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Patients with cancers have been severely affected by the COVID-19 pandemic. This
is highlighted by the adverse outcomes in cancer patients with COVID-19 as well as
by the impact of the COVID-19 pandemic on cancer care. Patients with cancer
constitute a heterogeneous population that exhibits distinct mechanisms of immune
dysfunction, associated with distinct systemic features of hot (T-cell-inflamed/infil-
trated) and cold (Non-T-cell-inflamed and/or infiltrated) tumors. The former show
hyper immune activated cells and a highly inflammatory environment while, con-
trastingly, the latter show the profile of a senescent and/or quiescent immune sys-
tem. Thus, the evolution of SARS-CoV-2 infection in different types of cancers can
show distinct trajectories which could lead to a variety of clinical and pathophysio-
logical outcomes. The altered immunological environment including cytokines that
characterizes hot and cold tumors will lead to different mechanisms of immune dys-
function, which will result in downstream effects on the course of SARS-CoV-2 infec-
tion. This review will focus on defining the known contributions of soluble pro- and
anti-inflammatory mediators on immune function including altered T-cells and
B-cells responses and as well on how these factors modulate the expression of
SARS-CoV-2 receptor ACE2, TMPRSS2 expression, and lymph node fibrosis in cancer
patients. We will propose immune mechanisms that underlie the distinct courses of
SARS-CoV-2 infection in cancer patients and impact on the success of immune
based therapies that have significantly improved cancer outcomes. Better under-
standing of the immune mechanisms prevalent in cancer patients that are associ-
ated to the outcomes of SARS-CoV-2 infection will help to identify the high-risk
cancer patients and develop immune-based approaches to prevent significant
adverse outcomes by targeting these pathways. (Translational Research 2022;
241:83�95)
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INTRODUCTION

Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2) has at present, (November 2021)

