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Abstract

Single-cell mass cytometry, also known as cytometry by time of flight (CyTOF) is a powerful

high-throughput technology that allows analysis of up to 50 protein markers per cell for the

quantification and classification of single cells. Traditional manual gating utilized to identify

new cell populations has been inadequate, inefficient, unreliable, and difficult to use, and no

algorithms to identify both calibration and new cell populations has been well established. A

deep learning with graphic cluster (DGCyTOF) visualization is developed as a new inte-

grated embedding visualization approach in identifying canonical and new cell types. The

DGCyTOF combines deep-learning classification and hierarchical stable-clustering meth-

ods to sequentially build a tri-layer construct for known cell types and the identification of

new cell types. First, deep classification learning is constructed to distinguish calibration cell

populations from all cells by softmax classification assignment under a probability threshold,

and graph embedding clustering is then used to identify new cell populations sequentially. In

the middle of two-layer, cell labels are automatically adjusted between new and unknown

cell populations via a feedback loop using an iteration calibration system to reduce the rate

of error in the identification of cell types, and a 3-dimensional (3D) visualization platform is

finally developed to display the cell clusters with all cell-population types annotated. Utilizing

two benchmark CyTOF databases comprising up to 43 million cells, we compared accuracy

and speed in the identification of cell types among DGCyTOF, DeepCyTOF, and other tech-

nologies including dimension reduction with clustering, including Principal Component Anal-

ysis (PCA), Factor Analysis (FA), Independent Component Analysis (ICA), Isometric

Feature Mapping (Isomap), t-distributed Stochastic Neighbor Embedding (t-SNE), and Uni-

form Manifold Approximation and Projection (UMAP) with k-means clustering and Gaussian

mixture clustering. We observed the DGCyTOF represents a robust complete learning sys-

tem with high accuracy, speed and visualization by eight measurement criteria. The DGCy-

TOF displayed F-scores of 0.9921 for CyTOF1 and 0.9992 for CyTOF2 datasets, whereas

those scores were only 0.507 and 0.529 for the t-SNE+k-means; 0.565 and 0.59, for UMAP

+ k-means. Comparison of DGCyTOF with t-SNE and UMAP visualization in accuracy dem-

onstrated its approximately 35% superiority in predicting cell types. In addition, observation

of cell-population distribution was more intuitive in the 3D visualization in DGCyTOF than t-
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SNE and UMAP visualization. The DGCyTOF model can automatically assign known labels

to single cells with high accuracy using deep-learning classification assembling with tradi-

tional graph-clustering and dimension-reduction strategies. Guided by a calibration system,

the model seeks optimal accuracy balance among calibration cell populations and unknown

cell types, yielding a complete and robust learning system that is highly accurate in the iden-

tification of cell populations compared to results using other methods in the analysis of sin-

gle-cell CyTOF data. Application of the DGCyTOF method to identify cell populations could

be extended to the analysis of single-cell RNASeq data and other omics data.

Author summary

Single-cell mass cytometry, also known as cytometry by time of flight is a powerful high-

throughput technology that allows analysis of up to 50 protein markers per cell for the

quantification and classification of single cells. Traditional manual gating utilized to iden-

tify new cell populations has been inadequate, inefficient, unreliable, and difficult to use.

A deep learning with graphic cluster (DGCyTOF) visualization is developed in identifying

canonical and new cell types. Utilizing two benchmark CyTOF databases comprising up

to 43 million cells, we compared accuracy and speed in the identification of cell types

among DGCyTOF, DeepCyTOF, and other technologies including dimension reduction

with clustering, including Principal Component Analysis, Factor Analysis, Independent

Component Analysis, Isometric Feature Mapping, t-distributed Stochastic Neighbor

Embedding, and Uniform Manifold Approximation and Projection with k-means cluster-

ing and Gaussian mixture clustering. We observed that DGCyTOF outperformed all the

other methods in accuracy, speed and visualization. The application of the DGCyTOF

method to identify cell populations could be extended to the analysis of single-cell RNA-

Seq data and other omics data.

This is a PLOS Computational Biology Methods paper.

Introduction

The identification of different cell populations has become an essential focus in cell biology

research, and mass cytometry and other such high-throughput technologies are rapidly devel-

oping to identify novel cell populations at the level of the individual cell [1–3]. Mass cytometry,

also known as cytometry by time of flight, or CyTOF, is a variation of flow cytometry in which

protein antibodies are labeled with heavy metal ion tags [4]. Capable of measuring up to 50

proteins in a single cell [5,6] and screening an average of approximately 120 million cells in

each experiment, CyTOF serves as an important source of big data and powerful tool for the

study of cellular diversity and dynamics. Many recent studies highlight its utility in enabling

novel discoveries and enhancing the understanding of cell-to-cell interactions in multiple

domains of immunology [7,8] concerning cell-subset heterogeneity and tissue localization

[9,10]. Indeed, the characterization of cells by CyTOF improves our understanding of disease

progression and drug-response sensitivity or resistance [8].
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Many single-cell experiments focus on the identification of the types of cells present in a

sample from single-cell CyTOF data, and conventional cell-type identification in CyTOF

involves the sequential manual partition, or “gating,” of cells into subpopulations. Termed

canonical cell population identification, gating requires the visual inspection of scatter plots by

one or two protein biomarkers at a time [11–13] using tools such as FlowJo or FlowCore (Yale

Flow Cytometry vendor) [14]. Gating is an important step in assigning individual cells into

discrete cell types [15], but it is very time-consuming, technically inefficient, and prone to

human error. Gating with 50 markers, for example, might yield about 250 = 1015 cell types [16],

so manual gating will not allow an exhaustive search of all cell populations [17]. Furthermore,

the high dimensionality and large proportion of none-labeled CyTOF data pose considerable

challenges to the identification of cell populations [18,19]. New identification tools are

urgently needed that will automate the analysis of data and permit the fulfillment of CyTOF’s

potential for biological discovery and translational applications.

