
Vol. 29 no. 4 2013, pages 444–450
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btt001

Sequence analysis Advance Access publication January 7, 2013

MaSC: mappability-sensitive cross-correlation for estimating

mean fragment length of single-end short-read sequencing data
Parameswaran Ramachandran1,2, Gareth A. Palidwor1, Christopher J. Porter1 and
Theodore J. Perkins1,2,*
1Regenerative Medicine Program, Ottawa Hospital Research Institute, K1H 8L6, Ottawa, Canada and 2Department of
Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, K1H 8M5, Ottawa, Canada

Associate Editor: Martin Bishop

ABSTRACT

Motivation: Reliable estimation of the mean fragment length for

next-generation short-read sequencing data is an important step in

next-generation sequencing analysis pipelines, most notably because

of its impact on the accuracy of the enriched regions identified by

peak-calling algorithms. Although many peak-calling algorithms in-

clude a fragment-length estimation subroutine, the problem has not

been adequately solved, as demonstrated by the variability of the es-

timates returned by different algorithms.

Results: In this article, we investigate the use of strand cross-

correlation to estimate mean fragment length of single-end data and

show that traditional estimation approaches have mixed reliability. We

observe that the mappability of different parts of the genome can

introduce an artificial bias into cross-correlation computations, result-

ing in incorrect fragment-length estimates. We propose a new ap-

proach, called mappability-sensitive cross-correlation (MaSC), which

removes this bias and allows for accurate and reliable fragment-length

estimation. We analyze the computational complexity of this ap-

proach, and evaluate its performance on a test suite of NGS datasets,

demonstrating its superiority to traditional cross-correlation analysis.

Availability: An open-source Perl implementation of our approach is

available at http://www.perkinslab.ca/Software.html.

Contact: tperkins@ohri.ca

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Next-generation sequencing (NGS) technologies have revolutio-

nized molecular biology with their unprecedented capacity for

genome-wide measurement of protein–DNA interactions, chro-

matin state changes and transcription levels (Mardis, 2011).

Although NGS technologies differ in their details, most of the

common platforms work by sequencing large numbers of short-

DNA fragments. These fragments may originate, for example,

from simple extraction of DNA from a sample of cells, selective

extraction based on a chromatin-immunoprecipitation pulldown

or reverse transcription of RNA into DNA. When dealing with

DNA from an organism that lacks a canonical genome assembly,

the sequences can be assembled to create a de novo estimate of

the genome or transcriptome (Narzisi and Mishra, 2011). When

the organism does have a canonical genome, the DNA fragment

sequences are typically mapped back to the canonical genome, so

that their distribution, and especially sites of enrichment, may be

studied (Pepke et al., 2009).

NGS technologies usually do not sequence each DNA frag-

ment in its entirety. Indeed, depending on the size of the frag-

ments, this is typically impossible and is not the intended use of

the technology. The best practical alternative offered by typical

current technologies is sequencing the fragments starting from

both ends. However, most experiments do not take advantage of

this option for cost reasons and, instead, choose to sequence only

one end of each fragment. Thus, despite having a canonical

genome assembly to which one end of each fragment can be

mapped, most NGS experiments lack information on the

other, unsequenced end of each fragment.
A fundamental step in many NGS analysis pipelines is to es-

timate mean fragment length, so that we can have at least some

idea of the genomic locations of the unsequenced ends. First, this

helps in the visualization of the NGS dataset in a genome brow-

ser. Each read can be ‘extended’ to the average fragment length

and shown as an interval in the browser, giving a more accurate

impression of the regions of the genome represented by the DNA

sample. Secondly, fragment-length estimation is important for

peak-calling algorithms—methods for automatically detecting

the genomic regions that are enriched in the sample of DNA

fragments (Pepke et al., 2009). In most such algorithms, either

the reads are extended to an average fragment length (e.g. Tuteja

et al., 2009), or the positive- and negative-strand reads are shifted

towards each other by half the estimated fragment length (e.g.

Zhang et al., 2008). Indeed, many peak-calling algorithms in-

clude a fragment-length estimation subroutine. However, many

of these have not been rigorously validated, and different algo-

rithms often produce different fragment-length estimates. Partly,

as a result, the enriched regions identified by different

peak-calling algorithms can have poor overlap (Wilbanks and

Facciotti, 2010) (also see Supplementary Section S1). Yet other

peak-calling algorithms require the fragment length as input (e.g.