caused 257 million infections and more than 5.1 million

deaths worldwide (New York Times, November 21,

2021). Studies have shown that, cancer patients are par-

ticularly more susceptible to SARS-CoV-2 infections

(0.9% vs 0.29%).1-5 Besides that, the factors that have

been most consistently linked with increased risk of

severe COVID-19 disease and/or death are prevalent in

cancer patients, and include but not limited to older

age (� 60 years), a history of smoking, obesity, hyper-

tension, cardiovascular disease, and diabetes1. Higher

susceptibility of cancer patients to SARS-CoV-2 infec-

tion is either due to impaired immune responses that

are characteristic of the cancer (and associated co-mor-

bidities) or due to the anti-cancer treatments that alter

immune homeostasis.1-3 To understand why cancer

patients are at greater risk of complications and/or

death associated with COVID-19 it is important to

decipher immune responses that govern the develop-

ment of specific cancers, associated therapies and

comorbidities.6,7

The severity of COVID-19 disease in cancer patients

is partly a function of the etiology, type (hot vs cold

tumors, where hot tumors have an immunologically

active microenvironment), stage and anatomical loca-

tion of the tumor.4,8-12 These factors along with treat-

ment regimens play a crucial role in diversifying the

immune landscape of a malignancy.8,12 Indeed, it has

been observed that COVID-19 patients with hot tumors

(ie, lung cancer and hematological malignancies

(HM)) are likely to develop severe COVID-19

disease.1,4,10,11 Recent reports have shown that adverse

outcomes in COVID-19 infected cancer patients can

result from: alterations in expression of host proteins

that promote SARS-CoV-2 entry (ACE2 and

TMPRSS2), an aberrant cytokine profile (mainly IL-

1b, IL-2, IL-6, GM-CSF, IFNg, TNF-a, and TGF-b),

lymph node thrombosis, impaired T/B-cell responses,

and impaired inflammasome response � especially the

NLRP3 inflammasome.1,3,8,13-22 To decipher the mech-

anisms that drive these adverse outcomes in COVID-

19 infected cancer patients, this review will assess the

impact of “hot” vs “cold” immune and/or tumor envi-

ronments (and associated therapies) on susceptibility

and course of disease in subjects with these 2 types of

tumors and infected with SARS-CoV-2. The mecha-

nisms discussed below can help further research into

the development of tailored approaches that promote

anti-cancer responses while restraining COVID-19 dis-

ease severity.
COVID-19 AND ITS OUTCOMES

Coronaviruses are a diverse group of respiratory

viruses that can infect humans and animals.23 In 2019,

Wuhan (China) saw the emergence of a novel corona-

virus “SARS-CoV-200 that has been responsible for an

unusual and highly transmissible viral pneumonia pan-

demic that was designated as coronavirus disease 2019

(COVID-19).24 SARS-CoV-2 enters the host respira-

tory epithelial cells by binding the angiotensin convert-

ing enzyme II (ACE2).25,26 Specifically, the C-terminal

domain of the SARS-CoV-2 spike (S) protein, known

as “receptor binding domain (RBD)”, binds ACE2 to

aid viral entry into the host cell.27,28 Next, host pro-

teases (Transmembrane Protease Serine Protease 2

(TMPRSS2), cathepsin L and furin), cleave the S pro-

tein of SARS-CoV-2 that is required to activate endo-

cytic entry of SARS-CoV-2 and initiate

infection.26,29,30 During the initial phase of the infec-

tion, susceptible epithelial cells in the nostrils allow for

SARS-CoV-2 replication and subsequent transmission

to lower respiratory tract epithelial cells and finally to

alveolar epithelial cells (Fig 1).30 Rapid replication of

SARS-CoV-2 in the respiratory tract can promote sys-

temic proinflammatory cytokine production (known as

the “Cytokine storm”), such as: IL-1b, IL-6, IL-7, IL-

8, IL-9, IL-10, FGF, G-CSF, GM-CSF, IFN-g, IP-10,

MCP-1, MIP-1A, MIP1-B, PDGF, TNF-a, and VEGF,

which subsequently results in dysregulation of immune

functions, severe inflammation (including myocarditis)

and multiple organ failure in some COVID-19 patients

(Fig 1).21,22,31-34 The most striking impact of this storm

is observed in the respiratory tract, where pro-inflam-

matory cytokines drive the pathology of acute respira-

tory distress syndrome (ARDS) and ultimately

respiratory failure - the main causes of death in

COVID-19 patients.11,32,33,35
SARS-COV-2 INFECTION IN CANCER PATIENTS

Numerous studies have shown that COVID-19 with

‘pre-existing conditions’ especially cancer, have higher

mortality rates than “healthy” population (16-fold higher

risk) (FDA’s Oncology Center of Excellence).3,8,36,37

The estimated 19 million new cancer cases (led by

breast, lung, colorectal, prostate cancer, skin and stom-

ach cancers), 10 million deaths in 2020 (GLOBOCAN),

along with the increased infection risk, make it crucial

to understand the immunological interplay between can-

cer and SARS-CoV-2 infection. Moreover, major signal-

ing pathways impaired by SARS-CoV-2 infection are

also upregulated in patients with cancer and COVID-19,

https://doi.org/10.1016/j.trsl.2021.12.001


Fig 1. COVID-19 and its impact on development of immunity against SARS-CoV-2 infection. SARS-CoV-2

infect lung epithelial cells (1) and is sensed by macrophages and other innate immune cells (2). Upon sensing the

SARS-CoV-2 infection, innate immune cells express cytokines (3) which accelerate the production of more cyto-

kines and lead to cytokine storm (4). The resulting cytokine storm lead to dysregulation of immune functions and/

or responses (5): dysregulated innate immune response (5.1), dysregulated adaptive immune response (5.2) � dys-

regulated T-cell response (a), dysregulated B-cell response (b), and dysregulated antibody response (c).
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and include: cytokine signaling, type-I interferon signal-

ing, androgen receptor signaling, and immune check-

point signaling (Fig 2).38 Untangling the complex

relationships between the immune responses triggered

by the many cancer types and SARS-CoV-2 infection

has been an on-going challenge for the field, and will be

further discussed in the following sections.