Many clustering tools can perform this task, which is essential to identify “new” cell popula-

tions in explorative experiments. However, relying on clustering is laborious since it often

involves manual annotation, which significantly limits the reproducibility of identifying cell-

populations across different samples. Many clustering tools can identify cell populations in

exploratory experiments [19]. For instance, the k-means clustering algorithm iteratively assigns

data points (cells) [20] to the nearest centroids (cluster center) and recomputes the centroids

based on a predefined number of clusters, and Gaussian Mixture Models (GMMs) [21] tend to

group together data points belonging to a single distribution by assuming a certain number of

Gaussian distributions, each of which represents a cluster. However, clusters obtained by these

algorithms might not be robust. Such algorithms require non-intuitive parameters [22], like

the number k of clusters. Moreover, for some applications, these algorithms are node-density

strategies that might be insufficient to discover the clusters best representing the underlying

data structures, such as the node and node relationship of hierarchical structure in a tree or

graph [23]. In particular, one large dataset might distribute a large number of very dense

objects in some areas and only a few objects in others. Hierarchical density-based spatial clus-

tering of applications with noise clustering (HDBSCAN) [24,25] allows the analysis of datasets

comprising millions of cells and provides aggregate information on generated hierarchical tree

clusters, but information regarding local data structure, that is, single-cell resolution, is sacri-

ficed. Graph-density clustering provides a promising novel strategy for cell-population identi-

fication, but the clustering often involves manual annotation, again, a time-intensive and

laborious process, and this significantly impedes the reproducibility of cell-population identifi-

cation across different samples [23]. The learning processes in these clustering methods for the

automatic identification of cell populations must depend on prior biological knowledge about

the populations to identify canonical cell populations [5]. The HDBSCAN clustering method

can find arbitrarily-shaped clusters and maintain the topology of the structure of the data and

does not require a priori specification of the number k of clusters in the data, as is the case with

k-means.
Clustering and dimension-reduction technologies have often been combined to visualize

data in two dimensions and thereby enhance interpretive capabilities in the analysis of mass-

cytometry data [19,26,27]. Such dimension-reduction techniques include Principal Compo-

nent Analysis (PCA) [28], Factor Analysis (FA) [29], Independent Component Analysis (ICA)

[30], Isometric Feature Mapping (Isomap) [31], t-distributed Stochastic Neighbor Embedding

(t-SNE) [32], and Uniform Manifold Approximation and Projection (UMAP) [33,34]. In par-

ticular, the latest t-SNE and UMAP methods are the two most widely used graph-embedding

techniques for visualization. They involve the construction of a high-dimensional graph repre-

sentation of data followed by optimization of a low-dimensional graph to be as structurally
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similar as possible. Both algorithms excel at revealing local structure in high-dimensional data.

With lots of clustering and dimension-reduction technologies development, how to select

appropriated clustering and dimension reduction in the identification of cell types in CyTOF

data remains under investigation.

The recent development of deep learning (DL) as a powerful machine-learning method was

inspired by the mechanisms of artificial neural networks in the brain, especially those underly-

ing the recognition of patterns from images [35] and the natural processing of language [36].

The deep-learning graphic-clustering approach, DeepCyTOF, shows promise in identification

known cell types from massive volumes of CyTOF data by automated labeling technology

[37]. DeepCyTOF cell-type clusters are trained using samples labeled with marker genes,

assigning target cells to canonical cell types with 99% accuracy compared with the use of real

labels in CyTOF data analysis. However, this method cannot detect new cell populations

beyond cell types defined by the reference samples and visualization, which is different to

DGCyTOF.

DGCyTOF has developed as a new integrated embedding visualization approach in

response to the performance of DeepCyTOF in identifying canonical cell types and reducing

dimensionality with clustering for visualization in the prediction of new cell types. DGCyTOF

combines deep-learning classification and hierarchical stable-clustering methods to sequen-

tially build a tri-layer construct for known cell types, the identification of new cell types, and

visualization. At the same time, this technique preserves the local structure among single cells

by a detailing of non-linear dimensionality-reduction-based method in 3-dimensional (3D)

visualization. DGCyTOF first utilizes marker-labeled samples to calibrate cells into different

classifications and then applies dimension-reduction and hierarchical clustering methods to

assign the unlabeled samples into the appropriate classifications and calibrate their labels. New

cells are identified by the integration of UMAP and HDBSCAN hierarchical tree representation

of the complete data, which preserves the non-linear high-dimensional relationships between

cells in low-dimensional space. The integration framework in DGCyTOF allows interactive

exploration of the hierarchy by a set of embeddings, 3D scatter plots in which cells are posi-

tioned based on the similarity of all marker expressions and used for subsequent analysis, such

as the clustering of cells at different levels of the hierarchy. Utilizing two benchmark CyTOF

databases comprising up to 43 million cells, we compared accuracy and speed in the precise

identification of cell types among DGCyTOF, DeepCyTOF, and other technologies including

dimension reduction with clustering, we observed the superior performance of DGCyTOF by

eight measurement criteria. In addition, we identified previously missed rare cell populations

specifically associated with diseases in both the innate and adaptive immune compartments.

Materials and methods

Datasets

Table 1 delineates two CyTOF benchmark data sets, CyTOF1 and CyTOF2 from healthy

human bone marrow mononuclear cells (BMMCs) [38,39]. All proteins markers do not have

overlapping in the two datasets. (1) The first, CyTOF1, generated by [38] from one healthy vol-

unteer, comprised data of approximately 167,000 cells with 13 markers) about half of which

Table 1. Two CyTOF benchmark data sets for analysis.

Database No. of Cells No. of markers No. of manually gated populations No. of manually gated cells (label data)

CyTOF1 167,004 13 24 81,747

CyTOF2 265,627 32 14 104,184

https://doi.org/10.1371/journal.pcbi.1008885.t001
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had been manually gated into 24 cell populations that included protein-expression levels from

healthy human BMMCs. (2) The second set, CyTOF2, generated by [39] from two healthy

human donors, consisted of almost 266,000 cells with 32 protein-expression markers, about

39% (104,184) of which had been manually gated into 14 major immune cell populations, with

the remaining 61% (161,443) labeled as "unassigned."

Methods

Overview of DGCyTOF: Deep learning with graphic clustering in calibration-feedback

learning for the analysis of CyTOF data. DGCyTOF combines deep-learning classification,

graphic clustering, and dimension reduction in a sequential process to automate the classifica-

tion of canonical cell populations and thereby overcome many limitations associated with tra-

ditional methods of cell-type identification and augment the discovery of novel populations

from mass-cytometry data (Fig 1). The deep-learning model (Fig 1B) is used to predict cell-

type labels of a new dataset based on a reference dataset, in which each of the cells had been

labeled according to its canonical cell type. The UMAP and HDBSCAN is used in clustering

for new cell type identification by force-directed graph algorithms involving spring-like attrac-

tive forces and electrical repulsions between nodes connected by edges on hierarchy clusters

that reveal single “outlier” cells in the left small set of CyTOF datasets after canonical cell iden-

tification. In the middle layer of classification and clustering, a calibration-feedback system is

used to adjust the identification of cell types to reduce false-negative errors (Type II errors)

between classification and clustering, and projection of labels in 3D space provides their vivid

visualization depiction for easy differentiation of types of cell annotations (Fig 1A). The whole

process includes the following five steps:

Step 1: Predict canonical cell type using a deep neural network model: softmax classifier.
A three-layer artificial neural network constructs the deep classification-learning model

for the identification of canonical cell populations (Fig 1B). Given a labeled dataset

fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxm; ymÞ; . . . ; ðxp; ypÞg, where xi2Rn, xi are the protein markers, yi is the

labeled cell population, and yi2{1,. . .,K}, K is the number of manually gated cell populations.