Rozowsky et al., 2009). For all of these reasons, reliable

fragment-length estimation is an important problem that has

not yet been adequately solved.
Mean fragment length can be estimated in the wetlab, and this

is often a part of DNA sample preparation protocols. Fragment*To whom correspondence should be addressed.
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length is commonly controlled by the aggressiveness of DNA

fragmentation (e.g. duration of DNA sonication) and/or by

gel-based size selection. However, such procedures vary by la-

boratory and even by experimenter, and they often go unre-

ported for public NGS datasets. Moreover, such procedures

are typically not highly quantitative, and only result in rough

estimated ranges for fragment length (e.g. 200–300bp), which

are not satisfactory.
In this article, we investigate the use of cross-correlation of

positive- and negative-strand reads for estimating mean fragment

length. By applying this method to a small number of available

paired-end datasets, for which mean fragment length can be

computed exactly, we show that cross-correlation usually pro-

duces an accurate fragment-length estimate. Occasionally, how-

ever, estimates are clearly wrong, returning a value near the read

length rather than the fragment length. Our key insight is that the

mappability of different parts of the genome can introduce an

artificial bias into the cross-correlation function, which some-

times results in incorrect fragment-length estimates. Based on

this insight, we propose a new approach, called mappability-sen-

sitive cross-correlation (MaSC), which removes this bias, allowing

for much more accurate fragment-length estimation. We analyze

the computational complexity of this algorithm and evaluate its

performance on a test suite of NGS datasets, demonstrating its

superiority to traditional cross-correlation analysis.

2 RESULTS

2.1 Disagreements between existing fragment-length

estimators

A number of algorithms rely on some form of cross-correlation

between positive- and negative-strand read sets to estimate frag-

ment length (details provided later in the text). The intuition

behind the use of cross-correlation is straightforward. Imagine,

for example, a DNA sample that is the result of a chromatin-

immunoprecipitation experiment, in which DNA bound to a

particular transcription factor (TF) is pulled down. Let us

choose a binding site in the genome and consider the subset of

all DNA fragments bound to that site. Assuming each fragment

is read from only one end, the positive-strand reads will neces-

sarily occur upstream (to the left) of the binding site, whereas the

negative-strand reads will occur downstream (to the right) of the

binding site. If the fragments are L base pairs long on average,

then, assuming symmetry, the positive reads will occur approxi-

mately L/2 base pairs upstream of the site, and the negative reads

will occur approximately L/2 base pairs downstream. If we cor-

relate the positive- and negative-strand read densities, they

should correlate best when the negative-strand reads are shifted

upstream by L base pairs, which is equivalent to the mean frag-

ment length.
Different algorithms implement this intuition in different

ways. For instance, MACS builds a model by measuring the

alignment between the positive- and negative-strand reads in a

small subset of high-quality peaks (Zhang et al., 2008). The main

drawback of this method is that it sometimes fails because of the

unavailability of a sufficient number of paired peaks to build a

reliable model. Consequently, MACS sometimes ends up assum-

ing a default fragment length of 200bp. QuEST executes a

similar procedure to MACS where the fragment length is esti-

mated from a set of high-quality enriched regions (Valouev et al.,

2008). The strand cross-correlation approach (Kharchenko et al.,

2008; Landt et al., 2012) computes the Pearson correlation coef-

ficient between the genome-wide positive- and negative-strand

read-density profiles. SISSRs, on the other hand, computes a

measure of the average proximity of matching positive- and

negative-strand reads (Jothi et al., 2008). Other algorithms,

such as Peakseq and Peakranger, do not have a built-in

fragment-length estimation subroutine (Feng et al., 2011;

Rozowsky et al., 2009). Instead, they require the user to input

this parameter.
To formalize the correlation approach, let us imagine a genome

of B base pairs in total. For simplicity, we assume that the genome

has a single chromosome; a generalization to include multiple

chromosomes would be straightforward. For b 2 f1, 2, . . . ,Bg,

let f(b) and g(b) denote the number of positive- and negative-

strand reads mapped to position b in the genome. We assume

these positions represent the ends of the fragments that were

read. That is, if a fragment has R bases read from one end, and

if the R-mer that was read maps to positive-strand positions b

through bþR� 1, then f(b) is credited with one read. However,

if the same read maps to negative-strand positions b through

bþR� 1, then g(bþR� 1) is credited with one read—base pos-

ition bþR� 1 represents the physical origin of the start of that

negative-strand read.Alternatively, for simplicity, if one prefers to

credit g(b) with a read instead, then one will later have to add

R� 1 to the fragment-length estimate.