Viral infections and the associated chronic inflam-

matory responses have often been associated with can-

cer presentation and/or progression.37,39,40 Among

viruses, a group of viruses is associated with the inci-

dence and/or progression of cancers and are known as

oncogenic viruses, for example; HIV, HPV, HBV,

HCV, EBV.37,41-43 The designation of SARS-CoV-2 as

an “oncogenic virus” and its role in tumorigenesis

remain subjects of ongoing research.37,44 Studies look-

ing into the link between SARS-CoV-1 infection (a

virus that shares 79.6% homology at genome level

with SARS-CoV-2) and cancer have reported that this

virus can interfere with signaling pathways, such as

p53, EGFR, JAK/STAT, or MAPK signaling, that will

promote carcinogenic transformation of cells.47-49

Moreover, pro-inflammatory cytokine production dur-

ing SARS-CoV-2 infection (including IL-6: a typical

feature of oncogenic viruses) could drive pro-
tumorigenic activity.44-46 Even if SARS-CoV-2 does

not play a direct role in cancer etiology, it still has the

potential to alter the immune landscape and which

would enhance adverse outcomes in patients with

cancer.8,50,51 To understand the role of SARS-CoV-2

infection in tumor progression it is important to con-

sider etiological differences among cancers that com-

plicate the cancer immune landscape and drive adverse

outcomes in SARS-CoV-2 infected cancer patients.

Recent epidemiological studies have reported that

patients with hematological, lung or breast cancers are

more likely to develop adverse outcomes that culmi-

nate in increasing the risk of hospitalization and deaths,

during SARS-CoV-2 infection.36,52,53 Interestingly,

these reported cancer types have very diverse immuno-

pathology and hence are likely to mount distinct

changes in the immune landscape during infection.54-56

Hematological malignancies and/or blood cancer are

liquid (leukemias) or are localized to sites of develop-

ment and/or primary ie, bone marrow or secondary

lymphoid organs, unlike most solid tumors.57-59 These

features make hematological malignancies highly

available to interactions with immune cells and

respond avidly to on-going systemic inflammatory

responses (such as those observed during severe

https://doi.org/10.1016/j.trsl.2021.12.001


Fig 2. Changes in cancer cell signaling pathways upon Sars2 infection. Cancer (1) is heterogenous depending

on the tumor micro environment: hot or cold (2), and the susceptibility of patients with cancer to SARS-CoV-2

infections (3) is influenced by cancer type. Four major signaling pathways that are common and impaired in

both diseases are: cytokine, type-I IFN, androgen receptor, and immune checkpoint signaling pathways (4).

These impairments in signaling pathways lead to cytokine storm that consequently ends up on acute respiratory

distress syndrome (ARDS), organ failure, and death (5).
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COVID-19). In this scenario, it is likely that pre-infec-

tion cancers associated inflammation synergizes with

systemic immune responses seen during SARS-CoV-2

infection � resulting in a higher than usual inflamma-

tion and potentially higher mortality rates.

In contrast to hematological malignancies, lung and

breast cancers are solid tumors that respectively fall

under “hot” and “cold” tumor categories, respec-

tively.12,60-63 Similar to most hematological malignan-

cies, a hot tumor (like melanoma, non-small cell lung

cancer, and cancers of the liver, kidney, bladder, and

head and neck) shows a high level of interfacing capac-

ity with the immune system.63,64 Indeed, the tumor

microenvironment (TME) of hot tumors includes sev-

eral subsets of innate as well as adaptive immune cells

that are endowed with a wide array of effector

functions.63,65 Specifically, cytokines and chemokines

(including but not limited to; CCL2, CCL3, CCL4,

CCL5, CXCL9, CXCL10, CCL17/22) produced by

these tumors allow for the migration of tumor specific

T cells in the TME; these T cells are responsive to

immune check point blocker therapies that rescue anti-

tumor T cell effector function.12,63-67 In contrast, cold

tumors (like ovarian, breast and pancreatic cancers) are

characterized as “non-inflamed” or “immune-deserts”

and present with a microenvironment that presents
striking features of T-cell r exclusion from the

