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SUMMARY

Quantitative systems pharmacology (QSP) modeling is an emerging mechanistic
computational approach that couples drug pharmacokinetics/pharmacodynamics
and the course of disease progression. It has begun to play important roles in
drug development for complex diseases such as cancer, including triple-negative
breast cancer (TNBC). The combination of the anti-PD-L1 antibody atezolizumab
and nab-paclitaxel has shown clinical activity in advanced TNBC with PD-L1-posi-
tive tumor-infiltrating immune cells. As tumor-associated macrophages (TAMs)
serve asmajor contributors to the immuno-suppressive tumormicroenvironment,
we incorporated the dynamics of TAMs into our previously published QSP model
to investigate their impact on cancer treatment. We show that through proper
calibration, the model captures the macrophage heterogeneity in the tumor
microenvironment while maintaining its predictive power of the trial results at
the population level. Despite its high mechanistic complexity, the modularized
QSP platform can be readily reproduced, expanded for new species of interest,
and applied in clinical trial simulation.

INTRODUCTION

Breast cancer is the most commonly diagnosed cancer with over two million new cases worldwide annually

(Ferlay et al., 2021). Triple-negative breast cancer (TNBC), which is defined by its lack of estrogen receptor,

progesterone receptor, and human epidermal growth factor receptor-2 expressions, accounts for around

15% of total breast cancer cases. TNBC is considered an aggressive phenotype of breast cancer, and while

patients can respond well to chemo-immunotherapy, those with residual disease have high rates of recur-

rence with approximately one-third developing recurrent disease within three years (Hensing et al., 2020;

Schmid et al., 2020). Once metastatic, the disease is incurable and overall survival is substantially lower

compared to other types of breast cancer (Lee et al., 2020; Lin et al., 2012). Although chemotherapy remains

the mainstay treatment for patients with metastatic TNBC, targeted therapies such as sacituzumab-govi-

tecan have recently been developed (Bardia et al., 2021; Malhotra and Emens, 2020). Biomarker-based

treatments are also available, such as for patients with germline BRCA mutation and programmed

death-ligand 1 (PD-L1) expression in the tumor (Anders and Carey, 2022). For patients with PD-L1-positive

metastatic TNBC, the anti-PD-1 antibody pembrolizumab combined with chemotherapy is a standard first-

line treatment based on the results from the KEYNOTE-355 trial (Cortes et al., 2020). For patients with

germline BRCA mutations, the poly (ADP-ribose) polymerase (PARP) inhibitors olaparib or talazoparib

are recommended (Barchiesi et al., 2021).

Despite the availability of these targeted agents for metastatic TNBC, chemotherapy remains the stan-

dard-of-care treatment for PD-L1-negative TNBC without BRCA mutation (Anders and Carey, 2022).

Given the relatively low prevalence of PD-L1-positivity and BRCA mutation in TNBC (about 40% and

10–20% respectively), multiple new therapeutic targets are under investigation in preclinical and clinical

studies (Pogoda et al., 2020; Torres and Emens, 2022). Currently, the most promising treatment for met-

astatic TNBC is immunotherapy involving blockade of immune checkpoints, such as PD-(L)1 and lympho-

cyte-associated gene 3 (LAG3), in combination with other therapeutic agents (Huppert et al., 2022).

Immune checkpoint molecules are membrane proteins that act as regulators of the immune system,

which suppress antitumor immunity in cancer (He and Xu, 2020). In particular, CD47 is an immune check-

point molecule that can inhibit phagocytosis of cancer cells by tumor-associated macrophages (TAMs),
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and CD47 blockade has been found to synergize with chemotherapy cabazitaxel in preclinical models of

TNBC (Cao et al., 2021).

The second most prevalent immune cell subtype in TNBC, TAMs have a diverse functional spectrum (Kar-

aayvaz et al., 2018; Williams et al., 2016). Based on the expression of functional markers, TAMs can be cate-

gorized into two general subtypes: classically activated (M1) and alternatively activated (M2) macrophages.

Whereas M1-like macrophages exhibit pro-inflammatory functions such as phagocytosis of cancer cells,

M2-like macrophages play important roles in facilitating tumor metastasis and other immuno-suppressive

activities. Through cytokine secretion, TAMs can reduce effector T cell functions, facilitate regulatory T cell

expansion, and induce immune checkpoint expressions, thus promoting an immuno-suppressive tumor

microenvironment (Santoni et al., 2018). Clinically, TNBC is highly infiltrated by TAMs, which are associated

with higher risk of distal metastasis and poor prognosis (Yuan et al., 2014). Moreover, M1-and M2-like mac-

rophages have been shown to correlate with tumor response to immunotherapy and neoadjuvant chemo-

therapy in TNBC (Arole et al., 2021; Zhang et al., 2021b). Overall, TAMs serve as major contributors to tumor

progression and are correlated with reduced survival in multiple cancer types (Larionova et al., 2019; Quail

and Joyce, 2013). Therefore, promising treatments that target macrophages are being designed to reduce

their recruitment, reprogram them toward the M1 phenotype, and block immune checkpoints that

inhibit phagocytosis by TAMs (Quail and Joyce, 2017; Xie et al., 2022). Nonetheless, translation of prom-

ising preclinical studies into clinical benefits is not always successful (Duan and Luo, 2021).

In parallel with the clinical efforts, quantitative systems pharmacology (QSP) models can be developed in

immuno-oncology to mechanistically and quantitatively investigate the course of disease progression in

response to various treatments of interest (Bradshaw et al., 2019). By integrating the mechanistic knowl-

edge from various disciplines, such as drug pharmacokinetics and pharmacodynamics (PK/PD), systems

biology, and physiology, themodels can explore the behavior of the system as a whole and uncover hidden

emergent properties that may potentially point to new therapeutic applications (Pichardo-Almarza and

Diaz-Zuccarini, 2016). Because of the large scope and complexity of QSPmodels, challenges remain during

workflow standardization of model development and assessment, including model reproducibility, calibra-

tion, and validation (Bai et al., 2021).

In the past few years, we have developed and expanded a large-scale QSP platform for the analyses of immune

checkpoint inhibitors and bispecific T cell engagers in combination with other agents in non-small cell lung can-

cer (Jafarnejad et al., 2019; Sové et al., 2020), colorectal cancer (Ma et al., 2020a; 2020b) and breast cancer (Wang

et al., 2020a, 2021). We have also combined the QSP model with a spatial agent-based model of tumor to

describe spatial heterogeneity of the tumor microenvironment (Gong et al., 2021; Zhang et al., 2021a). Here,

by integrating a macrophage module into our previously published QSP platform (Wang et al., 2020a, 2021),

we are able to investigate the impact of TAMs on the cancer-immune cell interactions and provide a computa-

tional framework to predict clinical response tomacrophage-targeted agents based on preclinical data. We aim

to demonstrate our calibration and validation steps to integrate the newmacrophagemodule and show that the

expanded model retains its predictive power with recalibrated virtual patient population using recently pub-

lisheddata. Besides those inherited fromourprevious study (seeSTARmethods), newdata includes intratumoral

cytokine concentration measured directly from TNBC tumor biopsy samples (Autenshlyus et al., 2021), M1/M2

macrophage ratio from omics data analysis (Reynolds et al., 2017), and density of TAMs estimated by digital pa-

thology analysis (Yang et al., 2018).
RESULTS

Integrating the macrophage module into the QSP platform

In our previously published QSP platform for TNBC immunotherapy, modules were built to investigate the

dynamics of T cells (i.e., effector T cell, regulatory T cell, helper T cell), antigen-presenting cells (APCs), can-

cer cells, tumor-specific neoantigens and tumor-associated self-antigens, immune checkpoints, myeloid-

derived suppressor cells (MDSCs), and therapeutic agents, respectively. Figure 1 shows the interactions

between TAMs and the pre-existing model species. As described in our previous study (Wang et al.,

2021), themodel includes fourmain compartments: central compartment describes circulation of therapeu-

tic agents and immune cells between the bloodstream and the other parts of the body; peripheral compart-

ment represents peripheral organs/tissues with naive T cell maintenance (den Braber et al., 2012); lymph

node compartment represents tumor-draining lymph nodes at immediate downstream of a breast tumor,

where T cell activation occurs; tumor compartment describes dynamics of cancer cells, activated T cells,
2 iScience 25, 104702, August 19, 2022



Figure 1. QSP model diagram

The model is comprised of four compartments: central, peripheral, tumor, and tumor-draining lymph node, which together describe cycles of immune

activation in lymph nodes, T cell trafficking to the tumor, killing of cancer cells, immune evasion, and antigen release and lymphatic transport (Wang et al.,

2021). nT, naive T cell; aT, activated T cell; NO, nitric oxide; Arg-I, arginase I; Treg, regulatory T cell; Teff, effector T cell; Th, helper T cell; Mac, macrophage;

mAPC, mature antigen-presenting cell. Cytokine degradation and cellular clearance are omitted in the figure.
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APCs, andMDSCs. Sub-compartments were built to describe immune synapses between T cells and cancer

cells/APCs, as well as the endosomal/surface space within/on APCs for antigen possessing and

presentation.

