The reliance on theoretical models such as SARs and 
QSARs can result in inaccurate predictions, as seen in the divergent 
mutagenicity results for Arbutin and Dihydroformononetin [44]. Addi-
tionally, it is important to have experimental validation to confirm the 
biological relevance of the high binding affinities observed in our 
docking studies. The prediction platforms used may also have incom-
plete databases, affecting the accuracy of our results. Therefore, sup-
plementing these findings with experimental studies in vitro and in vivo 
remains essential for a thorough understanding of the pharmacokinetics, 
toxicological profiles, and molecular interactions of these compounds, 
thus establishing a robust foundation for developing new therapeutic 
agents. Furthermore, utilizing the insights obtained from the in silico 
approach can offer valuable direction for subsequent investigations, 

Fig. 11. 3D and 2D representations of ligand–protein interactions between Caffeic Acid 4-O-glucoside and the ITGA3 active site.

Fig. 12. 3D and 2D representations of ligand–protein interactions between 
Caffeic Acid 4-O-glucoside and the APC active site.

Fig. 13. 3D and 2D representations of ligand–protein interactions between Dihydroformononetin and the AURKB active site.
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aiding in the identification of optimal targets and potentially minimizing 
time and resource consumption in the drug development process.

Together, these predictions underscore the potential of Arbutin, 
Caffeic Acid 4-O-glucoside, and Dihydroformononetin as promising 
candidates for the development of novel therapeutics, particularly in 
areas such as anti-inflammatory agents and cancer therapeutics. Given 

the convergence in their targets, Arbutin and Caffeic Acid 4-O-glucoside 
may potentially exhibit synergistic effects when combined, enhancing 
their overall therapeutic efficacy. However, it is imperative to note that 
important aspects such as their absorption, mutagenicity, and interac-
tion with Cytochrome P450 enzymes still need further analysis. These 
molecules were shown to interfere with the gene expression of signifi-
cant pathways, including Wnt. Dihydroformononetin downregulates 
proinflammatory genes, indicating anti-inflammatory potential, as seen 
in the Cyrtopodium glutiniferum extract. They demonstrated great bind-
ing energy with the respective proteins observed in DIGEP. To validate 
these findings and better understand the results of these gene in-
teractions, more in vitro and in vivo studies are necessary, ultimately 
supporting the therapeutic potential of these bioactive compounds.
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