TME.12,63-65,68-70 In the context of SARS-CoV-2 infec-

tion, it can be speculated that hot tumors (like lung can-

cer) that are immunologically active and anatomically

primed will fuel the systemic inflammatory responses

observed during SARS-CoV-2 infection (Fig 3). How-

ever, the exact mechanisms driving adverse outcomes

with each cancer (with or without therapy) are yet to be

elucidated.
IMMUNE MECHANISMS THAT DETERMINE THE
ADVERSE OUTCOMES OF COVID-19 IN HOT AND
COLD TUMORS

To understand the impact of these heterogenous can-

cer etiologies on COVID-19 outcomes, it is important

to first elucidate their impact on SARS-CoV-2 entry

and/or infection and existing or resulting immune cas-

cades. Expression of ACE2 (the viral entry receptor) in

lung epithelial was shown to be higher in older sub-

jects, smokers and/or subjects suffering from smoking

related disorders like chronic obstructive pulmonary

disease (COPD).3,13,71-73 Moreover, expression of

TMPRSS2, a membrane-bound serine protease known

to synergize with ACE2 to promote SARS-CoV-2

https://doi.org/10.1016/j.trsl.2021.12.001


Fig 3. Mechanisms that lead to poor outcomes of COVID-19 in cancer patients. Cancer patients are highly het-

erogeneous population (A) and are divided into two major categories; hematological malignancies and solid

tumors (B). Solid tumors can be further divided into hot tumor and cold tumor groups (C), which can get

infected by SARS-CoV-2 (D) and develop COVID-19 (E). Course of infection of SARS-CoV-2 (1)� influenced

by differential expression of ACE2 and TMPRSS2 in hot vs cold cancers � can lead to poor outcome of

COVID-19 in hot vs cold cancer patients. Immune responses and development of immunity against SARS-

CoV-2 (2) � influenced by differential innate (2.1) as well as adaptive (2.2) immune responses in hot vs cold

cancers � can lead to poor outcome of COVID-19 in hot vs cold cancer patients. Impact of therapies (3) � influ-

enced by immunotherapy as well as chemotherapy in hot vs cold cancers � can lead to poor outcomes of

COVID-19 in hot vs cold cancer patients.
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entry, has also been observed to be highly expressed in

prostate cancer (cold cancer), where it is upregulated

by androgen receptor (AR).74-76 Interestingly, in two

recent studies, prostate cancer (cold cancer) patients

not treated with androgen deprivation therapy (ADT)

were more likely to be infected by SARS-CoV-2, sug-

gesting a possible relation of the increased expression

of TMPRSS2 and the development of severe COVID-

19 in patients with cold tumors like prostate

cancer.17,77 Based on these data, it can be hypothesized

that the increased expression of ACE2 and TMPRSS2,

mainly due to pro-inflammatory conditions, in subjects

with factors known to be associated with lung cancer

incidence could lead to increased viral titers and devel-

opment of severe COVID-19 (Fig 3).

Innate immune responses and development of severe

SARS-CoV-2 in hot vs cold cancer. The innate immune

response is the first line of defense against SARS-CoV-

2 infection.78-80 SARS-CoV-2 infection is sensed by
pathogen recognition receptors (PRRs) � mainly by

RIG-I Like Receptors (RLRs); MDA5 and LGP2, and

NOD Like Receptors (NLRs); NOD1 � in the lung epi-

thelial cells, and innate immune response is

initiated.79,80 Upon induction of innate immune

response, cells in lung epithelium � epithelial cells as

well as immune cells � produce proinflammatory cyto-

kines, chemokines, interferons (IFNs); type-I and type-

III, and IFN stimulated genes (ISGs).80-84 However,

type-I and type-III IFN defined innate immune

response in COVID-19 are dysregulated and its kinet-

ics set the severity and future pathological outcomes of

the disease.83,85,86 For example, the initial type-I and

type-III IFNs response is higher in patients with mild

and/or moderate COVID-19 while it is reduced in

severe COVID-19 patients.83,85,86 In particular,

COVID-19 patients in critical condition (severe

COVID-19) exhibit increased frequencies of innate

immune cells � mainly neutrophils, monocytes and

https://doi.org/10.1016/j.trsl.2021.12.001
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macrophages � that produce increased level of cyto-

kines which results in the cytokine storm. Cytokine

storm induction is correlated with the severity of

COVID-19 and its adverse outcomes.84,86,87

At present, very limited knowledge is available on

SARS-CoV-2 specific innate immune responses in

patients with cancers. Compromised innate immune

response in patients with cancers make cancer patients

more susceptible to SARS-CoV-2 infection.8,88-90

Higher frequencies of adverse outcomes of COVID-19

inflicted by the dysregulated innate immune responses

are likely in patients with hot cancers than the patients

with cold cancers, because of increased immune com-

promised environment of hot cancers than the cold can-

cers (Fig 3).91 Specifically, lung cancer (a hot cancer)