In each cell, the softmax classifier [40] (multinomial logistic regression) estimates the probabil-

ities of that cell belonging to K different cell populations, and the true population is that with

the highest probability (Fig 1B). The likelihood of the cell belonging to a particular population

is given by hΘ(X), which takes the form:

hY Xð Þ ¼ p y ¼ Kjx; y
ðsÞ� �
¼ xy

ðsÞ

k ¼
eyðsÞyK

PK
j¼1

eyðsÞj
¼

esyK
PK

j¼1
esj

ð1Þ

where θ(s) is the parameter sets on the output layer, s, yðsÞ ¼
PK

j¼1
wðsÞj xðsÞj þ bðsÞ;wðsÞ ¼

½wðsÞ1 ;w
ðsÞ
2 ; . . . ;wðsÞj ; . . .wðsÞK �

T
is the weight parameter, and b(s) is a bias constant. The weight

parameter, w(s), and bias, b(s), are learned through training on labeled samples and minimizing

the loss function, L(w,λ) which is the binary cross-entropy between the observed labels, Y, and

predictions, Ŷ as function (2)

L w; lð Þ ¼ �
1

K

XK

i¼1

½yi � logðŷiÞ þ ð1 � yiÞ � logð1 � ŷiÞ� þ l
XK

i¼1
w2

i Ŷ ¼ f X;wð Þ

¼ wTX þ b ð2Þ

where λ is the regularization strength (hyperparameter) to penalize "large" weight w coeffi-

cients. To output layer, s, the ith node (i−classification) logistic regression link function in L
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Fig 1. A framework of DGCyTOF model in the identification of canonical cell population and new cell type

populations. A) The flowchart of DGCyTOF. To single cell data, it includes labeled and unlabeled data in CyTOF

database. Identification of cell types includes four processes. (1) To cells labeled, a supervised deep learning

automatically identifies canonical cell populations or cell types gated by protein markers, the detailed description sees

(B). (2) To new cell population, a novel graphic-clustering integrating UMAP + HDBSCAN allows a learning of feature

representations and preservation of data structure in a network of cell-to-cell interaction for the assignment of clusters

for identification of new cell populations. (3) These cell types from classification and clustering are adjusted between

(1) and (2) layers above mentioned via a feedback-loop using an iteration calibration system to reduce false-negative

errors in the system integrating cell identification. (4) In the final step, a tool permitting three-dimensional (3D)

visualization is developed to display the cell clusters, projecting all cell type labels into independent 3D space for their

vivid depiction and differentiation to facilitate the identification of cell types. B) A three-layer artificial neural network

constructs the deep classification-learning model for the identification of canonical cell populations. C) A calibration-

feedback learning system for cell type correction. After deep learning model in Fig 1A, there are lots of known cell

types identified (here called existing cluster). A correlation threshold value averaging the Spearman correlation

determines whether the cell belongs to these known cell population. If correlation of the filtered cell with cells from the

given canonical cell population is greater than the correlation threshold in this population, we reallocate that cell to this

canonical population.

https://doi.org/10.1371/journal.pcbi.1008885.g001
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can be written:

Li ¼ � log
esyi

PK
j¼1

esj

 !

ð3Þ

The loss function, L, is the sum over the difference between the observed labels, Y, and pre-

dictions, Ŷ , changing Function (2) as follows:

Lðw; ljyðsÞÞ ¼ �
1

K

XK

i¼1
log

esyi
XK

j¼1
esj

0

@

1

Aþ l
XK

i¼1

w2

i ð4Þ

Adaptive moment (ADAM) optimization algorithm [41] is used to minimize the loss func-

tion. The half-half samples labeled is the training data and the test data. After deep learning

model is trained, these unlabeled data will input to the trained model to predict their cell-type

labels. We thus obtain a prediction probability matrix that denotes the probability of each cell

belonging to different populations. Rows in the matrix represent populations, K, and columns

are cells.

To classify cell types, we trained depth-N feed-forward neural nets, each consisting of three

softplus hidden layers and a softmax output layer. To determine the optimal number of layers,

penalization weight (λ) and their drop-out rate in the neural network, DGCyTOF utilized an

automated pruning way of building neural network to improve computational and classifica-

tion performance. By using particle swarm-optimized-based pruning algorithm [42], we

selected the optimal multiple parameters (the number of layers, lambda, drop-out rate) in

Python during network training. This objective maximization is to keep with the classify accu-

racy solution that maximizes the area under the Receiver operating characteristic (ROC) curve

between real labels and prediction labels.

Step 2: Filtering cells to further detect cell populations. To keep homogeneous cells in a clus-

ter, an optimal threshold value, Th, is selected to filter out cells that do not fit well into the clus-

ter. A histogram provides an accurate representation of the probability distribution in each cell

population. A cell with a confidence threshold Th value below 5% is removed from the labeled

cluster from Step1, labeled “unknown,” and assigned to a new population for future re-label-

ling as Eq (5) [5]. By the end of Step 2, about 5% of cells will belong to no particular cell popu-

lation.

assign x to
arg min8yiPðyijxÞ; min PðyijxÞ < Th

ynew as unknown; otherwise
ð5Þ

(

Step 3: Feedback calibration system to reduce misclassification error. Despite the strong clas-

sification ability of the deep-learning model in Step 1, some cells will be misclassified into

incorrect cell-type populations or filtered out of their appropriate clusters, yielding potentially

10 to 20% false negatives after Steps 1 and 2. It is highly desirable to construct calibration feed-

back and reclassify cells to reduce the error and clarify the homology of cell types within each

cluster. Feedback calibration learning system is designed to calibrate the cell-to-cell correlation

of inner cell types and improve the homology of cell types within clusters (Fig 1C). A Spear-

man correlation threshold is applied to reallocate these “outlier” points to seek associated clus-

ters [43]. For each canonical cell population, we first calculate the average Spearman

correlation of each filtered cell, x̂i, with all cells classified into that particular cell population.

Let such correlations with the cells from the cell population yj be r1j, r2j,. . .,rqj, where q is the

number of filtered cells, K is the number of canonical cell populations, and j = 1,. . .,K. Let rj be
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the Spearman correlation threshold of cells from the cell population j. The threshold rj is the

average Spearman correlation of cells in the cell population j. If rqj>rj, then cell x̂q 2 cell-type j.
In other words, if correlation of the filtered cell with cells from the given canonical cell popula-

tion is greater than the correlation threshold in this population, we reallocate that cell to this

canonical population. If the filtered cell demonstrates correlation greater than the correlation

threshold with one or more other canonical cell populations, we reallocate the cell to the popu-

lation with which it shows highest correlation.