The modifications implemented in this study are two-fold. Mechanistically, dynamics of TAMs are added in

themacrophagemodule with a phagocytosis submodule describing checkpoint interactions in the immune

synapse between cancer cells and TAMs. We also updated binding between CD80 and PD-L1 in the check-

point module, which were recently found to only occur on cellular surface of the same cell (in cis) (Zhao

et al., 2019b). In terms of parameterization, majority of the parameter values are inherited from our previous

estimation with a few updates based on recent data (Tables S1 and S2). Parameter estimation for the

macrophage module is described below. Macrophage polarization is an estimate of macrophage activa-

tion at a given time point, which is a plastic process and plays diverse roles in nonresolving inflammation

like cancer (Murray, 2017). Here, we adopted the classical dichotomy model for macrophages, which

categorizes them into two subtypes: M1-and M2-like macrophages (Wei et al., 2021). At the beginning

of tumor development, monocytes are recruited first by CCL2 into the tumor where they differentiate to

pro-inflammatory M1-like macrophages (Yang et al., 2014). We assume that the differentiation occurs
iScience 25, 104702, August 19, 2022 3



Figure 2. Integration of the macrophage module into the QSP model

(A) Macrophage module diagram. Created with BioRender.com.

(B) Model-predicted overall inhibitory effect on phagocytosis by immune checkpoint molecules ðHMac;CÞ. Experimentally measured increases of

phagocytosis activity are compared with the decrease of phagocytosis rate because of checkpoint interactions in the model ð1 � HMac;CÞ. Statistical
significance was calculated by Wilcoxon test.

(C) Time-dependent profile of T cell subsets, macrophages, and myeloid-derived suppressor cells (MDSC) from baseline simulation.

(D) Global sensitivity analysis on phagocytosis submodule. Partial-rank correlation coefficients (PRCC) are reported to test associations between the overall

inhibitory effect of checkpoint molecules on phagocytosis and parameters of interest.

(E) Global sensitivity analysis on macrophage module. PRCC values are reported to test associations between the tumor volume and parameters of interest.
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more rapidly than recruitment, so the entire process is modeled by a CCL2-mediated recruitment of M1-

like macrophages (Equation S50). Once recruited, TAMs can be polarized toward pro- (M1) or anti-inflam-

matory (M2) macrophages by T cell- and tumor-derived cytokines. Figure 2A shows the cytokines that

participate in the polarization process. IL-12 and IFNg shift TAMs toward M1-like phenotypes while IL-10

and TGF-b shift TAMs toward M2-like phenotypes.
4 iScience 25, 104702, August 19, 2022
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The model calibration started by estimating the recruitment and polarization rates of TAMs. The recruit-

ment rate was estimated by the median density of TAMs measured in tumor nests from patients with

basal-like breast cancer, a subtype similar to TNBC, by immunohistochemistry using a pan-macrophage

marker, CD68 (Yang et al., 2018). The reported 2D density was converted to 3D density using a stereological

equation (Mi et al., 2020). Assuming that M1-to-M2 polarization can occur as fast as two days, we estimated

the rate of M2-to-M1 polarization to match the M1/M2 macrophage ratio with the median of clinically

measured values in basal-like breast cancer. The clinical measurements were extracted from the ISB Cancer

Genomics Cloud (ISB-CGC) (Reynolds et al., 2017), where proportions of M1-and M2-like macrophages

among immune cells in breast tumors were determined using CIBERSORT (Newman et al., 2015). Notably,

the calibration aimed to fit the model-predicted values (i.e., cellular density, M1/M2 ratio, etc.) at the time

point when the tumor reached the median pre-treatment lesion size (Table S1), given that majority of the

clinical measurements were taken upon diagnosis.

The functions of M1-likemacrophages are facilitating APCmaturation via IL-12 secretion, and phagocytosis

of cancer cells. As IL-12 is the major cytokine for mediating APC maturation and subsequent T cell activa-

tion, it is mainly secreted byM1-like macrophages andmature APCs (mAPCs). The secretion rate of IL-12 by

macrophages is estimated by the IL-12 level produced by TAMs isolated from solid tissue of human ovarian

carcinoma and macrophages during the wound healing process in humans (Clough et al., 2007; Sica et al.,

2000), and the secretion rate by mAPCs is roughly ten times higher upon antigen stimulation (Heufler et al.,

1996). Rates of cytokine secretion by M2-like macrophages (i.e., IL-10, TGF-b, and VEGF) are estimated

similarly (see STAR methods). Further, macrophage-mediated phagocytosis is a slow process that not

only takes days to complete but is also inhibited by IL-10 and CD47 and PD-L1, two immune checkpoints

on cancer cells (Bian et al., 2016; Gordon et al., 2017; Pan et al., 2020). To model the overall inhibitory effect

of checkpoint molecules on phagocytosis, we built a submodule that incorporates interactions that

impinge on these checkpoints, including PD-L1 upregulation by IFNg, trans interactions between CD47

and SIRPa, PD-1 and PD-L1, and cis interaction between PD-L1 and CD80 on the surface of cancer cell.

We also incorporated checkpoint blockade by specific antibody drugs (e.g., anti-CD47 and anti-PD-L1).

The overall inhibitory effect of PD-1 and SIRPa on phagocytosis is calculated by Hill functions via Equations

S42,S53 and S54.

To parameterize the submodule, density of checkpoint molecules, binding affinity between ligands and re-

ceptors, and Hill function parameters were required. 2D densities of CD47 and its receptor on macro-

phages, SIRPa, were estimated by in vitro assays (Morrissey et al., 2020; Subramanian et al., 2006). Because

the absolute number of PD-L1 on cancer cells was not available from literature, PD-L1 density on cancer/

immune cells in the tumor was estimated based on the in vitromeasurement on mature dendritic cells and

the percentage of tumor/immune cells (45%) that had concurrent PD-1 and PD-L1 expression in TNBC

(Cheng et al., 2013; Gatalica et al., 2014; Wang et al., 2021). It was known that CD80 is expressed in

TNBC cell lines (Navarrete-Bernal et al., 2020), which could interact with PD-L1 in cis, so the density of

CD80 on cancer cells was also estimated by that on mature dendritic cells. Further, binding affinities be-

tween all ligands and receptors were available from the literature (Cheng et al., 2013; Jansson et al.,

2005). Assuming a Hill coefficient of two for all checkpoint-mediated inhibitions, other parameters, such

as the PD-1 density on TAMs and half-saturation constants were estimated to match the experimentally

measured phagocytosis activity when one of the checkpoints was absent or blocked by an antibody. Fig-

ure 2B shows the overall inhibitory effect of checkpoints based on the checkpoint expression status from

model simulation after parameterization. Simulated data points were generated by randomly sampling

the density of checkpoint molecules (according to the distributions in Table S1) and calculating the overall

inhibitory effect with calibrated Hill function parameters using Equation S54. Negative checkpoint status

was simulated by setting the corresponding checkpoint density to 0. Consistent with published experi-

mental studies, the model predicted that phagocytosis of cancer cells by TAMs was about eight times

higher when treated by an anti-CD47 antibody (Willingham et al., 2012) and 2–3 times higher when

compared with PD-1-negative TAMs (Gordon et al., 2017).