has active but compromised and/or exhausted lung TME

and thus has a disrupted innate immune response against

SARS-CoV-2 infection.91,92 The immune activation pro-

file of TME in lung cancer � infiltrated with immune

cells and chronically inflamed � can fuel up the dysre-

gulation of innate immune responses against SARS-

CoV-2 in lungs.10,91 Moreover, cytokine storm could

occur in tumor cells too, because of several underlying

factors, and that can impact the innate immune

responses mounted against SARS-CoV-2 infection as

well as the severity of COVID-19.92 On the other hand,

dysregulation of innate immune response in conse-

quence of SARS-CoV-2 infection can facilitate the

growth of lung cancer and/or other tumors.91

Adaptive immune responses and the development of

severe SARS-CoV-2 in hot vs cold cancer. At present,

very few studies have focused on deciphering SARS-

CoV-2 specific adaptive immune responses in patients

with cancers. In SARS-CoV-2 infection, classic anti-

viral responses � where anti-viral cytotoxic CD8 T-

cell responses (aided by a CD4 T-cell driven T-helper

1 response) limit viral persistence by killing virus

infected host cells � are disrupted and a rapid deple-

tion of CD4 T-cells, CD8 T-cells and B-cells is

observed (Fig 3).87 Recently, Mansi et al. showed that

although cancer patients failed to mount T-cell

responses against SAR-CoV-2, no impact on the pre-

established immune memory against common viruses

in SARS-CoV-2 infected patients was observed, argu-

ing that the impaired SARS-CoV-2 specific T-cell

responses can be used as a determinant for adverse out-

come of COVID-19 in cancer patients.93

As discussed above, the outcome of SARS-CoV-2

infection can be shaped by the immune microenvironment

of a tumor. On the one hand, while hot TME is highly

dynamic and allows for immune cell infiltration, cold

tumors lack immune cell infiltration, suggesting that the

impairment of pre-existing anti-tumor T-cells responses in

cancer patients that acquire SARS-CoV-2 infection would
be greater in hot cancers or hematological cancers that reg-