Following what is largely a common practice, we assume that

multiple reads mapped to the same position are collapsed into a

single read. (Multiple identical reads can be an artifact of PCR

amplification; therefore, they are replaced with a single represen-

tative, Pepke et al., 2009.) As such, f, g : f1, 2, . . . ,Bg ! f0, 1g.

Let us further define �f ¼
PB

b¼1 fðbÞ=B,�g¼
PB

b¼1 gðbÞ=B,Vf¼

�fð1� �fÞ, and Vg ¼ �gð1� �gÞ. These are just the sample

means and variances of f and g. The cross-correlation of f and

g at a shift (or distance) of d is

rdðf, gÞ ¼
1

B� d

XB�d
b¼1

½fðbÞ � �f�½gðbþ dÞ � �g�ffiffiffiffiffiffiffiffiffiffiffi
VfVg

p

�

1
B�d

PB�d
b¼1

fðbÞ gðbþ dÞ

� �
� �f�gffiffiffiffiffiffiffiffiffiffiffi

VfVg

p :

ð1Þ

The approximation in the second line results from the summa-

tion in the first line not being taken over exactly the same values

of b as the summations in the formulae for �f and �g. However,

in typical cases, d� B, and any difference arising from this

approximation would be inconsequential. For a given dataset,

we then estimate mean fragment length as d� ¼ argmaxd rdðf, gÞ,

where the argmax is taken over some plausible range of d.
To test whether this whole-genome cross-correlation technique

works, we applied it on several paired-end datasets downloaded

from the GEO database (Barrett et al., 2011). Paired-end data-

sets contain pairs of reads sequenced from both ends of each

DNA fragment. Assuming each end can be mapped back to the

genome, the exact length of each fragment and, consequently, the

exact mean fragment length, can be computed. For our analysis, a
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single-end dataset was created from each paired-end dataset (de-
tails in Section 4) to hide the paired ends from the algorithm, and
the single-end datasets were then used for fragment-length estima-

tion. The results were then corroborated using the truemean frag-
ment lengths. To ensure variety, we chose different types of
datasets from different organisms: ChIP-Seq in Arabidopsis

based on aborted microspores (AMS) pulldown, ChIP-Seq in
yeast based on a nucleosome pulldown and four RNA-seq
datasets from C2C12 mouse myoblasts where the samples have

been prepared tohave amean fragment length of either 100 or 280.
Because transcript splicingmay result inRNA-seq readpairs span-

ning different exons thereby exhibiting unusually large apparent
fragment lengths, we retained only thoseRNA-seq read pairs with
both ends mapping to the same exon according to the UCSC gene

definitions. Other processing details can be found in Section 4.
In addition to computing the naı̈ve cross-correlation, we also

processed these datasets using four other fragment-length esti-

mation techniques (or subroutines), namely, MACS, SISSRs, the
cross-correlation technique by Kharchenko et al. (2008) and a
technique known as ‘coverage’ that computes the optimal shift

for which the number of bases covered by any read is minimized.
Although the last technique is briefly mentioned in the ‘chipseq’

R package (Sarkar et al., 2012), we could not obtain a published
reference for it. MACS (version 1.4.0rc2) was run directly using
Python, whereas the other methods were run using their imple-

mentations in the ‘chipseq’ R package, with the command
‘estimate.mean.fraglen’.
Table 1 lists the results for the six single-end datasets created

from the paired ends, along with the true mean fragment lengths.
MACS fails in two of the six cases because of the unavailability
of a sufficient number of paired peaks. In the cases where it

succeeds, its estimates are accurate. SISSRs demonstrates some
variability, and in the majority of the cases, its estimates are far
away from the true values. Coverage and Kharchenko-

correlation yield accurate estimates for the mouse myoblasts
but have difficulties for the Arabidopsis and yeast cases.

Columns naı̈ve-BC and naı̈ve-WG list the results of our imple-
mentations of the naı̈ve cross-correlation, the first on individual
chromosomes and the other on the whole genome. Except for the

Arabidopsis case, our naı̈ve-correlation estimates are within one
or two base pairs of the corresponding true mean values.
Thus, overall, we can see that the whole-genome cross-correlation

works well in many cases but fails sometimes. In the next section,
we identify the reasons for failure and propose effective solutions.