Step 4: Embedding hierarchical tree clustering to detect new cell populations. Graphic cluster-

ing requires a transformation of features from high- to low-dimensional feature space by

UMAP (uniform manifold approximation and projection for dimension reduction) [33]. The

clustering then adopts an explicit approximation of maximum likelihood to estimate the diver-

sity of distribution between the latent representations in the low-dimensional space, at the

same time preserving the structure of data in the network of cell-to-cell interactions for the

assignment of clusters utilizing HDBSCAN [24].

Dimension reduction by UMAP. UMAP [33] is a novel manifold embedding learning tech-

nique for general non-linear dimension reduction. Let �X ¼ fx1; . . . ; xlg denote cells filtering

out of canonical cell populations, where xi2Rn. UMAP works on a weighted graph, denote G =

{V, E, w} with vertices, edge E with weight w. For each cell, UMAP first finds its nearest k
neighbors by their connection weights, w, in the high dimension. The weights w(i, j) depend

only on the points in the neighborhoods of xi and xj with weights wi and wj; that is, the weights

depend on no more than (2k+1) neighbor points. The weight, w, is computed from high-

dimensional edges for selected neighborhood cells. UMAP employs a manifold learning tech-

nique to map the connections of each cell and its neighbors to a low-dimensional graph with

weight w0, which maintains the topology of the global structure of the data and distance

between cells in the low-dimensional space [33]. Let σi be the diameter of the neighborhood of

xi, ρi be the distance from xi to its nearest neighbor, and A be the weighted adjacency asymmet-

ric matrix of G. We can then make A symmetric by letting:

Ai;j ¼ wðxi; xjÞ ¼ wiðxi; xjÞ þ wjðxj; xiÞ � wiðxi; xjÞwjðxj; xiÞ ð6Þ

where wi xi; xj
� �

¼ e
� ðdðxi ;xjÞ� riÞ

si , d is the measure of dissimilarity and ρi ensures the local connec-

tivity of the manifold.

Given two weights, w, w0 in the dataset, the cross-entropy C(w, w0) between them is:

Cðw;w0Þ ¼
X

i�j

wði; jÞlog
wði; jÞ
w0ði; jÞ

� �

þ ð1 � wði; jÞÞlog
1 � wði; jÞ
1 � w0ði; jÞ

� �

ð7Þ

where w represents the weights computed from high-dimensional filtered cells and w0, the

weights computed from low-dimensional embedding. UMAP optimizes lower-dimensional

embedding with respect to cross-entropy by stochastic gradient descent.

Structure hierarchical tree clustering by HDBSCAN. A density-based clustering algorithm,

HDBSCAN constructs a hierarchical tree of clusters and applies a specific stability measure to

extract flat clusters from the tree, providing for the discovery of all the small clusters and

revealing obvious outliers or noise [24,44–46]. The HDBSCAN algorithm, detailed by McInnes

and colleagues [25], can be abstracted into the following steps [45]. 1) It first finds the points

in the epsilon-neighborhood of every point and applies a mutual reachability distance metric

[47] to identify the core points with neighbors of more than “minimum cluster size” (denoted
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by minPts):

dmreach� kða; bÞ ¼ max corekðaÞ; corekðbÞ; dða; bÞ ð8Þ

where d(a, b) is the distance between cells a and b according to the chosen metric, e.g., Euclid-

ean distance, and corek(x) is a core distance [45,47]. 2) The algorithm allows representation of

the dataset as a graph with data objects as vertices connected by weighted edges with the

mutual reachability distances as weights, and the graph is employed to construct a minimum

spanning tree (MST). The algorithm then finds the connected components of core points on

the neighbor graph, ignoring all non-core points by condensed cluster hierarchy. Sorting the

core point edges by mutual reachability distance results in a hierarchical tree structure (den-

drogram). 3) By choosing an optimal threshold, epsilon, as a global horizontal cut value and

selecting all clusters with at least minPts points at this density level, we can retrieve the

HDBSCAN clusters for this epsilon from the hierarchy. HDBSCAN’s selection algorithm tra-

verses the cluster tree from the bottom up, comparing the stability value of each node to the

sum of the stability values of its nested subclusters, thereby propagating and updating stabili-

ties as it ascends the tree until the cluster with the highest stability is found and selected on

each tree branch. First, the degree of density of each node is defined by its epsilon, or node sta-
bility, value. The resulting clusters more closely approximate the hierarchy of the level sets of

the true density distribution of the cells [48]. We employed the HDBSCAN algorithm to dis-

covers clusters of variable densities within node groups with high internal-edge density and

the clusters most representative of the underlying structure of data in the low-dimensional

space.

During calibration and dimension reduction, Seurat MultiCCA (Canonical Correlation

Analysis) method [49] is used to remove the batch effect prior to use DGCyTOF, which was

developed in 2017 by the Satija lab. By CCA, the high-throughput data is projected into a sub-

space to identify correlations across datasets to reduce data dimensionality and capture the

most correlated data features to align the data batches.

Step 5: Visualizing cells and cell populations in 3-dimensional space. For visualization, we

first used UMAP to project the protein-expression matrix of CyTOF into three dimensions.

We added a new label axis, Z, to denote cell types previously annotated in Steps 1 and 4. Pro-

jecting the similarity, S, and associated labels into 3D space enabled the intuitive depiction of

hidden structures in the data.

Algorithm implementation

Implementation of deep learning: The neural network model is implemented in Python using

the PyTorch framework [50]. A feedforward neural network comprises three hidden layers,

one containing 128 nodes, another, 64 nodes, and the last, 32 nodes (Fig 1B), and each layer

has a rectified linear unit (ReLU) activation function that maps the input vector to non-linear

output for the next layer. The output is the softmax layer and has the same number of output

nodes as the number of cell types. Softmax assigns decimal probabilities to each class in our

multi-class problem. We used the cross-entropy loss function, optimized using adaptive

moment estimation [41], with a learning rate of 0.001 and batch size of 256.

Other methods and their implementation: All computation algorithms and their compar-

ison were performed in Python with Scikit-learn [51], a library featuring a wide range of

machine-learning algorithms. UMAP dimension reduction and HDBSCAN clustering were

implemented using their available software [25,33]. The Python system was integrated into the

R-Shiny application for visualization. The code and datasets used in this study are available at

https://lijcheng12.github.io/DGCyTOF/.
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Methodology evaluation measure

1. Evaluation of dimension-reduction performance. Three metrics computation time,

neighborhood proportion error (NPE), and residual variance (RV) are used to evaluate perfor-

mance of dimension-reduction methods–principal component analysis (PCA), factor analysis

(FA), independent component analysis (ICA), isometric feature mapping (Isomap), t-distrib-

uted stochastic neighbor embedding (t-SNE), and uniform manifold approximation and pro-

jection (UMAP).

(1.1) Computation times

All methods were executed on the NVIDIA Tesla P100 GPU cluster provided by the Ohio

Supercomputer Center (OSC) to measure time and speed.

(1.2) Neighborhood proportion error

NPE is used to measure total variation distance between the probabilities of cells’ assign-

ment to the same subtype in original data and embedding [52]. A smaller NPE indicates better

“homology” within a cell type. NPE is defined in Formula (9).