ularly interface with immune cells. In addition to pre-exist-

ing anti-tumor T-cells, heterologous immunity � a

phenomenon of protection in which an individual develops

pathogen-specific T-cells against an unencountered patho-

gen after being exposed to cross-reactive non-identical

pathogens94-98 � is also observed in SARS-CoV-2 unex-

posed individuals.97,99-101 This is particularly true in indi-

viduals that have higher frequencies of T cells with

responses to cross-reactive epitopes shared by common

human coronaviruses (HCoV-OC43, HCoV-229E, HCoV-

NL63, and HCoV-HKU1).101,102 Because of increased T-

cell activity in hot or HM tumors, impairments in cross-

reactive immunity may be expected. A recent study by

Bilich et. al. showed reduced prevalence of pre-existing

cross-reactive CD4 T-cell responses against SARS-CoV-2

in unexposed patients with HMs compared to patients with

solid tumors.97 Moreover, the unexposed subjects with

HMs presented signs of T-cell exhaustion (higher propor-

tion of T cells expressing PD-1, LAG3, and TIM3) and

reduced magnitude, diversity, and persistence (memory) of

SARS-CoV-2 specific T-cell immunity.97 In addition to T-

cells, B lymphocytes (B-cells) also play a critical role in

protecting against SARS-CoV-2 infection by producing

neutralizing anti-viral antibodies. Although B cells have

not been extensively studied in cancer patients with

COVID-19, Mansi et al. have shown that SARS-CoV-2

patients with solid tumors or HMs produced high titers of

virus specific antibodies, which could compensate for an

impaired T cell response.93

Impaired T and B-cell responses can result from

damage to specific organs, like the lymph nodes

(LNs).103-105 Indeed, SARS-CoV-2 infection causes

swelling and inflammation of lymph nodes, which can

progress to LN fibrosis, prevent germinal center forma-

tion of and consequently disrupt healthy virus specific

T-cell responses and neutralizing antibody

production.18,19,106 Lymph nodes of COVID-19

patients with lung carcinoma metastatic cancer � a

cancer known to have compromised innate (such as,

IFN-I and IFN-III) and T-cell (memory TH1) responses

in mediastinal lymph nodes � were found to be

enlarged with tissue structure disruption and immune

cell dysregulation, including macrophage accumulation

and lymphopenia.18,19,106 Although little is known

about lymphedema in SARS-CoV-2 infected cancer

patients, it can be postulated that like in HIV infection,

increased concentrations of lymphatic TGF-b and IL-

1b might play a major role in the development of LN

fibrosis107,108 which would impact on adaptive immune

responses. Further studies to clarify the decipher the

impact of these LN fibrosis inducing cytokines on

priming adaptive cellular and humoral responses to

SARS-CoV-2 infection need to be conducted.

https://doi.org/10.1016/j.trsl.2021.12.001
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IMPACT OF CANCER THERAPIES ON COVID-19
OUTCOMES IN HOT VS COLD CANCER

Anti-cancer therapies. Stratifying groups of cancer

patients based on the type of treatment, stage of treat-

ment, dosage of treatment etc. could provide better

insights into the outcomes of COVID-19 in infected

patients. Studies have shown that the immune system

of patients with cancer undergoes diverse alterations

due to the various treatment regimens they receive.3,45

Traditional anti-cancer therapies like chemotherapy

cause bone marrow suppression which leads to throm-

bocytopenia and neutropenia, while DNA damage to

lymphocytes caused by radiation therapy can cause

lymphopenia.3,13,45,109,110 The depletion of leukocytes

in conjunction with the use of corticosteroids and other

immunosuppressive therapeutics impair immune

responses against even the most common bacterial and

viral pathogens and this compromised immunity could

contribute to increased incidence of COVID-19 related

adverse outcomes in cancer patients (Fig 3).13,45,110

Epidemiological studies have reported mixed results

on the association between chemotherapies and

COVID-19 associated adverse outcomes. In a Japanese

seroprevalence study, Ab levels against SARS-CoV-2

nucleocapsid (but not spike) protein were lower in can-

cer patients who received chemotherapy treatment

within 1 month compared with those who did not

receive it.111 A study from Israel also reported that IgG

levels were significantly lower in patients who received

combined chemotherapy with immunotherapy (com-

monly administered in specific cancers like lung cancer

(hot cancer), triple-negative breast cancer (cold

cancer)).112,113 Unlike chemotherapy, immunothera-

pies (immune check inhibitors, adaptive cell therapies,

cancer vaccines etc.) that help prime the immune sys-

tem to kill cancer cells, could be advantageous in this

scenario and could help in mounting anti-SARS-CoV-

2 responses.114

Cancer is often characterized by a state of systemic

chronic inflammation. However, several tumors require

interventions that rejuvenate immune responses within

the host TME. These therapies include the use of

immune checkpoint inhibitors (ICIs), cytokine-based

therapies, chimeric antigen receptor T (CAR-T) cell

therapy, bispecific T cell engagers (BiTEs), and alloge-

neic stem cell transplantation.3,45,115-117 Although

these therapies drive efficacious anti-tumor responses

they also induce systemic inflammation and the cyto-

kine storm that can harm normal healthy tissues (eg,

pneumonitis) and predispose the patient to adverse

effects that are associated with SARS-CoV-2

infection.3,45,118,119 Most commonly, the use of immu-

notherapies, such as CAR-T and CTLA-4 therapies,
can promote systemic immune hyperactivation that

results in the clinical manifestation of cytokine release

syndrome.45,115,118,120 Indeed, it has been observed

that cytokines that mediate efficacious ICI responses

during CAR-T cell and BiTE therapy (IFN-g, TNF-a,

IL-2 and GM-CSF) are also some of the prime conduc-

tors of cytokine storm.3,121-123 However, a recent report

showed that the prior anti-PD-1therapy � an ICI that is

widely used to treat lung cancer � does not appear to

impact the severity of COVID-19 in patients with lung

cancers. That is contrary to the assumptions that the

prior use of ICIs in cancer patients can dampen the

inflammation and severity of COVID-19 disease.52

Clinical studies aimed at elucidating the impact of

immunotherapies on the manifestation of adverse out-

comes in COVID-19 patients have showed conflicting

results.6,124,125

Vaccine and alternate therapies for efficacious

response to SARS-CoV-2 infection in cancer patients. Im-

pairments of B-cell responses contribute to proper but

delayed COVID-19 vaccine responses in patients with

cancers. However, the extent to which cancer heteroge-

neity contributes to this impairment remains unclear.