2.2 Problems with naı̈ve cross-correlation as an estimator

of fragment length

Two issues are associated with the use of naı̈ve cross-correlation

as an estimator of fragment length. The first, relatively minor,

issue is the noisy nature of the correlation signal itself because of

which there is an uncertainty in the exact location of the peak’s

summit. In other words, taking the argmax may be overly

simplistic. This problem can be circumvented by smoothing the

correlation signal using a suitable procedure, such as the moving

average filter, thereby obtaining an unambiguous summit loca-

tion. The effect of smoothing is illustrated in Figure 1, where the

raw and the smoothed cross-correlation signals are displayed for

the yeast dataset.
The other, more serious, problem associated with the method

is its unreliability. First, with paired-end data, we observed that

the method fails for the Arabidopsis dataset. More failures were

then encountered on testing further on a number of other

single-end datasets, including some from our own group. Still

unclear on whether this was just a quirk of the data or a more

general phenomenon, we investigated even further using several

Table 1. Paired-end mean fragment-length estimates using multiple methods, and the corresponding true mean values

Name GEO accession MACS SISSRs Kharchenko-correlation Coverage Naı̈ve-BC Naı̈ve-WG True value

Arabidopsis AMS GSM424618 F 82� 28 109� 74 209�60 91� 76 36 245

Yeast nucleosome GSM730535 F 12� 2 156� 6 42�4 153� 0 153 154

Mouse myoblasts GSM582290 96 98� 3 100� 1 100�0 99� 0 99 98

Mouse myoblasts GSM582293 98 79� 2 100� 1 100�0 98� 0 98 99

Mouse myoblasts GSM582295 277 148� 7 278� 1 280�1 278� 1 278 277

Mouse myoblasts GSM582297 285 157� 6 286� 1 285�1 284� 0 284 282

‘F’ indicates failure. Read length is 36bp for all datasets. SISSRs, Kharchenko-correlation and coverage yield an estimate for each chromosome; therefore, we report

means� 2� standard errors for these cases. For comparison, mean estimates from naı̈ve correlations computed by chromosome are also shown (naı̈ve-BC). Naı̈ve-WG lists

whole-genome naı̈ve correlation results. All estimates have been rounded to the nearest integer.
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Fig. 1. Cross-correlation curve indicating the fragment-length esti-

mate for yeast nucleosome single-end data created from a paired-end

dataset. The estimated mean fragment length is 153, whereas the true

value is 154. The figure also illustrates the effect of smoothing the cor-

relation curve to more robustly determine fragment length. A central

moving average taking 15 samples on either side of the current value

has been performed
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additional public datasets: ENCODE ChIP-Seq in human

based on seven methylation pulldowns, six TF pulldowns and

a control (GEO Series GSE29611); ENCODE ChIP-Seq in

mouse based on a methylation pulldown, four TF pulldowns

and a control (GEO Series GSE31039); and a variety of

ChIP-Seq, methylation and input DNA datasets from the

EBF1 transcription factor study in mouse (GEO GSE35857)

and the histone-modification study in NCCIT cell lines in

human (GEO GSE25882). In these datasets too, we found that

the naı̈ve cross-correlation sometimes seemed to work and some-

times failed. Figure 2 shows three representative examples where

naı̈ve cross-correlation fails (thin curves). The trouble in such

cases is caused by the tall ‘phantom’ peak occurring at or

around the read length that overshadows the ‘true’ peak

around the expected fragment length. A seemingly straightfor-

ward solution to this problem is to simply ignore or mask the

phantom peak. However, as can be deciphered from Figure 2,

the phantom peak not only overshadows the true peak but also

affects its shape and location, in many cases displacing the

summit significantly. It is, therefore, necessary to systematically

address the problem to identify its root cause and thereby elim-

inate the phantom peak. Although the phenomenon has been

partly attributed to poor enrichment (Landt et al., 2012), our

investigation revealed other critical mappability issues at play

that can be effectively corrected for, resulting in the almost com-

plete elimination of the phantom peak. These details, along with

a more complete summary of our analysis, are presented in the

next section.

2.3 Mappability-sensitive cross-correlation yields correct

fragment length estimates on test data

The appearance of the naı̈ve cross-correlation curves in Figure 2

suggests that there are at least two factors influencing the positive-

and negative-strand read densities. One results in a peak near the

fragment length and the other results in a peak near the read

length. We reasoned that the factor related to read length may

be occurring because of mappability. A given base pair position b

in the genome ismappable with lengthR reads if the sequence ofR

nucleotides beginning at position b occurs nowhere else in the

genome. Thus, if a short-read dataset contains a read with exactly

those R nucleotides, then one presumes that one end of the DNA

fragment came from exactly that genomic position. (Although we

have assumed an exact match here for simplicity of explanation,

mismatches are usually allowed in practice.) However, if the

R-mer beginning at position b matches exactly the R-mer begin-

ning at one or more other positions in the genome, then position b

is deemed to be unmappable. When a dataset contains a read with

such an R-mer, its true genomic source position is ambiguous;