Figure 2C shows the dynamics of immune cell subsets in the tumor upon model calibration. Pro-inflamma-

tory macrophages andMDSC are first recruited into the tumor by CCL2, which is followed by the infiltration

of CD8+ effector and CD4+ helper T cells and eventually accumulation of regulatory T cells. Because of

a higher M2 polarization rate, more M1-like macrophages are polarized to M2-like macrophages than

M2 to M1, which results in a lower M1/M2 ratio as the tumor grows. By comparison, density of M1-like
iScience 25, 104702, August 19, 2022 5



Table 1. Comparison between virtual population statistics and clinical measurement of cytokine concentration and

cellular density

Cellular Density

(cell/mL) VP Median VP Range

Measured

Median

Measured

Range Reference

CD8+ T cell 1.7e7 1.5e5–3.1e8 1.2e8 7.6e6–3.4e8 (Cimino-Mathews et al.,

2016)CD4+ T cell 2.3e7 4.0e5–5.0e8 1.4e8 6.1e6–1.2e9

FoxP3+ Treg 7.7e6 1.6e5–1.4e8 5.5e7 5.8e6–1.7e8

CD8/FoxP3 1.95 0.03–18.8 2.1 1.0–5.2

CD4/FoxP3 2.64 1.04–19.4 2.6 0.9–11.0

MDSC 1.7e5 1.1e4–1.7e6 1.6e5 4.3e4–5.3e6 (Diaz-Montero et al.,

2009)

Macrophages 2.2e6 2.0e5–2.4e7 2.1e6 3.2e5–1.3e7 (Yang et al., 2018)

M1/M2 0.45 0.21–3.60 0.40 0–2.54 (Reynolds et al., 2017)

Cytokine

Concentration

(pg/mL)

VP Median VP Range Measured Mean SE Reference

IL10 19.7 0.96–270 I (n = 23): 6.47;

II (n = 9): 16.60;

III (n = 16): 29.93

I: 1.09; II: 3.63;

III: 6.98

(Autenshlyus et al.,

2021)

IFNg 13.1 0.06–449 I: 16.56; II: 32.96;

III: 9.38

I: 3.00; II: 8.21;

III: 1.44

CCL2 2203 333–14928 I: 2320.78;

II: 4454.86;

III: 11512.85

I: 344.58;

II: 2249.72;

III: 1457.94

Cytokines were measured from cultured biopsy samples in groups I-III divided by multivariate cluster analysis in ref (Autensh-

lyus et al., 2021).
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macrophages and CD8+T cells reach 1e5 cell/mL at day 2 and 14, respectively. Sensitivity analysis shows

that the most influential parameters are densities of PD-1 and SIRPa on TAMs, Hill function parameters

for inhibition on phagocytosis (Figure 2D); and rates of TAMs recruitment, polarization, and phagocytosis

for tumor growth (Figure 2E).
Revisiting analysis of the IMpassion130 trial with the macrophage module

After integrating TAMs into the QSP platform, we investigated if the model retains the predictive power on

efficacy prediction for clinical trials. To this end, we performed in silico virtual clinical trials using the same

approach as our previous analysis of atezolizumab and nab-paclitaxel treatments (Wang et al., 2021), but

with a recalibrated virtual patient population. We inherited the virtual patient distributions from our previ-

ous analysis (Wang et al., 2021), which, along with the newly added modules and parameters, were (re)cali-

brated based on recently published data, such as intratumoral cytokine concentration, density of TAMs,

and checkpoint expression. Due to the nonlinear nature of the QSP model, the outputs (e.g., CD8/Treg

and CD4/Treg ratios) from simulation with median parameter values did not correspond to the median

characteristics of the virtual patient population. Therefore, the descriptive statistics (i.e., median, standard

deviation, upper and lower bounds) for parameter distributions were manually adjusted within the physi-

ologically reasonable ranges so that the median characteristics of the virtual patient population matched

the clinical measurements. Table 1 lists themodel-predicted pre-treatment characteristics of the virtual pa-

tient population in comparison with clinically measured values from different sources. 3D cellular densities

were either directly reported by clinical studies (e.g., MDSC) or estimated from 2D densities as described

above (e.g., TAMs, T cells). Intratumoral cytokine concentrations were measured in a cluster analysis of

TNBC biopsy samples (Autenshlyus et al., 2021).

Treatment-related parameters were then recalibrated based on results from a phase 1 clinical trial of ate-

zolizumabmonotherapy (Emens et al., 2019) and the placebo comparator arm (placebo + nab-paclitaxel) of

the IMpassion130 trial (Schmid et al., 2018). We generated about 1000 virtual patients and conducted

in silico virtual clinical trials of atezolizumab and nab-paclitaxel monotherapies using the same dose
6 iScience 25, 104702, August 19, 2022



Figure 3. Response status comparison between model prediction and clinical results in (A) atezolizumab

monotherapy by RECIST 1.1, (B) nab-paclitaxel monotherapy by RECIST 1.1, (C) atezolizumab monotherapy by

irRC, and (D) combination treatment by RECIST 1.1

Model predictions are presented with 95% bootstrap confidence intervals, while clinical results are reported with 95%

Clopper–Pearson confidence intervals (Emens et al., 2019; Schmid et al., 2018). Virtual patient who has a tumor smaller

than 2 mm is assumed to be a complete responder by the model. ORR, objective response rate. CR, complete response.

PR, partial response. SD, stable disease. PD, progressive disease. M/U, missing or unevaluable disease.
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regimens from the corresponding clinical studies as the dose schedules had been optimized to balance

efficacy and toxicity. Specifically, a 1200 mg dose of atezolizumab was administered every 3 weeks

(Q3W), or a 100 mg per m2 body surface area dose of nab-paclitaxel was administered on day 1, 8, 15 every

28 days (Q3/4W). During the clinical trial simulation, tumor size was recorded every 8 weeks by the model,

which corresponds to the frequency of tumor size measurement in the clinical studies. According to the

model-predicted tumor size/diameter, response status was determined using RECIST 1.1, assuming that

a minimum duration of 8 weeks is required for the categorization of stable disease (Eisenhauer et al.,

2009). Clinically reported objective response rates (ORR) and duration of response (DOR) were used to cali-

brate treatment-related parameters. Table S1 summarizes the calibrated parameter distributions for virtual

patient generation.

Figures 3A and 3B compares the model-predicted efficacy of atezolizumab or nab-paclitaxel alone using

calibrated virtual patient population with the results from clinical trials. Here, we report the median and

95% confidence intervals using bootstrap sampling of the virtual patient population. The bootstrap sam-

pling size was set to the number of patients enrolled in the corresponding clinical study. Similarly, Figure 4A

shows the Kaplan-Meier curve for model-predicted duration of response on nab-paclitaxel monotherapy.

Overall, the model-predictedORR andDOR are consistent with the clinical results, which fall within the 95%

confidence intervals of model predictions. When further characterizing virtual patients into subcategories

(i.e., complete/partial response, progressive/stable disease), we observed a shift of more progressive dis-

ease to more stable disease in model prediction compared to clinical results. We hypothesized that this
iScience 25, 104702, August 19, 2022 7



Figure 4. Kaplan-Meier curve of model-predicted duration of response in (A) nab-paclitaxel monotherapy and

(B) combination treatment of nab-paclitaxel and atezolizumab

Duration of response is defined as the time from the achievement of a response to progression. The median durations of

the response with 95% bootstrap confidence intervals are 5.6 (5.6–7.5) and 7.5 (5.6–9.3) months, respectively.
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shift was because of our assumption on the minimum duration for stable disease (i.e., 8 weeks) and the lack

of model prediction of new metastatic lesion, which would be categorized as progressive disease by

RECIST criteria (Eisenhauer et al., 2009). As a result, we recategorized the response status in the atezolizu-

mab monotherapy using immune-related response criteria (irRC), by which patients are considered to have

partial response or stable disease even if new lesions are present, as long as the respective thresholds of

response are met (Wolchok et al., 2009). Figure 3C shows that irRC alleviated the overestimation of stable

disease by the model. Interestingly, the model-predicted ORR is lower than the clinically reported value

when using irRC, because of its stricter criteria for partial response (i.e., a 50% tumor shrinkage is required),

which suggests that more patient data are needed for model calibration to improve its predictive power.