COVID-19 vaccine recipients with solid tumors were

observed to have humoral immune responses; anti-

SARS-CoV-2 spike (S) IgG), comparable to those

observed in healthy subjects; of note low cellular

responses were monitored in these patients.126 Whereas

patients with HMs elicited suboptimal humoral and

cellular immune responses.126 In addition, antibody

titers sharply decreased within 3 months of vaccination

for most of cancer patients (most prominently for

patients with HMs).126 In another controlled mRNA

vaccine immunization study, Shroff et al., 2021, it was

found that neutralizing antibodies were produced in

67% and 80% of cancer patients after the primary and

secondary vaccine shots, respectively127 as compared

to healthy controls. A further 3-fold increase in median

titers was observed upon booster immunization.127

Quantification of antigen (RBD and Spike S1) specific

memory B-cell subsets, revealed that frequencies of

spike-specific memory B-cells required two immuniza-

tions in cancer patients vs a single immunization in

healthy subjects127 further indicating that a third vac-

cine dose might help enhance antibody responses in

patients with cancers. This lower or non-responsive-

ness to COVID-19 vaccine by cancer patients is further

confirmed in a recent study from US which reported

that 46% of the patients with HMs � 31 out of 67

patients � did not produce detectable anti-SARS-CoV-

2 spike antibodies following two shots of the Pfizer-

BioNTech COVID-19 vaccine. These 31 patients were

considered “non-responders” to the COVID-19 vac-

cine.128 Another study showed that the seroconversion

https://doi.org/10.1016/j.trsl.2021.12.001
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� the time from vaccination to the availability of virus

specific antibodies in the blood � rate for CVOID-19

was only 55% in cancer patients following one dose of

Pfizer-BioNTech, though it reached 100% in the con-

trol group (25 subjects).129 That being said, these

promising observations have been confounded by

reports that some cancer patients fail to respond to the

SARS-CoV-2 vaccine at all (Fig 4). These poor vac-

cine specific antibody responses could result from sub-

optimal T/B-cell priming and collaboration that is a

consequence of the fibrosis (driven by excessive TGF-

b) which disrupts the LN architecture. Further studies

to understand the mechanisms that underlie poor

immune response to vaccine in SARS-CoV-2 infected

cancer patients are still needed.

Given the poor COVID-19 vaccine efficacy in cancer

patients, it becomes increasingly important to find alter-

nate means of treating SARS-CoV-2 infected cancer

patients (Fig 4). Alternate treatments that modulate the

immune system by reducing aberrant inflammation and
Fig 4. Treatments to enhance the immune response agains

CoV-2 infect individuals with cancers (1) and SARS-Co

COVID-19 vaccine is the first strategy to protect immunoco

from SARS-CoV-2 infection (3). Additional treatments are

protection, against COVID-19, through vaccine (4). Additio

IL-1 (a), anti-IL-6 (b), other immune modulators (c), and ant
improve T-cell function (cytokine blockers and ICIs)

could benefit this population.130-132 Two primary systemic

innate immune cytokines that mediate the pathology of

cytokine release syndrome are IL-1 and IL-6.133,134 IL-1,

the master orchestrator of inflammatory responses in

COVID-19, promotes innate immune activation and

drives the production of proinflammatory molecules.133

IL-1 inhibitors, approved by the Food and Drug Adminis-

tration (FDA) � already available in the market � either

bind directly to IL-1 (Rilonacept and Canakinumab) or

block IL-1 binding to the IL-1 receptor (Anakinra).130,135

Like IL-1, elevated IL-6 levels in patients with severe

COVID-19 identifies can also be targeted by existing

FDA approved agents that either directly target IL-6 (Cla-

zakizumab, Siltuximab, Sirukumab and Olokizumab), IL-

6 cognate receptor (Sarilumab and Tocilizumab) or block

IL-6 trans-signaling (Olamkicept) by blocking the soluble

IL-6 receptor (sIL-6R).134 Although preliminary studies

have yielded conflicting results in patients with mild to

moderate COVID-19, the use of IL-6 in patients with
t SARS-CoV-2 infection in cancer patients. SARS-