hence, the read is usually discarded. A zero value in the functions

f and g may thus represent either the absence of a read at a map-

pable position or an unmappable position altogether. If a zero

indeed represents an unmappable position, then including it in

the cross-correlation computation introduces an artificial correl-

ation between f and g—in particular, at a shift equal to R� 1

because if position b is unmappable for a positive-strand read,

then position bþR� 1 is unmappable for the (reverse comple-

ment) negative-strand read. We reasoned that if we could correct

for this artificial mappability-induced correlation between f and g,

we might eliminate the phantom peak in the cross-correlation
curve that confuses the fragment-length estimation algorithm. It

must be mentioned that a value of ‘1’ in f or g has no ambiguity
associated with it, as it represents a mappable position where a

read has fallen.
The essence of our proposal is to use cross-correlation to es-

timate fragment length, but to compute it using only bases where
the positive strand and the shifted negative strand are both

mappable (Fig. 3). More formally, let MR be the set of

positive-strand positions in the genome that are mappable with
length R reads. This would be the set of shaded positions in row

2 of Figure 3. The corresponding set of positions in the negative
strand that are mappable with length R reads would be

MR þ R� 1, and for a shift d of the negative strand, this set

would become ðMR þ R� 1� dÞ. These positions (shaded) are
shown in row 3 of Figure 3. Now let Md

R ¼MR \ ðMRþ

R� 1� dÞ, which we call the set of doubly mappable positions
at shift d. If b 2Md

R, it means that neither f(b) nor g(bþ d) is

constrained to be zero because of unmappability. To correct
for mappability, the cross-correlation should be computed only

over the doubly mappable positions. Accordingly, we define

sample means and variances of f and g as �d
f ¼

P
b2Md

R
fðbÞ=

jMd
Rj,�

d
g ¼

P
b2Md

R
gðbþ dÞ=jMd

Rj,V
d
f ¼ �

d
f ð1� �

d
f Þ and Vd

g ¼

�d
gð1� �

d
gÞ, where j 	 j denotes cardinality of the set. The

mappability-sensitive cross-correlation (MaSC) is then defined as

�dðf, gÞ ¼
1

jMd
Rj

X
b2Md

R

ðfðbÞ � �d
f Þðgðbþ dÞ � �d

gÞffiffiffiffiffiffiffiffiffiffiffi
Vd

f V
d
g

q

¼

1
jMd

R
j

P
b2Md

R

fðbÞgðbþ dÞ

 !
� �d

f�
d
gffiffiffiffiffiffiffiffiffiffiffi

Vd
f V

d
g

q :

ð2Þ

To test whether the MaSC computation corrects fragment-
length estimation, we applied it on the single-end datasets

mentioned in the previous section. The mappability maps corres-
ponding to the species and read lengths were obtained from the

UCSC Table Browser (Karolchik et al., 2004). The thick curves
in Figure 2 were obtained using MaSC. From the plots, it is clear

that the MaSC algorithm almost completely eliminates the phan-

tom peak occurring at read length, thereby correcting the
fragment-length estimate. In 
40 different datasets we tested,

consisting of a variety of ChIP-Seq, methylation and control/
input DNA, the phantom peak occurred with varying strengths.

In 
20% of the cases, it was strong enough to overshadow what

we take to be the true peak at a plausible fragment-length esti-
mate. In all such cases where the phantom peak presented a

problem, MaSC eliminated it almost completely, thus enabling
accurate fragment-length estimation. The results for these cases

along with the GEO identifiers are presented in Table 2,

comparing the fragment-length estimates obtained using naı̈ve
cross-correlation, MaSC and the four external methods,

namely,MACS, SISSRs,Kharchenko-correlation and ‘coverage’.
Since the last three methods output an estimate for each

chromosome, for comparison, MaSC results on individual
chromosomes are also shown. For these methods, failure rates

were computed by setting a threshold that is slightly larger than

the read length for a given dataset and classifying all estimates
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(both chromosomal andmeans) below this threshold as failures or

invalid estimates. These rates are also listed in the table. The

threshold was set at 50 for the 36-bp datasets and 90 for the

75-bp dataset.