To validate our model structure, we conducted an in silico trial of combination treatment using atezolizu-

mab and nab-paclitaxel with the recalibrated virtual patient population (Table S1). According to the dose

regimen in the experimental arm of the IMpassion130 trial, 800 mg atezolizumab was administered every

2 weeks (Q2W) with 100 mg/m2 nab-paclitaxel administered Q3/4W. Figures 3D and 4Bshow that the

model-predicted ORR and DOR for combination treatment of atezolizumab and nab-paclitaxel are consis-

tent with clinically reported values. In our previous analysis, a zero complete response rate was predicted in

atezolizumab monotherapy with a limited increase when atezolizumab was combined with nab-paclitaxel

(Wang et al., 2021). With newly incorporated dynamics of TAMs, the increase in complete response in the

combination treatment is more consistent with clinical observation, likely because of the restoration of

phagocytosis activity by TAMs upon PD-L1 blockade. To further investigate the role of TAMs in this com-

bination therapy, we performed a subgroup analysis by dividing the virtual patients into subgroups by the

medians of model variables of interest and calculating the ORR in each subgroup. Figure 5 suggests that

density of TAMs and their subsets, as well as checkpoint expressions on TAMs and cancer cells, may not be

predictive biomarkers for this combination regimen, as the confidence intervals overlap between sub-

groups. As atezolizumab and nab-paclitaxel show additive effect when they are combined in clinical trials

and our simulations, majority of the responders in the combination regimen are most likely because of the

addition of chemotherapy. As a result, the level of tumor-infiltrating lymphocytes and PD-L1 may not be as

predictive as in anti-PD-L1 monotherapy, which relies on restoration of anti-tumoral activity by immune

cells through blockade of the immune checkpoint.

We further divided the virtual patients into five subgroups based on the level of each variable of interest

and calculated the ORRs in each subgroup. In Figure 6, the differences in ORR were greater than 10%

when the subgroups were generated based on density of M2-like macrophages, M1/M2 ratio and expres-

sions of PD-L1, SIRPa, and PD-L2. Specifically, ORR increases as PD-L1 level increases which meets our

expectation because a high PD-L1 expression is correlated with high T cell infiltration and thus better
8 iScience 25, 104702, August 19, 2022



Figure 5. Subgroup analysis of the in silico clinical trial of atezolizumab and nab-paclitaxel

The virtual patient population was divided into eight subgroups based on the pre-treatment values of selected

characteristics, and the objective response rates in each subgroup were calculated with 95% bootstrap confidence

intervals.
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response to the anti-PD-L1 treatment (Kitano et al., 2017). On the other hand, ORR decreases as SIRPa and

PD-L2 densities decrease, suggesting their potential roles in treatment resistance. Surprisingly, ORR de-

creases as density of M2-like macrophages and M1/M2 ratio increase, even though M2 macrophages

exhibit only immunosuppressive activities and have shown a positive correlation with tumor growth without

treatment (Figure 2E). This prediction could potentially result from the correlation between M1-like mac-

rophages and immunosuppressive species, including TGF-b that facilitates polarization to M2 phenotype

(Figure S1). This correlation was also observed in the clinical analysis by (Oshi et al., 2020). Also, the genetic

markers used for subtype classification of TAMs differ across studies, which could impact the correlations

observed in clinical analyses (Newman et al., 2015; Zhang et al., 2021b). Therefore, there is a need for better

understanding of TAMs in the context of treatments (Xiang et al., 2021). Importantly, we have demon-

strated here that when virtual patients are calibrated based on population-level data from preclinical

studies and clinical trials of monotherapy, the QSPmodel canmake reliable efficacy prediction for the com-

bination treatment.

DISCUSSION

We have here expanded our previously published QSP platform by integrating a macrophage module to

investigate the dynamics of TAMs in TNBC. Model calibration, which involves both the new and the pre-

existing modules as well as the virtual patient distributions, were described in detail above and in STAR

methods. In practice, the QSP platform was originally built with seven modules, each of which was written

by a MATLAB script with built-in functions of SimBiology Toolbox (Sové et al., 2020). New modules were
iScience 25, 104702, August 19, 2022 9



Figure 6. Effects of model variables on response status

For each variable, the virtual patient population was sorted by the pre-treatment variable level in ascending order, and evenly divided into five subgroups.

The response status of each subgroup in the combination therapy is plotted against the corresponding median variable level. Blue represents partial or

complete response. Green represents stable disease. Red represents progressive disease. Related to Figure S1.
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then developed as independent user-defined MATLAB functions that integrate new model elements into

the QSPmodel. In this way, modules can be readily added and removed according to the aims of the study.

In fact, the QSP platform has been applied to predict tumor response to various treatments in multiple can-

cer types with different modules incorporated based on study objectives and data availability for model

calibration. This high-usability feature greatly facilitates the wide application of such a platform model in

immuno-oncology translational research and drug development (Chelliah et al., 2021).

As discussed in this study, the macrophage module allowed us to investigate the roles of M1-and M2-like

TAMs during immunotherapy and chemotherapy in TNBC and improved the ORR predictions. In particular,

PD-1 is expressed on both TAMs and effector T cells (Teff) so that both cytotoxic activity of Teff and phago-

cytosis are inhibited by PD-1-PD-L1/2 interactions, providing an additional target for anti-PD-1/L1 treat-

ments (Gordon et al., 2017). Further, we previously hypothesized that PD-L1 expressed on T cells can

interact with CD80 on APC and thus block the co-stimulatory signals (i.e., CD28�CD80/86) during T cell

activation. However, recent findings have suggested that only cis interactions occur between CD80 and

PD-L1 (Zhao et al., 2019b). Also, PD-L1 heterodimerizes with CD80 and selectively weakens its interaction

with CTLA-4 but not CD28, which provides a mechanistic explanation for the clinically observed synergistic
10 iScience 25, 104702, August 19, 2022
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effect of anti-PD-L1 and anti-CTLA-4 treatments (Zhao et al., 2019b). In addition to PD-1-mediated inhibi-

tion, CD47 also serves as an immune evasion mechanism developed by cancer cells. As shown above,

phagocytosis by TAMs can be enhanced eight-fold in breast cancer when CD47 is blocked (Willingham

et al., 2012), which suggests that it could be a potential target for cancer treatment, and the present

QSP platform may serve as a tool to make prospective efficacy predictions for this emerging strategy

and its combination with other checkpoint inhibitors.

In the model, we introduced M1-and M2-like TAMs as two extreme states. In reality, the states constitute a

continuum, and we have recently developed systems biology models to describe the complexity of macro-

phage signaling under different conditions (Zhao and Popel, 2021; Zhao et al., 2019a, 2021). Using these

modeling approaches, additional mechanistic detail could be accounted for in extensions of the macro-

phage module to further enrich the description of macrophage compositions in the tumor microenviron-

ment. It should also be noted that the mechanistic inclusion of TAMs into the QSP platform is one of the

several important aspects of the tumor microenvironment, as there are other cell components, such as nat-

ural killer (NK) cells, B cells, and fibroblasts that are known to influence cancer progression and treatment

efficacy. However, such extensions of the platform have to be carried out step-by-step with careful iterative

calibration and validation against cancer-specific experimental and clinical data (Makaryan and Finley,

2020; Makaryan et al., 2020). Although we have made every effort to make modules independent, inte-

grating a module, as demonstrated in this study, is a meticulous process. New model reactions should

be detailed enough to reflect the complexity of biological mechanisms that occur in reality, but

simplified enough so that the model parameters can be identified by limited data. Once integrated,

pre-existing parameters should be recalibrated to make sure that updated model outputs still fall within

the physiologically reasonable ranges. This process can lead to a comprehensive mechanistic characteriza-

tion of the tumor microenvironment that would provide rich therapeutic targets and valuable insights in the

basic-to-translational quest in immuno-oncology research.

In silico virtual clinical trials, as we have explored here, is an emerging field of study in immuno-oncology

(Chelliah et al., 2021). To capture the inter-individual heterogeneity of patients with metastatic TNBC, we

estimated the virtual patient distribution according to pre/clinical data on TNBC or other breast cancer

subtypes if TNBC data are not available. In addition, multi-omics and digital pathology data have proven

useful when generating physiologically reasonable virtual patients, and in future such data can be further

collected from TNBC and incorporated into our QSP platform (Lazarou et al., 2020; Zhang et al., 2021a).