NPE ¼
1

n

Xn

i¼1

dsiðPsi
;Qsi
Þ ¼

1

n

Xn

i¼1

X

k

supa2½0;1�jPsðaÞ � QsðaÞj ð9Þ

where, where Ps and Qs represent the empirical density distributions of subtype s in the origi-

nal data and embedding that in low-dimensional space, respectively. The variable a represents

the fraction of k neighbors that belong to the same subtype s as the cell in both the original

space P and low-dimensional embedding Q. δs(Ps, Qs) is the total variation distance [53] for

each subtype, s2S, where S is the set of all manually gated subtypes.

(1.3) Residual variance
Retained variance is a criterion that can be used to choose the appropriate number of prin-

ciple components to an embedding system in a low dimension space. It represents how much

of the information was retained after dimension reduction, such as after PCA. It can be evalu-

ated using residual variance (RV) by measuring preserved pair-wise distances [31].

Residual variance ¼ 1 � R2ðDG;DyÞ ð10Þ

In Eq (10), DG is each method’s best estimate of intrinsic manifold distances from high

dimension space; and Dy is the Euclidean distance matrix in the low-dimensional embedding.

R is the standard linear correlation coefficient over all entries of DG and Dy. The lower is

retained variance, the better of algorithm performance. When no correlation of distances,

residual variance attains its maximum value of 1.

2. Cluster evaluation metrics. Two metrics are introduced to evaluate the clustering

results: adjusted random index (ARI) [54] and V-measure [55].

(2.1) Adjusted Rand index (ARI)
The ARI metric evaluates whether dimension-reduced similarity cluster results are similar

to one other. which is defined by Formula (11) [54]

ARI P�; Pð Þ ¼

P
ij

Nij
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Here, N is the number of data points in a given data set and Nij is the number of data points

of the class label C�j 2 P� assigned to cluster Ci in partition P�. Ni is the number of data points
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in cluster Ci of partition P, and Nj is the number of data points in class C�j . In general, an ARI

value lies between 0 and 1. The index value is equal to 1 only if a partition is completely identi-

cal to the intrinsic structure and close to 0 for a random partition. The advantage of the ARI is

that it makes no assumption about the cluster structure. Therefore, it can be used to compare

clustering algorithms, such as k-means and spectral-clustering algorithms.

(2.2) V-measure
The V-measure is the harmonic mean between homogeneity and completeness as evaluated

using a conditional entropy-based external measure of clustering [55]. Homogeneity requires

that all clusters contain only cells that belong to a single population, and completeness, that all

cells belonging to a given population are elements of the same cluster. Similar to the ARI, the

V-measure makes no assumption about the cluster structure.

3. Evaluation of classification performance. (3.1) F-score
We evaluated our methods using the balanced F-score (F) as described by Aghaeepour’s

group [11]. The F-score for multiple classes is defined as the weighted average of the Fi-score

for each cell type:

F ¼
X

i

Ci

N
Fi ð12Þ

where Ci is the number of cells with type i, N is the number of cells, and Fi is the F-score for

the ith cell type versus all other types (including unknown types):

Fi ¼
precisioni � recalli
precisioni þ recalli

ð13Þ

where recall denotes how many relevant items are selected, and precision denotes how many

selected items are relevant. The four outcomes can be formulated in a 2×2 contingency

Table 2:

An F-score of 1.0 indicates perfect agreement with the labels obtained by the clustering or

classification method.

(3.2) Receiver operating characteristic (ROC)
The ROC curve is used as a measure of the quality of classification consistency between the

true and prediction labels. The curve is created by plotting the true-positive rate (TPR) against

the false-positive rate (FPR) at various threshold settings, where TPR = TR/(TP+FN), and FPR
= FP/(FP+TN), TP, TN, FN and FP see contingency Table 2. The area of the curve shows the

ROC accuracy.

(3.3) Fowlkes-Mallows score (FMI)
The FMI is an evaluation metric to evaluate the similarity among clusters obtained after

applying different clustering algorithms [55]. The FMI is defined as the geometric mean of

pair-wise precision and recall as formular (14).

FM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TP þ FP

�
TP

TPþ FN

r

ð14Þ

Table 2. Contingency table for calculating the receiver operating characteristic curve.

Total population Condition positive Condition negative Prevalence

Predicted condition positive TP FP precision = TR/(TP+FP)

Predicted condition negative FN TN
recall = TR/(TP+FN) specificity = TN/(FP+TN)

https://doi.org/10.1371/journal.pcbi.1008885.t002
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Where TP, TN, FN and FP see contingency Table 2. With a random classification, the FMI

will approach zero. A perfect classification will result in an FMI of 1.

Results

Identification of cell types by DGCyTOF in two datasets

We used DGCyTOF to automatically identify known and new cell populations in two bench-

mark CyTOF datasets rresulting in F-scores of 0.9921 (CyTOF1) and 0.9992 (CyTOF2) for the

identification of labeled cells and cell populations (Fig 2A and 2C). Fig 2B shows the results of

graphic clustering, in which unlabeled cells not belonging to known populations were split

into five clusters in the CyTOF1 dataset, and Fig 2D shows six clusters of new cell populations

among those unknown cells in CyTOF2. Fig 2 and 2D depict the final cell populations, includ-

ing new subtypes and calibration (known) cell types, in 3-dimensional space utilizing the

DGCyTOF platform.

Evaluation and comparison of methods

External validation of the DGCyTOF model in the identification of known cell types.

External validation is used to evaluate the overfitting phenomenon in the deep-learning algo-

rithm. We randomly separated all labeled samples equally into a training set and a validation

set for both CyTOF1 and CyTOF2. We used weight regularization to reduce overfitting of DL

model. DGCyTOF model’s hyperparameter tuning was done utilizing a regularization l1 nor-

malization to penalize weights sparse to 0 and the top 5% parameters is selected [56]. On the

other hand, we designed the dropout and dense strategy for parameters selection to prevent

neural networks from overfitting [57,58]. DeepCyTOF selected parameters automatically by

its own design. The confusion matrix allows us to visualize the performance of the supervised

Fig 2. Cell population identification by DGCyTOF in the analysis of CyTOF1 and CyTOF2 datasets. Fig 2A

identifies the 32 types of known cells by deep classification learning for dataset CyTOF1, and Fig 2C, the 13 types of

known cells for CyTOF2. Fig 2B and 2D show the spectral clustering for the identification and visualization of

unknown cell populations in the two datasets.