Since these datasets are single-ended, true mean fragment

lengths cannot be computed for benchmarking. Nevertheless,

some general observations can be made as follows. MACS

yields a valid estimate only in three of the nine cases, whereas

in the others it seems to be picking up the phantom peak.

SISSRs, on the other hand, yields valid mean estimates with

some variability, although, in many cases, its estimates are

quite different from those of the other methods. Kharchenko-

correlation, which is similar to the naı̈ve correlation, proves to be

unreliable for these datasets as expected, displaying large uncer-

tainties and failure rates due largely to the dominance of the

phantom peak. The method ‘coverage’, which performed quite

well on the paired-end datasets, suffers from significantly large

failure rates on the single-end datasets. For the specific case

GSM733721, the method completely fails yielding an invalid

mean estimate. MaSC-BC performs well on all datasets, includ-

ing the ones where it has non-zero failure rates. Thus, in the

overall analysis, although the concept of strand cross-correlation

is well founded and suitable for fragment-length estimation, on

its own, it is not sufficiently reliable because of the problems

caused by the frequently occurring phantom peak in typical

NGS datasets. Tests we conducted using both our implementa-

tion as well as that of Kharchenko et al. confirm this observa-

tion. However, if the causative factor of the phantom peak is

corrected for, as we propose here through the MaSC algorithm,

the peak is eliminated almost entirely, and the reliability of the

cross-correlation technique is greatly improved, resulting in valid

and accurate fragment-length estimates. In comparison, none of

the other techniques we investigated demonstrated consistent re-

liability. Between MaSC-BC and MaSC-WG, the latter provides

more robust and consistent results. Hence, to obtain accurate

estimates, we recommend running MaSC on whole datasets in-

stead of on individual chromosomes. As further tests of robust-

ness, we conducted two more investigations. First, we ran MaSC

on a number of randomly sampled subsets of decreasing size of

some of our single-end test datasets. MaSC yielded meaningful

estimates even with as little as 50% of the reads, although vari-

ability in the estimates generally increased with decreasing

number of reads (see Supplementary Section S2). Secondly, we

used different short-read aligners to remap the reads and ran

MaSC on the resulting alignments. The accuracy of the MaSC

estimates did not get influenced by the type of the aligner used

(see Supplementary Section S3).

2.4 Algorithmic implementation and efficiency

In Section 2.3, we have defined MaSC in terms of binary

functions f and g, which indicate the locations of positive- and

negative-strand reads. Thus, the most obvious implementation

of MaSC would involve computations with such functions.

However, NGS datasets are virtually always presented as lists

of reads, with each element in a list specifying the position

(chromosome and base pair) and orientation (positive or nega-

tive strand) of a read. Similarly, information on which positions

in a genome are mappable is typically available as lists

(Karolchik et al., 2004; Koehler et al., 2011). Thus, a list-based

implementation of MaSC would also be natural and possibly
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Fig. 2. Comparison of fragment-length estimates obtained using naı̈ve cross-correlation and the proposed MaSC algorithm. (a) Human HSMMtube

ChIP-Seq H3K4me3 pulldown from the ENCODE project (GEO GSM733738), (b) mouse lymph node ChIP-Seq EBF1 pulldown (GEO GSM876624)

and (c) mouse bone marrow input DNA (GEO GSM876641). In all cases, the phantom peak (occurring at the read length of 36bp) has been eliminated

almost completely by the MaSC algorithm, thereby predicting the correct fragment-length estimates. The estimates in the legend insets are the values

obtained after applying moving-average smoothing
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Fig. 3. Illustration of MaSC computation at the base-pair level for a

single shift d. A ‘1’ indicates the presence of a read or a mappable loca-

tion. Rows 1 and 2 denote positive-strand read locations and mappabil-

ity, whereas rows 3 and 4 denote negative-strand mappability and read

locations, respectively. Only reads falling in doubly mappable locations,

i.e. locations having ‘1’s in both rows 2 and 3 (shaded), are included in the

cross-correlation computation between rows 1 and 4. Other reads are

discarded. Naı̈ve cross-correlation, on the other hand, simply computes

correlation between rows 1 and 4, regardless of mappability
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more efficient, especially if the lists of reads and mappable inter-
vals are short. To analyze the big-O complexity of these alterna-

tives, let N denote the total number of reads, M the number of

mappable intervals, G the genome size and D the number of

distinct shifts at which we want to compute the cross-correlation.
In a list-based implementation of MaSC, we would begin by

separating the list of reads into positive- and negative-strand read

lists, Rþ and R�. We would also ensure that the lists are sorted in

ascending order by chromosome and position, so that subsequent
operations can be carried out efficiently. Sorting would take

OðN logNÞ time. Then, for each shift d, we would do the follow-

ing. First, compute the set of doubly mappable base pairs Md
R at

that shift. This can be done by shifting the mappable intervals to

produceMR þ R� 1� d, and then intersecting this set withMR.