Notably, in the tutorial created by (Lazarou et al., 2020), they listed the multi-omics data that can be utilized

to predict neoantigen binding affinity with MHCmolecules, T cell receptor repertoire diversity, immune cell

composition in lymph nodes, and more for QSP model calibration. More importantly, individual tumor

growth trajectories from clinical trials could provide substantially more information for virtual patient gen-

eration than overall response rates. We also aim to match the simulation setting with the actual clinical trial

setting, and we followed the same measurement frequency of tumor size and clinical criteria used in those

trials when making efficacy predictions. Nonetheless, the current trial simulation workflow can be further

improved by future efforts, as certain factors that lead to treatment discontinuation or categorization of

progressive disease, such as appearance of new lesions, severe adverse events, and death, were not

described during the in silico trials presented here. For example, unlike in chemotherapy where clinical

response often ends by tumor progression led by chemo-resistance, the response in immunotherapy

mostly ends when new lesions are found while tumor size is below the response threshold. As a result,

the lack of model prediction of new lesions makes the model-predicted duration of response not compa-

rable to the clinically reported value. Additionally, limited tumor detectability of imaging modalities used

for tumor size measurement may also affect the response status. To be consistent with our previous anal-

ysis, we assume that patients with tumor smaller than 2mm are categorized as complete responders. These

factors should all be considered when interpreting the model predictions, especially for the subcategori-

zation within responders and non-responders.

Although the accelerated approval of atezolizumab for PD-L1-positive metastatic TNBC has been with-

drawn since our previous analysis, results from the IMpassion130 study provide useful information for

model calibration and validation. The withdrawal of atezolizumab was because of two developments. First,

clinical benefit was not observed in the confirmatory IMpassion131 trial (Miles et al., 2021), and the release

of overall survival (Emens et al., 2021). Second, KEYNOTE-355 demonstrated both progression-free and

overall survival benefit associated with the anti-PD-1 antibody pembrolizumab and chemotherapy,
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resulting in full regulatory approval for the first-line therapy of patients with metastatic PD-L1-positive

TNBC. These results suggest that it may be useful to identify surrogate markers for survival prediction after

treatments using the QSP platform, but patient and treatment-specific data are required (Gion et al., 2021).

Also, visceral metastasis is correlated with poor survival outcomes in TNBC (Wang et al., 2020b). In the pre-

sent model, we have only incorporated one tumor compartment that represents an average tumor lesion in

metastatic TNBC, with two cancer clones (i.e., sensitive and resistant clones to nab-paclitaxel). Addingmul-

tiple tumor compartments that describe the formation and dynamics of metastatic lesions can better assist

the study on tumoral heterogeneity and improve efficacy prediction by the model.
Limitations of the study

One of the central factors that could influence the predictive power of in silico clinical trials using a QSP

platform is themechanistic hypotheses that aim to reflect the real biological processes. In our case, hypoth-

eses are made based on our current understanding of the tumor-immune system, which is constantly up-

dated by new experimental data, such as the cis interaction between CD80 and PD-L1 as discussed above.

However, some biological processes are still not fully understood, such as the role of PD-L1 on T cells and

mechanisms of action (MOA) of PD-1/L1 inhibitors (DeSousa Linhares et al., 2019; Kazanova and Rudd,

2021; Zhao et al., 2019b). This may result in a discrepancy between model prediction and clinical observa-

tion. In addition, some simplifications have to be made because of the lack of data during calibration of

certain model components. For example, CD4+ helper T cells can be further categorized into multiple sub-

sets (e.g., Th1, Th2, and Th17), each of which may play a unique role in the immune system. However, the

lack of quantitative measurements of their cellular density in TNBC prevents them from being explicitly

incorporated into the QSP model (Tay et al., 2021). Also, quantitative data were rarely reported for meta-

static TNBC lesions, which are critical to study the tumoral heterogeneity (Pasha and Turner, 2021).

Another limitation is related to model parameterization, which has to account for the measurement uncer-

tainty from experimental techniques, cross-study variability, and inter-individual heterogeneity. This is

particularly reflected in virtual patient generation. In this study, we manually adjusted the descriptive sta-

tistics for each parameter distribution during virtual patient calibration, and randomly generated devia-

tions from the median parameter values that are fitted to the experimental/clinical data. Given that the

descriptive statistics and the distribution type can sometimes take more than one fixed set of values,

this would have an impact on the model prediction as well as the parameter sensitivity. As a result,

larger-than-reality ranges could be generated for parameters andmodel outputs, and without a sufficiently

large dataset of relevant clinical measurements it is hard to apply a robust algorithm to narrow down the

virtual patient population while preserving the desirable inter-individual heterogeneity. In addition, covari-

ance between parameters was not considered because of the lack of patient data, as parameters are inde-

pendently sampled during virtual patient generation, and thus could result in virtual patients that would not

have existed in reality (Tivay et al., 2020). In summary, more precise selection criteria and screening

methods need to be added into the overall virtual patient generation workflow, as additional data become

available, to improve the predictive power of such model-based in silico trials in immuno-oncology

research.
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Iwata, H., Loi, S., Rugo, H.S., Schneeweiss, A.,
Winer, E.P., Patel, S., et al. (2021). First-line
atezolizumab plus nab-paclitaxel for
unresectable, locally advanced, or metastatic
triple-negative breast cancer: IMpassion130 final
overall survival analysis. Ann. Oncol. 32, 983–993.
https://doi.org/10.1016/j.annonc.2021.05.355.

Ferlay, J., Colombet, M., Soerjomataram, I.,
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Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Hanwen Wang.
Materials availability

This study did not generate new materials or reagents.

Data and code availability

d All original code has been deposited at Zenodo and is publicly available as of the date of publication.

DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contacton request.
METHOD DETAILS

Model overview

The model comprises four compartments (central, peripheral, tumor, and tumor-draining lymph nodes)

and ten modules, including a new macrophage module introduced in the present analysis. Each

module describes the kinetics and dynamics of a major molecular or cellular species in the tumor microen-

vironment, such as cancer cells, T cells (i.e., effector T cells, regulatory T cells, helper T cells), and antigen-

presenting cells (APCs). All modules from our previous analysis of the IMpassion130 trial (Wang et al., 2021)

were inherited, modified, and recalibrated with the new macrophage module, using published data on tri-

ple-negative breast cancer (TNBC). The cellular dynamics involved in each module are described below,

and the effects of molecular interactions (e.g., immune checkpoints and cytokines) are implemented using

Hill functions
�
e:g:; HA = ½A�n

½A�n +An
50

�
unless otherwise specified. The model comprises 152 ordinary differen-

tial equations (ODEs), 45 algebraic equations (i.e., repeated assignment rules), and 280 parameters. Model

species, parameters, reactions, compartments, and algebraic equations are listed in Tables S2, S3, S4, S5

and S6. MATLAB scripts for model generation and in silico clinical trials are made available at https://doi.

org/10.5281/zenodo.6614447 and https://github.com/popellab/QSPIO-TNBC.
Cancer module

To investigate the dynamics of tumor vasculature and the anti-angiogenic activity of chemotherapy, we

adapted themodified Gompertzian model proposed by (Hahnfeldt et al., 1999). Because the tumor volume

in our model is calculated by the total number of cancer cells in the tumor compartment, we modified the

equations to describe cancer cell dynamics, where the tumor-carrying capacity, K , is translated to the

maximal number of cancer cells supported by the tumor vasculature, Cmax.
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dCi

dt
= kC;growthCi log

�
Cmax

Ctotal

�
�
 
kC;death + kC;nabpHnabp

min
�
Ctotal;KC;nabp

�
Ctotal

+ kM1;phago
½Mac�M1

½Mac�M1 +KMac;CCi
ð1 � HMac;CÞ

�
1 � HIL10;phago

�

+ kC;T
½Teff �T

½Teff �T +KT ;CCi

½Teff �T
½Teff �T +KT ;Treg

�
Treg

	
T

�
1 � HTGFb;Teff

�ð1 � HPD1;CÞð1 � HMDSCÞ
!
Ci

(Equation S1)
2
dCmax

dt
= kK ;gCtotal

cvas
cvas + cvas;50

� kK ;dCmaxðCtotalVcellÞ3 � kK ;nabpCmax ½NabP� (Equation S2)
VT
dcvas
dt

= kvas;CsecCtotal + kvas;Msec ½Mac�M2 � kvas;degcvasVT + kvas;nabpCtotalHnabp;vas (Equation S3)

Equation S1 describes the dynamics of cancer cells in each cancer clone, Ci, added by the cancer module.