https://doi.org/10.1371/journal.pcbi.1008885.g002
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algorithm. Each row of the matrix represents the instances in an actual class, and each column

represents the instances in a predicted class (or vice versa). For example, our algorithm cor-

rectly assigned 12057 of 12065 cells in our validation data as CD8-T cells and the other eight

incorrectly, as CD4-T, CD16-NK, and Plasma-B cells (Fig 3A and 3B). We applied a ROC
metric to evaluate the quality of classifier output using 4-fold cross-validation between the true

and prediction labels (Fig 3C and 3D). Results showed the average performance in the two

testing datasets, with 71.9 to 99.4% accuracy and average ROC area of 0.94 to 1.00 in CyTOF1

and 96.5 to 99.8% accuracy and average ROC area of 1.00 in CyTOF2.We compared all predic-

tion results for combination methods with true labels, employing four evaluation criteria to

compare the performance of the DGCyTOF and DeepCyTOF methods [37] in classifying

labeled data in the CyTOF1 and CyTOF2 databases: F- score (harmonic mean of precision and

recall) [11]; ARI (adjusted Rand index, a measure of similarity between two clusters) [59]; FMI
(Fowlkes-Mallows scores) [55]; and V-measure (harmonic mean between homogeneity and

completeness) [51]. Table 3 shows the comparison results. All cell-type classifiers used in the

DeepCyTOF model were depth-4 feedforward nets, with softplus hidden units and a softmax

Fig 3. Comparison of confusion matrices and their associated receiver operating characteristic (ROC) curves for

real labels of CyTOF1 and CyTOF2 datasets as assessed utilizing the DGCyTOF model. (A,B) confusion matrices

for the (A) CyTOF1 dataset and (B) CyTOF 2 dataset; (C,D) ROC curves for the (C) CyTOF1 dataset and (D) CyTOF

2 dataset.

https://doi.org/10.1371/journal.pcbi.1008885.g003
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output layer in which hidden layer sizes were set to 12, 6, and 3. The DGCyTOF parameter set-

ting is detailed in the implementation section.

Evaluation of embedding-clustering performance. To measure the effectiveness of

dimension-reduction techniques that preserve cell proximities, such as cell types, we compared

the performances of six techniques with three clustering technologies with respect to computa-

tion time, neighborhood proportion error (NPE) [52], residual variance (RV), and ability to

cluster known cell types in two manually gated benchmark mass-cytometry datasets (CyTOF1

and CyTOF2).

We compared these variables among the six techniques–principal component analysis

(PCA) [28], factor analysis (FA) [29], independent component analysis (ICA) [30], isometric

feature mapping (Isomap) [31], t-distributed stochastic neighbor embedding (t-SNE) [32] and

uniform manifold approximation and projection (UMAP) [33]–adding the clustering K-
means, Gaussian mixture model, and agglomerative clustering algorithm HDBSCAN by analy-

sis data in CyTOF1 (13 biomarkers, 24 labeled cell types and CyTOF2 (32 biomarkers, 14

labeled cell types).

We compared all prediction results of the combination methods with respect to the identifi-

cation of true labels, whereby the NPE defined the fraction of cells belonging to a specific sub-

type under a fixed point, such as the nearest neighbor (k), k = 20. To evaluate clustering speed

and accuracy, we assessed the F-score [11], ARI [59], FMI, and V-measure [51,55]. Tables 4

and 5 show a comprehensive comparison of machine-learning methods by dimension-reduc-

tion methods (linear and nonlinear) + clustering methods in our two high-throughput mass-

cytometry datasets, in which parts of cell types have been labeled manually. To be comparable,

all dimension-reduction methods reduce the dimensionality of a multivariate data to two prin-

cipal components (2-dimensional embeddings), that can be visualized graphically, with mini-

mal loss of information, here.

In speed comparison, because naive t-SNE applications suffer such severe shortcomings as

a limited number of cells for analysis and low speed [19,60]. In our experience, the larger the

data set, the more severe this problem. Here, we decided to measure the run-time of each of

three random sub-sampled datasets CyTOF1 and CyTOF2, each consisting of 10,000 cells,

using the average of the three times for each technique as our final computation time compari-

son. UMAP and t-SNE are both non-linear graph-based methods and have become an

extremely popular technique for visualizing high dimensional data. By these cells, our experi-

ment displays the UMAP speed is averaging around 3–4 times faster than t-SNE, 18.806 versus

94.466 seconds for CyTOF1 and 16.944 versus 95.609 seconds for CyTOF2 (Tables 4 and 5).

Other dimension reduction methods PCA, FA, ICA and Isomap involved a singular value

decomposition (SVD) based on matrix factorization decomposition. Their speed is much fast

than other dimension reduction methods with 0.017, 3.618, 0.060, and 0.020 seconds for

Table 3. Comparison of methods for averaging performance in the identification of known cell types in training and testing data by different measurements for

CyTOF1 and CyTOF2 datasets.

Measurement DGCyTOF DeepCyTOF

CyTOF1 CyTOF2 CyTOF1 CyTOF2

F–score " 0.9921 0.9992 0.9925 0.999

ARI " 0.9924 0.9991 0.992 0.9981

FMI " 0.9932 0.9993 0.993 0.9992

V-measure " 0.9822 0.987 0.9931 0.986

Note: All arrow indicators showed good trends

https://doi.org/10.1371/journal.pcbi.1008885.t003
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Table 4. Comparison of machine-learning methods by different measurements for CyTOF Dataset 1 (13 biomarkers, 24 labeled cell types).

Methods Measurement PCA FA ICA Isomap UMAP—DGCyTOF t-SNE NO-reduction
Dimension- reduction method Computation time (in seconds) # 0.017 3.618 0.060 0.020 18.806 94.466

NPE # 0.626 0.633 0.625 0.626 0.462 0.423

Retained variance # 40.6% 33.4% - 40.61% N/A N/A

Visualization " DD DD DD DD DD ED

k-means clustering F-score " 0.286 0.282 0.288 0.269 0.565 0.507 0.286

ARI " 0.236 0.228 0.236 0.216 0.556 0.483 0.235

FMI " 0.307 0.298 0.307 0.286 0.627 0.563 0.306

V-measure " 0.494 0.488 0.495 0.477 0.793 0.762 0.494

Gaussian mixture model F-score " 0.305 0.304 0.505 0.285 0.588 0.502 0.530

ARI " 0.247 0.258 0.436 0.229 0.538 0.493 0.494

FMI " 0.317 0.326 0.544 0.298 0.608 0.573 0.556

V-measure " 0.497 0.490 0.586 0.481 0.790 0.768 0.704

HDBSCAN—DGCyTOF F-score " 0.442 0.451 0.442 0.438 0.924 0.771 0.596

ARI " 0.336 0.349 0.337 0.332 0.915 0.738 0.534

FMI " 0.526 0.531 0.524 0.524 0.925 0.789 0.621

V-measure " 0.557 0.570 0.552 0.555 0.905 0.850 0.557

Note–All arrow indicators showed good trends. ARI, adjusted Rand index, measure of similarity between two clusters, involves random labeling independent of the

number of clusters; DD, difficult to distinguish; ED, easy to distinguish; FMI, Fowlkes-Mallows score, geometric mean of pair-wise precision and recall; F-score,
harmonic mean of precision and recall (values range from 0 [bad] to 1 [good]); NPE, neighborhood proportion error; V-measure, harmonic mean of homogeneity and

completeness. All results reflect comparison of two dimensions, and the number of nearest neighbors (k) is 20.

https://doi.org/10.1371/journal.pcbi.1008885.t004

Table 5. Comparison of machine-learning methods by different measurements for CyTOF Dataset 2 (32 biomarkers, 14 labeled cell types).