Both these operations can be carried out in O(M) time, assuming
that the mappable intervals have already been sorted in ascending

order. (If the mappable intervals are unsorted, then sorting would

cost an additionalO½M logM� time.However, as this is a one-time

cost per organism, we do not include it in our analysis. If the

mappable intervals are not available at all, then they need to be

computed based on the reference genome. This is a much more
significant computation, but again, it is a one-time cost, and, at

present, mappable intervals are available for many model organ-

isms at a variety of read lengths.) Secondly, we would intersect the

positive- and negative-strand read lists, Rþ and R�, with the

doubly mappable base pairs Md
R, which would take O(NþM)

time. At this point, the means and variances in Equation (2) can
be readily computed. Finally, to obtain the

P
b2Md

R
fðbÞgðbþ dÞ

term, we would perform one final intersection, between the posi-

tive- and negative-strand reads on doubly mappable bases, which

would take O(N) time. The total time complexity would thus be

OðN logNþDðNþMÞÞ.
In a binary-function implementation of MaSC, we would

create the functions f and g, which would take O(GþN) time

regardless of whether the original read list is sorted. Then, in

O(GþM) time, we would create a function h identifying the
mappable base pairs according to MR. Then, for each shift d,

we would create shifted versions of g and h, which would take

O(G) time. The various element-wise intersections and summa-

tions would also take O(G) time. The total time complexity

would thus be O[D(GþNþM)].

Thus, in effect, in terms of big-O analysis, the difference be-

tween a list-based and binary-function implementations reduces

to the difference between an OðN logNÞ term and an O(DG)

term. As G can be in the billions and D can be in the tens or

hundreds, we would generally expect the list-based implementa-

tion to be faster. However, the binary-function implementation

can benefit significantly if the functions are implemented as bit

vectors, and the shifts and intersections are computed using

hardware-level bit-wise operations. Our Perl implementation of

MaSC, available at http://www.perkinslab.ca/Software.html,

uses bit-vectors. On a single core of a SunFire x2250 computer

with 32Gb RAM, it takes on average 
30 min to estimate frag-

ment length for each of the datasets studied in this article.

3 DISCUSSION

We have demonstrated that mappability can introduce a strong

bias into genome-wide cross-correlation computations of posi-

tive- and negative-strand read densities. When those computa-

tions are carried out to estimate fragment length, and when the

bias is strong enough, a dramatically wrong fragment-length es-

timate can result. When used for peak calling, such incorrect

estimates can have adverse effects on the set of peaks returned.

Crucially, we have shown that the mappability-induced bias can

be corrected for using our MaSC algorithm. Tests using a variety

of public NGS datasets demonstrated the effectiveness of MaSC.

We also showed that smoothing the correlation signal helps in

obtaining an unambiguous summit location. We do recommend

checking the plots of the smoothed and the unsmoothed signals

provided by our software to ensure a reasonable agreement be-

tween the summit locations. The computational complexity of

MaSC is comparable with the traditional cross-correlation com-

putation. The only serious caveat to the MaSC computation is

that it requires a mappability map to have been established for

the target genome and for the read length under consideration.

Such maps are not always available and are non-trivial to com-

pute (Koehler et al., 2011). However, when such mappability

information is available, we see no reason not to use the

MaSC computation instead of the traditional, biased cross-

correlation computation.

Table 2. Comparison of fragment-length estimates using different methods

GEO Accession MACS SISSRs %F Kharchenko-correlation %F Coverage %F MaSC-BC %F Naı̈ve RL MaSC-WG

GSM798322 253 154�14 4.2 106� 34 54.2 164�20 12.5 218� 6 0.0 36 36 216

GSM733741 109 108�8 4.0 107� 18 24.0 108�14 20.0 147� 4 0.0 36 36 143

GSM733738 44 189�12 0.0 95� 32 60.0 175�16 8.0 200� 6 0.0 36 36 198

GSM733710 43 170�8 0.0 99� 28 56.0 169�10 4.0 177� 4 0.0 36 36 178

GSM733721 39 162�10 0.0 39� 16 96.0 49�14 92.0 251� 8 0.0 36 36 247

GSM876624 46 229�20 0.0 104� 22 33.3 122�12 9.5 129� 0 0.0 36 36 129

GSM876638 38 237�18 0.0 69� 22 61.9 123�18 14.3 113� 18 20.0 36 36 114

GSM876641 180 217�14 0.0 151� 32 23.8 181�16 4.8 170� 14 5.0 36 36 176

GSM644991 66 218�20 4.0 92� 22 72.0 165�16 8.0 147� 22 26.1 75 75 170

The first five rows correspond to data from the ENCODE project. SISSRs, Kharchenko-correlation and coverage output estimates by chromosome. Hence, these columns