The first term describes cancer cell proliferation with growth rate constant, kC, growth, total number of cancer

cells in all cancer clones, Ctotal, and the maximum number of cancer cells reflecting the tumor carrying ca-

pacity, Cmax. The second term describes the death of cancer cells because of apoptosis, cytotoxic action of

nab-paclitaxel, phagocytosis, and effector T cells (Teff). Apoptosis, which is caused by natural cell death, is

assumed to be a first-order reaction with the rate constant, kC, death Cytotoxic activity of nab-paclitaxel is

incorporated with the killing rate constant, kC, nabp, a Hill function with varying effective concentrations,

Hnabp, and the number of cancer cells that is accessible by nab-paclitaxel, kC, nabp. Rate of phagocytosis

by TAMs depends on the phagocytosis rate constant, kM1, phago, ratio of effector and target cells, and

the Hill functions for the inhibitory effects of checkpoint molecules, HMac, C, and IL10, HIL, phago. Cancer

cell killing by Teff is described by the killing rate constant, kC, T, the ratio of Teff and target cells, the

ratio of Teff and regulatory T cells (Treg), and the Hill functions representing the inhibitory effects of

PD-1, TGF-b, and molecules secreted by myeloid-derived suppressor cells (MDSC), HMDSC. The depen-

dence of cancer cell killing by M1 macrophages and Teff on cellular ratios (i.e., M1/C, Teff/C, and Teff/

Treg) is modelled by Hill-type dynamics with inhibition threshold parameters: KMac, C, KT, C, and KT, Treg.

(Robertson-Tessi et al., 2012). Equations for HPD1;C , KMac, C and HMDSC are shown in Checkpoint module,

Macrophage module, and MDSC module, respectively.

Equation S2 calculates the maximal number of cancer cells supported by the tumor vasculature. The first

term represents the growth of tumor vasculature induced by angiogenic factors, cvas, with a rate constant,

kk, g. The second term represents the endogenous inhibition of existing tumor vasculature, such as endo-

thelial cell death, with a rate constant, kk, d (Hahnfeldt et al., 1999). The third term represents the inhibition

of tumor vasculature because of nab-paclitaxel, with a dose-dependent rate, kK, nabp (Mollard et al., 2017).

The tumor angiogenic factor, cvas, is assumed to be secreted by cancer cell and M2-like macrophages and

induced by nab-paclitaxel (Equation S3). The secretion rates are fitted to VEGF-A level measured in preclin-

ical studies (Volk et al., 2008; Wu et al., 2010).

The tumor growth parameters (i.e., kC,growth, kK, g, kK, d, and cvas50) and the initial tumor carrying capacity,

Cmax(0), are fitted to the tumor growth curve reported by preclinical studies using TNBC xenograft model.

Fitting was performed with the simplex search method using a MATLAB function, fminsearch, to minimize

the mean squared difference between observed and predicted values (Lagarias et al., 1998). Using the

fitted values as medians, kC, growth and kK, g are varied assuming lognormal and uniform distributions,

respectively, to capture the tumor heterogeneity. The median, 60th and 90th percentiles of the simulated

tumor growth are plotted with the experimental measurements in Figure S2. kC, growth, kK, g, and kK, d are

then scaled up to human using Equation S4. The allometric scaling has been tested in models of various

cancer types in human (Elassaiss-Schaap, 2010; Garcia-Cremades et al., 2019; Lindauer et al., 2017; West

et al., 2002), while its robustness in translating growth of breast tumor xenografts to human needs to be

investigated when clinical data become available.

qhuman = qmice

�
WThuman

WTmice

�� 0:25

(Equation S4)

Tumor volume (tumor compartment capacity) is calculated by Equation S5 at each time step. Ctotal, Ttotal,

and Mtotal represent the total number of cancer cells, T cells, and macrophages in the tumor; Cx and Texh
represent apoptotic cancer cell and exhausted T cell; Vcell, VTcell, and VMcell are the volumes of a single
20 iScience 25, 104702, August 19, 2022
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cancer cell, T cell, and macrophage, respectively. Ve is the volume fraction of the intracellular space in

breast tumors, which was calculated assuming vascular and interstitial space occupy roughly 2 and 61%

of the total tumor volume, respectively (Finley and Popel, 2012).

VT =
1

Ve
ðVcellðCtotal + CxÞ + VTcellðTtotal + TexhÞ + VMcellMtotalÞ (Equation S5)

T cell modules (Teff, Treg, and helper T cell)

Naı̈ve T cell dynamics

Dynamics of naı̈ve T cells are incorporated into the central (C), peripheral (P), and tumor-draining lymph

node (LN) compartments. Equations S6–S8 describe dynamics of naı̈ve CD4+ and CD8+T cells, where

[nT]i represents the average number of naı̈ve CD4+/CD8+T cells of a single clonotype in the corresponding

compartment.

d

dt
½nT �C =

QnT ;thym

div
� QnT ;P;in½nT �C +QnT ;P;out ½nT �P � QnT ;LN;in½nT �C +QnT ;LN;out ½nT �LN � knT ;death½nT �C

(Equation S6)
d

dt
½nT �P =

knT ;pro
div

½nT �P
½nT �P + KnT ;pro

div

+QnT ;P;in½nT �C � QnT ;P;out ½nT �P � knT ;death½nT �P (Equation S7)
d

dt
½nT �LN =

knT ;pro
div

½nT �LN
½nT �LN +

KnT ;pro

div

+QnT ;LN;in½nT �C � QnT ;LN;out ½nT �LN � knT ;death½nT �LN

� kT ;actHAPCHAg½nT �LN
(Equation S8)

The initial amount of naı̈ve T cells is calculated by dividing the absolute number of naı̈ve T cells measured from

healthy individuals by the T cell clonotype diversity (Autissier et al., 2010; Robins et al., 2009).QnT, thym repre-

sents zero-order thymic export of naı̈ve T cells, whose rate is shown to be correlated with age by (Bains et al.,

2009; Ye and Kirschner, 2002) and thus is estimated by the average ages of patients with breast cancer at diag-

nosis (Yeh et al., 2017). div represents the clonotype diversity, which is 1.11e6 and 1.16e6 for naı̈ve CD8+ and

CD4+T cell, respectively (Robins et al., 2009). Because the naı̈ve T cell densities are sustained mainly by self-

renewal in peripheral lymphoid organs, their proliferation is assumed to occur in the peripheral and the tumor-

draining lymph node compartments (first terms in S7 and S8) with a rate constant, knT, pro, estimated based on

the in vivo measurements reported by (den Braber et al., 2012). The naı̈ve T cell trafficking among the three

compartments is adapted from the model by (Zhu et al., 1996), and the transport rates are estimated to fit

naı̈ve T cell densities at the steady state when cancer cells are not present (i.e., no naı̈ve T cell activation by

tumor antigens) to the measured naı̈ve T cell levels in healthy individuals (Autissier et al., 2010). When cancer

cells are present, Teff is activated from naı̈ve CD8+T cells, and Treg and helper T cell (Th) are activated from

naı̈ve CD4+T cells. Figure S3 shows that the pre-treatment distribution of naı̈ve T cells (see In silico clinical trial

for definition of pre-treatment). Themedian densities of naı̈ve CD4+ andCD8+T cells (6.6e5 and 4.7e5 cell/mL)

are about 23% and 8% lower than those in healthy individuals (8.6e5 and 5.1e5 cell/mL), which is consistent

with the clinical measurements (Autissier et al., 2010; Hueman et al., 2007).