V-2 infected individuals develop COVID-19 (2).

mpromised individuals, particularly cancer patients,

required for the cancer patients who cannot acquire

nal treatments include cytokine agonists (4.1): anti-

i-PD-1 (4.2).
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severe COVID-19 is still seen as a viable treatment

option.136,137 Other compounds that may have therapeutic

potential in severe COVID-19 include inhibitors against:

interferons (a, b, g), kinases (JAK, MAPK, P13K), GM-

CSF, CCR, NF-kB and JAK/STATs.138 In fact, the JAK

inhibitor “baricitinib” has been approved by FDA for

emergency use in combination with “remdesivir”

(FDA).139 Further investigation into mechanisms that

drive these pro-inflammatory responses must be con-

ducted in order to identify therapeutics for cancer patients

with severe COVID-19 infections.

Another promising option to treat the COVID-19

patients with cancers is the use of PD-1 inhibitors

(Fig 4). While PD-1 blockade has improved the sur-

vival rate of patients with multiple incurable cancers,

the potential beneficial therapeutic impact of PD-1

blockade is unknown in context of COVID-19 patients

with cancers.140 Like cancer patients, increased fre-

quencies of PD-1 expressing T-cells are observed in

COVID-19 patients.141 It can be argued that, although

on the one end therapies like PD-1/PD-L1 blockade

(that restore T-cell competence in cancer and chronic

viral infections) may enhance detrimental hyperim-

mune response in COVID-19 patients, they could pro-

vide much needed immunological control of viral

infections.142 Current clinical trials aimed at evaluating

the efficacy of anti-PD-1 antibody administration to

both cancer and non-cancer patients with COVID-19

are underway, and may help in understanding whether

restoring the competence of PD-1 expressing T-cells

can efficaciously control SARS-CoV-2 infection.140
RELEVANCE TO CANCER CARE

The impact of COVID-19 pandemic on cancer

patients is far reaching. Early in the pandemic, there

was a great need to divert health care resources to

address a rapidly growing numbers of COVID-19

patients, as well as to protect healthy individuals from

SARS-CoV-2 infection by suspending non-urgent

health care (American Cancer Society). Clinical trials

for finding new cures have also been affected by the

COVID-19 pandemic, with 60% of research programs

suspending screening and/or enrollment of subjects

for clinical trials.143 A large portion of research funds

have been invested in COVID-19 clinical trials; more

than 6442 ongoing studies are listed in clinicaltrials.

gov, as of September 2021. While these measures

were essential, delays in cancer screening, diagnosis,

and treatment due to the restricted access to care will

most likely result in missed diagnoses and an increase

in late-stage diagnoses and preventable cancer

deaths.143-148 The adverse impact of the pandemic on
cancer care can be expected to translate into increased

cancer mortality over the coming years.
PERSPECTIVES

Caveats of these studies include, but are not limited

to: (1) short duration studies, (2) the small sample size

for cancer patients with COVID-19, (3) the very het-

erogeneous profile of the cancer patient cohorts in

terms of cancer type, status of the cancer, nature of

treatment, status of treatment, (4) lack focus on defin-

ing the mechanisms involved in adverse outcomes for

cancer patients with COVID-19. Given the complexity

and heterogeneity of the cancer population in context

of SARS-CoV-2 infection, an unbiased systems biol-

ogy approach would be very useful to understand

mechanisms and identify therapeutic targets that can

aid in improving outcomes in SARS-CoV-2 infected

cancer patients.
FINAL SUMMARY

The impact of the ongoing COVID-19 pandemic is

being felt in subjects that have a pre-disposed immuno-

compromised profile (eg, cancer patients). Due to the

immense heterogeneity (type and treatment of tumors)

among the cancer populations, conflicting observations

of adverse outcomes to SARS-CoV-2 infection have

been reported. Mechanistic understanding of how

infections progress in homogenous cancer populations

will help develop therapeutics that can restrain adverse

outcomes and promote healthy recovery.
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