have means� 2� standard errors. For comparison, MaSC results by chromosome are also included (‘MaSC-BC’). ‘MaSC-WG’ lists whole-genome MaSC results. ‘RL’ lists

read lengths. Estimates have been rounded to the nearest integer, and smoothing has been applied for MaSC estimates. The %F columns list the % of failures, i.e. the % of

chromosomal estimates at or near the read length.
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The pervasiveness of the mappability problem in correlation
analysis is unclear. In some datasets we obtained from GEO, we
found the problem, whereas other datasets did not show the prob-
lem. Generally, we expect datasets with shorter reads to be more

susceptible because a greater fraction of the genome is unmap-
pable with shorter reads. However, mappability also varies sig-
nificantly by organism. The problem seems to be present both in

older datasets and new datasets.We are presently planning a com-
prehensive examination of the large number of ENCODE
ChIP-Seq datasets to get a better assessment of the issue.

Although we have emphasized positive- versus negative-strand
cross-correlation and the fragment-length estimation problem,
our approach to eliminating mappability bias is relevant to

other correlative-type analysis of short-read data. For instance,
if one were to compute autocorrelation functions as a measure of
the spatial structure of the genomic signal being assessed, a simi-
lar mappability correction could be performed. The concept

could also be relevant to correlating different datasets–for in-
stance, relating a transcription factor binding signal to a
histone-modification signal. This would especially be true if the

different datasets used different read lengths, and thus were dif-
ferentially susceptible to mappability problems. Finally, based on
the cross-correlation function, we have begun exploring the pos-

sibility of estimating not just the mean fragment length, but the
variance as well, or, even more generally, the entire fragment-
length distribution.

4 MATERIALS AND METHODS

A number of preprocessing steps were carried out to prepare the datasets.

The paired-end datasets were first used directly to compute the true mean

fragment lengths. They were then converted into single-end datasets

before applying the fragment-length estimation algorithms. The

Arabidopsis dataset was available as a single file containing the chromo-

somal start and end positions of the mapped fragments. However, this file

seemed to have been created using paired-end alignment. As paired-end

alignments have different mappability profiles compared to single-end

alignments, we carried out a fresh alignment (using the same tools as

originally used) by randomly choosing one read from each pair and

aligning these reads independently as single ends to the TAIR8 genome

using SSAHA2. The SAM output from SSAHA2 was converted to a

BAM file and then to a BED file using the SAMtools and the

BEDtools utilities, respectively, including only hits designated as ‘pri-

mary’. The yeast nucleosome data were available as two SRA files, one

each for the two ends of the fragments. These were first converted to

FASTQ files using the fastq-dump utility from NCBI. The reads were

then used in two ways. (i) To obtain the true fragment-length statistics:

the reads were mapped to the genome using Bowtie’s paired-end align-

ment option making sure the FASTQ files met the criteria for a successful

paired-end alignment. The resulting SAM file containing the paired-

end read locations was converted to BAM and then to a paired-end

BED file. (ii) To create a single-end dataset: one read from each pair

was randomly selected by walking through the paired FASTQ files,

and the chosen set of reads were then independently mapped to the

SacCer1 genome (2003) using ELAND (from the CASAVA 1.6 pipeline),

including only reads that mapped to a single location (up to two mis-

matches in the 32-bp seed). The ELAND output was then converted to a

BED file using an in-house Perl script. The mouse RNA-Seq datasets

were available as BED files containing paired read locations, and since

the read pairs had been mapped independently, we could create the

single-end dataset by simply subsampling the aligned positions in a

random fashion. The only preprocessing steps required were the elimin-

ation of orphaned reads by positioning matching reads next to each other

and the elimination of read pairs spanning multiple exons.

The single-end datasets were available either directly as BED files, or

as SRA or BAM files. In the latter cases, necessary processing, including

alignment and format conversions, was performed to obtain BED files.

Perl code implementing the MaSC algorithm is freely available at http://

www.perkinslab.ca/Software.html.
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