T cell activation and homing

The activation of naı̈ve T cells in the tumor-draining lymph nodes (TDLNs) depends on the number of T cells

that can simultaneously interact with mature antigen-presenting cells (mAPCs) and the strength of T cell

receptor (TCR)-peptide-MHC (pMHC) interactions, which are implemented as Hill functions named HAPC

and HAg, respectively (see the Antigen-presenting cell module and the Antigen module). Equations S9

and S10 describe the dynamics of proliferating T cellsupon activation, [aT]LN, and their final forms, [T]LN,

(i.e., Teff, Treg, and Th).

d

dt
½aT �LN = kT ;actHAPCHAg½nT �LNnT ;clones � kT ;pro

NaT
½aT �LN (Equation S9)

k
d

dt
½T �LN =

T ;pro

NaT
2NaT ½aT �LN � QT ;LN;out ½T �LN � kT ;death½T �LN (Equation S10)

Because [nT]LN represents the average level of naı̈ve T cells of a single clonotype, the first term of Equa-

tion S9 is multiplied by the number of corresponding antigen-specific T cell clones, nT, clones, to calculate

the total number of naı̈ve T cells that can recognize tumor neoantigens (i.e., Teff and Th) or tumor-associ-

ated self-antigens (i.e., Treg). Here, we assume that the number of neo/self-antigen-specific T cell clones

equal to the number of corresponding antigen clones. For example, the number of neoantigen-specific
iScience 25, 104702, August 19, 2022 21
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T cell clones is estimated by the number of neoepitopes identified in TNBC (Morisaki et al., 2021; Narang

et al., 2019). kT, act is the maximal activation rate of naı̈ve T cell by mAPCs, kT, pro is the proliferation rate of

activated T cell, and NaT is the total number of divisions that an activated T cell can undergo while transi-

tioning to its final form.

NaT = NTCR +NcostimHCD28 +NIL2HIL2 (Equation S11)

In Equation S11, NTCR, Ncostim, and NIL2 represent the number of cell divisions by signals from TCR, costi-

muli on mAPCs, and IL-2 secreted by activated CD4+ helper T cells, respectively. According to the exper-

imental data from (Marchingo et al., 2014), the effect of the three signals on activated T cell expansion can

be estimated by the linear sum of the underlying signal components.

Similar to naı̈ve T cells in the model, transport of activated T cells (i.e., Teff, Treg, and Th) is adapted from

the model by (Zhu et al., 1996) and is described by Equations S12 and S13. The tumor infiltration is limited

by the term
C2
total

C2
total

+ KC;rec
to constrain T cell infiltration when the number of cancer cells is low, reflecting

the effect of chemoattractant (dePillis et al., 2006). This term is also used to approximate the clearance

of immune and myeloid cells because of the lack of pro-inflammatory signals upon tumor eradication in

Equations S14, S15, S16, S48, S49 and S50 (Kaech and Cui, 2012; Veglia et al., 2021).

d

dt
½T �C = QT ;LN;out ½T �LN � QT ;P;in½T �C +QT ;P;out ½T �P � QT ;T ;in½T �C

C2
total

C2
total + KC;rec

� kT ;death½T �C
(Equation S12)

d

dt
½T �P = QT ;P;in½T �C � QT ;P;out ½T �P � kT ;death½T �P (Equation S13)

Because of the differential effects of activated T cells on the tumor microenvironment, their equations are

specified separately by Equations S14, S15 and S16. For tumor infiltrating Teff, additional death rates are

applied to represent Teff inhibition by Treg and cancer cell, which are mediated by IL-10 and PD1-PDL1/2

interactions, respectively (Hsu et al., 2015; Wherry, 2011). For tumor infiltrating Th and Treg, differentiation

of Th to Treg is incorporated, which is mediated by TGF-b and arginase-I (Batlle and Massagué, 2019; Ser-

afini et al., 2008).

d½Teff �T
dt

= QT ;T ;in½Teff �C
C2

total

C2
total + KC;rec

�
 
kT ;death + kTreg

�
Treg

	
T

½Teff �T +
�
Treg

	
T

HIL10

+ kTcell
Ctotal

Ctotal + ½Teff �T
HPD1;C + kcell;clear

KC;rec

C2
total + KC;rec

!
½Teff �T

(Equation S14)

2
 

d

dt

�
Treg

	
T
= QT ;T ;in

�
Treg

	
C

Ctotal

C2
total + KC;rec

� kT ;death � kTh;TregHTGFbHArgI;Treg

+ kcell;clear
KC;rec

C2
total + KC;rec

!�
Treg

	
T

(Equation S15)

2
 !
d

dt
½Th�T = QT ;T ;in½Th�C

Ctotal

C2
total + KC;rec

� kT ;death + kTh;TregHTGFbHArgI;Treg + kcell;clear
KC;rec

C2
total + KC;rec

½Th�T

(Equation S16)

Antigen-presenting cell module

The APCmodule describes the APC recruitment into the tumor compartment, APCmaturation, andmature

APC transport to the tumor-draining lymph node compartment. We assume that the majority of the mAPCs

come from the tumor compartment, where they uptake antigens and undergo the maturation process

(Lindquist et al., 2004).

d½APC�T
dt

= kAPC;death
�
rAPCVT � ½APC�T

� � kAPC;mat ½APC�THIL12ð1 � HIL10Þ (Equation S17)

d½APC� � �

LN

dt
= kAPC;death rAPCVLN � ½APC�LN (Equation S18)
d½mAPC�T
dt

= kAPC;mat ½APC�THIL12ð1 � HIL10Þ � kAPC;mig½mAPC�T � kmAPC;death½mAPC�T
(Equation S19)
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d½mAPC�LN
dt

= kAPC;mig½mAPC�T � kmAPC;death½mAPC�LN (Equation S20)

In Equations S17, S18, S19 and S20, kAPC, death is the entry and death rate of APCs; rAPC is the baseline APC

density; kAPC, mat is the maturation rate that depends on concentrations of the maturation signal, IL-12, and

inhibitory cytokine, IL-10 (Corinti et al., 2001); kAPC, mig is themigration rate of mAPCs from tumor to TDLNs;

and kmAPC, death is the death rate of mAPCs.HAPC, which determines the rate of T cell activation in the T cell

module, is calculated by Equation S21 based on the type of T cells being activated. That is, nT, clones cor-

responds to the number of neoantigen clones when calculating HAPC for Teff and Th activation from naı̈ve

CD8+ and CD4+T cells, respectively, and it corresponds to the number of self-antigen clones when calcu-

lating HAPC for Treg activation from naı̈ve CD4+T cells.

HAPC =
nsites;APC ½mAPC�LN

nsites;APC ½mAPC�LN + nT ;clones½nT �LN
(Equation S21)

Antigen module

The antigen module is adapted from several well-established models to describe antigen processing and

presentation by APC (Agrawal and Linderman, 1996; Chen et al., 2014b; Palsson et al., 2013). Tumor neo-

antigens and tumor-associated self-antigens are released upon death of cancer cells (Equation S22) and

are internalized into intracellular vesicles of APC (Equation S23), where they are processed into short

peptides (Equation S24). The peptides then bind with MHC molecules based on their binding affinity

(Equation S25), and the pMHC complexes are presented on the cell surface to be recognized by the anti-

gen-specific T cell receptors (Equation S26). Equations S27 and S28 describe the unbound MHCmolecules

in the endosome and cell surface, respectively.

VT
dPT

dt
= kdep � kxP;degpTVT � kup½APC�TPTVe (Equation S22)
Ve
dPe

dt
= kupPTVe � kP;degPeVe (Equation S23)

� 	

Ve

dpe

dt
= kP;degPeVe � kp;degpeVe � kP;onMepeAe + kP;off Mp

e
Ae (Equation S24)� 	
Ae

d Mp
e

dt
= kP;onMepeAe � kP;off

�
Mp
	
e
Ae � kout

�
Mp
	
e
Ae (Equation S25)� 	
As

d Mp
s

dt
= kout

�
Mp
	
e
Ae � kP;off

�
Mp
	
s
As (Equation S26)

dM � 	

Ae

e

dt
= kP;off Mp

e
Ae � kP;onMepeAe � koutMeAe + kinMsAs (Equation S27)

� 	
1
A

As
dMs

dt
= kP;off Mp

s
As � kinMsAs + koutMeAe (Equation S28)

Equations S22, S23, S24, S25, S26, S27 and S28 are applied for both tumor-associated self-antigens and

tumor neoantigen clones. Pi, pi, Mi, and [MP]i in Equations S23, S24, S25, S26, S27 and S28 represent the

average concentration of the antigen, the peptide, the MHC molecule, and the pMHC complexes per

APC, respectively. Vi and Ai represent the volume and the surface area. The subscripts e and s represent

the APC endosomal and the surface compartment. The antigen release rate, kdep, is assumed equal to

the rate of cancer cell death. kxP, dep is the degradation rate of extracellular antigens. The antigen uptake

rate, kup, antigen degradation rate, kP, dep, peptide degradation rate, kp, dep, exocytosis rate of pMHC com-

plexes, kout, and internalization rate of MHC molecules, kin, were estimated by (Chen et al., 2014b). The

peptide-MHC association rate, kP, on, was estimated by (Agrawal and Linderman, 1996), and dissociation

rate, kP, off, is calculated based on the binding affinity of corresponding antigen, which can vary among

different cancer types. For simplification, we assume an average binding affinity for all neoantigen/self-an-

tigen clones to represent the overall effect of all clones.