Methods Measurement PCA FA ICA Isomap UMAP—DGCyTOF t-SNE NO-reduction
Dimension- reduction method Computation time (in seconds) # 0.0253 0.208 0.054 0.021 16.944 95.609

NPE # 0.536 0.525 0.535 0.536 0.399 0.393

Retained variance # 31.03% 27.70% - 31.03% N/A N/A

Visualization " DD DD DD DD ED ED

K-means clustering F-score " 0.426 0.421 0.431 0.322 0.590 0.529 0.458

ARI " 0.343 0.330 0.349 0.232 0.540 0.475 0.409

FMI " 0.444 0.431 0.448 0.340 0.637 0.578 0.537

V-measure " 0.609 0.582 0.611 0.444 0.799 0.744 0.735

Gaussian mixture model F-score " 0.497 0.446 0.670 0.313 0.626 0.585 0.395

ARI " 0.406 0.353 0.573 0.221 0.577 0.534 0.339

FMI " 0.500 0.453 0.706 0.331 0.665 0.631 0.461

V-measure " 0.636 0.589 0.690 0.443 0.807 0.785 0.684

HDBSCAN—DGCyTOF F-score " 0.669 0.650 0.665 0.560 0.981 0.923 0.684

ARI " 0.573 0.547 0.569 0.417 0.977 0.907 0.601

FMI " 0.696 0.680 0.691 0.616 0.981 0.923 0.696

V-measure " 0.698 0.657 0.691 0.565 0.952 0.898 0.701

Note–All arrow indicators showed good trends. ARI, adjusted Rand index, measure of similarity between two clusters, involves random labeling independent of the

number of clusters; DD, difficult to distinguish; ED, easy to distinguish; FMI, Fowlkes-Mallows score, geometric mean of pair-wise precision and recall; F-score,
harmonic mean of precision and recall (values range from 0 [bad] to 1 [good]); NPE, neighborhood proportion error; V-measure, harmonic mean of homogeneity and

completeness. All results reflect comparison of two dimensions, and the number of nearest neighbors (k) is 20.

https://doi.org/10.1371/journal.pcbi.1008885.t005
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CyTOF1 and 0.0253, 0.028, 0.054 and 0.021seconds for CyTOF2 (Tables 4 and 5). However,

they do not fare well in clustering visualization and accuracy in classification.

Accuracy, judged better by a smaller NPE and visualization (Fig 4), were very similar

between the two datasets for UMAP and t-SNE, with NPE variance of 0.462 versus 0.423 for

CyTOF1 0.399 versus 0.393 for CyTOF2 0.393. We therefore conclude that graphic models are

important technologies that fit well in the analysis of single-cell CyTOF data. The accuracy in

identifying cell homology was much higher using the nonlinear structure methods, UMAP
and t-SNE, than any of the other methods, PCA, FA, ICA, and Isomap.

In accuracy comparison of dimensional reduction with clustering methods, our graphic

clustering HDBSCAN+UMAP in DGCyTOF is an extension of the HDBSCAN clustering

method in the low-dimension space of UMAP. The graphic clustering shows the highest

Fig 4. Visualizations of cell populations in databases CyTOF1 and CyTOF2. (A-B) Two-dimensional visualization

of embedding of cells for the identification of dimension-reduction techniques in databases CyTOF1 (A) and CyTOF2

(B). Cell subtypes are labeled by DGCyTOF for databases CyTOF1 (C) and CyTOF2 (D).

https://doi.org/10.1371/journal.pcbi.1008885.g004
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accuracy in clustering accordance for real labels with F-scores of 0.924 (92.4%) for CyTOF1

data (Table 4) and 0.981 (98.1%) for CyTOF2 data (Table 5). In contrast, other embedding

clustering systems demonstrate average F-scores of 56.45% to 65% (UMAP+k-means) and 58.8

to 80% (UMAP+Gaussian mixture model). Whereas the F-scores is nearly 0.352 on average to

methods PCA, FA, ICA, Isomap with or without k-means clustering and Gaussian mixture

clustering. That means any of the techniques used independently reaches 35.2% accuracy in

the identification of cell types except to t-SNE. Although t-SNE+HDBSCAN improved the per-

formance of clustering accuracy F-scores to 0.771 for CyTOF1 (Table 4) and 0.923 for

CyTOF2 (Table 5). To other metric measurements ARI, FMI and V-measure, we obtained the

similar results and conclusions as F-score. These results illustrate that DGCyTOF use integra-

tion technology HDBSCAN+UMAP, which can improve the entire performance of cell identi-

fication in CyTOF data by approximately 35%. Overall, DGCyTOF, which integrates UMAP
and HDBSCAN technology, outperforms two state-of-the-art algorithms, those of the t-SNE/

UMAP+k-means method and t-SNE/UMAP+Gaussian mixture model. This can be attributed

primarily to the requirement of the dimension-reduction method to make fewer assumptions

about the nature of cell-to-cell relationships for any given analysis, thereby limiting the accu-

racy of traditional clustering methods, like the k-means method and Gaussian mixture model,

for this type of data. In HDBSCAN, an agglomerative clustering algorithm organizes clusters

of points into a minimal spanning tree (MST) rather than connecting clusters in a highly con-

nected graph structure in which all connected clusters can create hierarchy relationships

between clusters and/or cells in the population. This method sharply improves the accuracy of

cell identification. Fig 4 allows detailed visualization of these phenomena. Another interesting

result is that the performance of data dimensionality reduction+clustering is much better than

clustering directly without dimension reduction. The result illustrates that dimensionality

reduction contributes to main signal extraction during clustering or classification (Tables 4

and 5).

Visualization of cell populations: Clustering and differentiation. In 2-dimensional

embeddings, researchers are generally interested in the observation of phenotypic clusters and

the ease to distinguish them. Phenotypic clustering involves the clustering of cells with the

same manually gated subtypes to permit the identification of distinct populations with clear

boundaries for known cell types and their differentiation. The visualizations in Fig 4 show the

variation among the different dimension-reduction techniques with respect to their abilities to

permit identification of phenotypic clusters and allow easy differentiation. Two-dimensional

visualization and cell annotation of the 32-dimensional data of CyTOF 1 (Fig 4A) and

12-dimensional data CyTOF 2 (Fig 4B). Fig 4C and 4D show the results for all 3D visualiza-

tion utilizing our DGCyTOF tool.

Different dimension-reduction methods combined with different clustering technologies

display distinct clustering and observable differentiation patterns. Clusters by PCA, FA, or ICA
do not demonstrate the clear separation of cell subtypes; significant mixing between the differ-

ent populations makes this embedding ineffective for subtype classification. Neither do they

clearly distinguish cluster boundaries along which we can observe the process of cell differenti-

ation in CyTOF1 and CyTOF2 data. Clusters by Isomap show similarly extensive mixing of dif-

ferent cell subtypes, displaying very little distinct clustering and no observable differentiation

patterns. Clusters by t-SNE, however, shows the clustering of cell subtypes so that they may be

easily distinguished for the differentiation of cells. UMAP also demonstrates clearly defined

clusters, with large gaps between some distinct groups, and DGCyTOF distinguishes cell sub-

types for easy differentiation. Cell classification and clustering in 3D feature space enables

clear and easy discernment of each subtype, including newly identified subtypes. From these

observations, we conclude that our 3D visualization technique allows the accurate and intuitive
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observation of cell-population distribution and detection of cell-to-cell distribution. Visualiza-

tion using the t-SNE method is superior to that of other methods in displaying different cell

subtypes, but that in UMAP allows ease in distinguishing clusters that enhances

differentiation.

Feedback-calibration simulation between known cell populations and unknown cells.

Feedback-loop learning system is designed to calibrate cell types between inner known-cell

type and intra-unknown cell population to improve the inner cell-type homology (Fig 1C).

Spearman correlation is used to calculate cell-to-cell correlation within clusters, and a thresh-

old value averaging the Spearman correlation determines whether a cell belongs to an

unknown cell population. We classified cell-type homology within cells and utilized the feed-

back-loop learning after deep-learning classification to correct the cell types between known

and unknown population. Fig 1C illustrates the correction process in CyTOF1 and CyTOF2

data analysis. Table 6 shows the average Spearman correlation coefficient, r, before and after

calibration learning and indicates the improvement of many of the classifications of inner cell-

type homology (highlighted in bold) after calibration. We can see the cell type homology inner

a cluster have an improvement although it is not much.

Conclusions

Recent advances in mass cytometry (CyTOF) have radically altered the fate of single-cell prote-

omics by allowing a more accurate understanding of complex biological systems and identify

novel cellular subsets [4]. Mass cytometry allows analyses of cells in suspension such as blood

but also extended for the analyses of tissue sections. New calculational technology needs in

dealing with such a big data to characterize the complex cellular samples’ types, where rare cell

populations with essential biological function would otherwise be missed. For the first time,

we propose DGCyTOF method by integrating the advantages of both the classifier and clusters

strategies in identification of known and new cell types according to relative protein abun-

dances from cytometry data. The DGCyTOF method allows automatic and highly accurate

assignment of known labels to single cells using deep learning, detects new cell populations uti-

lizing a novel graphic-clustering technique, and employs the guidance of a calibration system

to achieve an optimum balance of accuracy. Guided by a feedback calibration system, the

model seeks optimal accuracy balance among calibration cell populations and unknown cell

types, yielding a complete and robust learning system that is highly accurate in the identifica-

tion of cell populations compared to results using other methods in the analysis of single-cell

CyTOF data.

Compared to other methods in the analysis of two single-cell CyTOF standard datasets,

DGCyTOF represents a robust complete learning system with high accuracy and speed in cell-

population identification by comparing with popular dimension-reduction techniques PCA,

FA, ICA, Isomap, t-SNE and UMAP with k-means clustering and Gaussian mixture clustering

technology that make minimal assumptions about the nature of relationships between the

input cells. We used metric measurements computational speed, ARI, FMI, F-score, NPE, V-
measure and visualization to assess the quality and utility of reduction in comparison. The

DGCyTOF displayed a highly accurate assignment of labels in detecting cell populations. In

particular, the DGCyTOF obtains the best performance in the running speed of different algo-

rithm comparison. In addition, observation of cell-population distribution was more intuitive

in the 3D visualization in DGCyTOF than t-SNE and UMAP visualization.

We believe the novel DGCyTOF will place cells into functionally distinct groups and types

and allow for detailed analyses of cellular heterogeneity not only for calibration cell types, but

for new rare cell types. The DGCyTOF hold great potential to uncover the tissue and immune
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system’s cellular variation patterns and functionality by these inferring cell types. Application

of the DGCyTOF method to identify cell populations could be extended to the analysis of sin-

gle-cell RNASeq data and other omics data [4,61].
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Table 6. Calibration of cell types utilizing calibration feedback for CyTOF1 and CyTOF2 data.

CyTOF1 data Coefficient (r) CyTOF2 data Coefficient (r)
Cell type Before After Cell type Before After

CD11b-_Monocyte_cells 0.6627 0.6657 Basophils 0.6094 0.613

CD11bhi_Monocyte_cells 0.7261 0.7261 CD16-_NK_cells 0.5474 0.5481

CD11bmid_Monocyte_cells 0.6666 0.6696 CD16+_NK_cells 0.6138 0.617

CMP_cells 0.4809 0.4864 CD34+CD38+CD123-HSPC 0.6346 0.6403

Erythroblast_cells 0.3733 0.3756 CD34+CD38+CD123+HSPC 0.6658 0.6992

GMP_cells 0.5715 0.5796 CD34+CD38lo_HSCs 0.5879 0.5942

HSC_cells 0.5544 0.5734 CD4_T_cells 0.6095 0.6096

Immature_B_cells 0.3899 0.3932 CD8_T_cells 0.6247 0.6249

Mature_CD38lo_B_cells 0.4863 0.4866 Mature_B_cells 0.6806 0.6806

Mature_CD38mid_B_cells 0.5594 0.5614 Monocytes 0.6925 0.6926

Mature_CD4+_T_cells 0.5155 0.517 pDCs 0.6511 0.6568

Mature_CD8+_T_cells 0.5916 0.5935 Plasma_B_cells 0.6055 0.6148

Megakaryocyte_cells 0.2805 0.2854 Pre_B_cells 0.6462 0.6475

MEP_cells 0.6374 0.6492 Pro_B_cells 0.6837 0.6914

MPP_cells 0.4966 0.5041

Myelocyte_cells 0.3919 0.3927

Naive_CD4+_T_cells 0.6915 0.6931

Naive_CD8+_T_cells 0.6891 0.6907

NK_cells 0.4645 0.4656

Plasma_cell_cells 0.4622 0.4638

Plasmacytoid_DC_cells 0.6214 0.6388

Platelet_cells 0.4867 0.5078

Pre-B_I_cells 0.559 0.5657

Pre-B_II_cells 0.5436 0.5456

Cell-type homology 0.537608 0.542942 0.632336 0.637857

https://doi.org/10.1371/journal.pcbi.1008885.t006
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