½TCR : MHC�tot =
1

2

0
@ �Mp

	
s

nT ;clones
+ TCRtot + KD;TCR �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi �
Mp
	
s

nT ;clones
+ TCRtot +KD;TCR

!2

� 4

�
Mp
	
s

nT ;clones
TCRtot

vuut
� �NTCR
½TCR�active =
koff ;TCR

koff ;TCR +4TCR

kp;TCR
kp;TCR + koff ;TCR

½TCR : MHC�tot (Equation S29)
iScience 25, 104702, August 19, 2022 23



ll
OPEN ACCESS

iScience
Article
The activation of TCR by the TCR-pMHCbinding is estimated by the concentration of pMHC complex using

Equation S29, where [TCR:MHC]tot is the total number of TCR-pMHC complexes, and [TCR]active is the num-

ber of active TCRs (Lever et al., 2014). Here, [Mp]s is divided by the number of corresponding antigen clones

to represent the number of pMHC complexes of a single clonotype. This is based on the model assumption

that each TCR clone can recognize one antigen clone, and each antigen clone can be recognized by one

TCR clone. TCRtot is the total number of TCR on T cells; KD;TCR is the binding affinity between TCR and

pMHC complex with dissociation rate of koff, TCR; kp, TCR is the modification rate of TCR-pMHC complexes

to the signaling-competent state; 4TCR is the modification rate of TCR-pMHC complexes to the non-

signaling state; and NTCR is the number of modification steps. The number of active TCR determines the

Hill function, HAg, for naı̈ve T cell activation in Equation S30, where Kp is the half-maximal active TCR level

for naı̈ve T cell activation.

HAg =
½TCR�active

½TCR�active +Kp
(Equation S30)

Pharmacokinetic (PK) module

Similarly to the methods described in our previous studies (Wang et al., 2019), the capillary permeability of

antibody drugs is estimated by its Stokes-Einstein radius, which is calculated via Equation S31 (Venturoli

and Rippe, 2005). Here, because atezolizumab has a molecular weight of 145 kDa, it has a Stokes-Einstein

radius of 47.4 Å, by which the permeability-surface area product is estimated to be 1.5e-4 mL/(s*100g) (Gar-

lick and Renkin, 1970). Using a body surface area of 70 cm2/g, the permeability of atezolizumab between

the central and the peripheral compartments is calculated to be 2e-8 cm/s, which is used as the starting

value for fitting below. Because tumor blood vessels are more permeable than normal capillaries, the

permeability between the central and the tumor compartments is estimated to be 3e-7 cm/s according

to multiple in vivo studies (Thurber and Wittrup, 2012; Yuan et al., 1995); and the surface area of capillaries

per tissue volume is estimated to be 28.4 cm2/cm3 for peripheral tissues and the tumor (Thurber and

Wittrup, 2012). As a result, the volumetric flow rates of atezolizumab between the central and the periph-

eral/tumor compartments are calculated by the corresponding permeability-surface area product. The

volumetric flow rate between the central and the tumor-draining lymph node compartment is estimated

by an in vivo study (Meijer et al., 2017).

ae = 0:483 � ðMWÞ0:386 (Equation S31)

Based on the parameter estimation above, we further fit the volumetric flow rate between the central and

the peripheral compartments (QP), the clearance rate (kcl), and the volume fractions of plasma (in the central

compartment) (gC) and the interstitial space available to atezolizumab (in the peripheral compartment) (gP)

to match its clinically measured plasma concentration (Stroh et al., 2017). Figure S4 shows the model pre-

dicted plasma concentration of atezolizumab with the clinically measured values.

VC
d½A�C
dt

= QP

�½A�P
gP

� ½A�C
gC

�
+QLN

�½A�LN
gLN

� ½A�C
gC

�
+QT

�½A�T
gT

� ½A�C
gC

�
+QLD

½A�LN
gLN

� kcl½A�C
(Equation S32)

d½A� �½A� ½A� �

VP

P

dt
= � QP

P

gP

� C

gC

(Equation S33)

d½A� �½A� ½A� � ½A�

VT

T

dt
= � QT

T

gT

� C

gC

� QLD
T

gT

(Equation S34)

d½A� �½A� ½A� � ½A� ½A�

VLN

LN

dt
= � QLN

LN

gLN

� C

gC

+QLD
T

gT

� QLD
LN

gLN

(Equation S35)

In Equations S32, S33, S34 and S35, [A]i is the antibody concentration, Vi is the compartment volume, Qi is

the volumetric flow rate between the central and the corresponding compartment, gi is volume fraction of

interstitial space available to the antibody, kcl is clearance rate, and QLD is the rate of lymphatic drainage

from tumor to TDLNs and from TDLNs to plasma (Zhu et al., 1996). Subscripts C, P, LN, T represent the cen-

tral, peripheral, tumor-draining lymph node, and tumor compartments, respectively.

Checkpoint module

Dynamics of PD-1-related checkpoint molecules

Interactions among PD-1, PD-L1, CD80, and anti-PD-(L)1 antibodies are adapted from our previously pub-

lished model (Jafarnejad et al., 2019), which are integrated into a sub-compartment representing the
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immunological synapse in the present model. We assume that the ligands and receptors are evenly distrib-

uted on the cell surface so that their densities in the synapse are calculated by dividing their expression

levels by the total cell surface area. We also assume that the explicit representation of the diffusive entry

of surface molecules to the synapse is negligible because of its rapid dynamics. Instead, the area of the

synapse is increased by a factor of 3 to account for the effect of diffusion (Jansson et al., 2005). The numbers

of checkpoint molecules on cell surface are estimated based on measurements using quantitative flow

cytometry with fluorescent beads (Cheng et al., 2013), which are then scaled up to account for possible

underestimation of PD-L1/2 level by QuantiBRITE bead measurements (Mkrtichyan et al., 2012). These pa-

rameters are varied in a wide range in the virtual patient generation to account for the uncertainty and inter-

individual variability.

d½PD1 : PDL1�
dt

=
kon;PD1;PDL1

dsyn
½PD1�½PDL1� � koff ;PD1;PDL1½PD1 : PDL1� (Equation S36)

d½PD1 : PDL2� k
dt
=

on;PD1;PDL2

dsyn
½PD1�½PDL2� � koff ;PD1;PDL2½PD1 : PDL2� (Equation S37)

d½PDL1 : aPDL1� ½aPDL1�

dt

= 2kon;PDL1;aPDL1½PDL1� T

gT

� koff ;PDL1;aPDL1½PDL1 : aPDL1�

� caPDL1

kon;PDL1;aPDL1
dsynNA

½PDL1 : aPDL1�½PDL1�+ 2koff ;PDL1;aPDL1½PDL1 : aPDL1 : PDL1�

(Equation S38)

d½PDL1 : aPDL1 : PDL1� k

L1�
dt
= caPDL1

on;PDL1;aPDL1

dsynNA
½PDL1 : aPDL1�½PDL1� � 2koff ;PDL1;aPDL1½PDL1 : aPDL1 : PD

(Equation S39)

d½PDL1� k ½IFNg� � ½PDL1� � � �
L1 : aPDL1 : PDL1�

�

dt
=

out;PDL1

Asyn ½IFNg�+ IFNg50

1 � total

rPDL1;IFNg½PDL1�baseline
+ kin;PDL1 ½PDL1�baseline � ½PDL1�total

� kon;PD1;PDL1

dsyn
½PD1�½PDL1�+ koff ;PD1;PDL1½PD1 : PDL1� � 2kon;PDL1;aPDL1½PDL1� ½aPDL1�T

gT

+ koff ;PDL1;aPDL1½PDL1 : aPDL1� � caPDL1

kon;PDL1;aPDL1
dsynNA

½PDL1 : aPDL1�½PDL1�+ 2koff ;PDL1;aPDL1½PD

� 2
kon;CD80;PDL1

dsyn
½PDL1�½CD80�+ 2koff ;CD80;PDL1½PDL1 : CD80�

(Equation S40)

d½PDL2� k ½IFNg� � ½PDL2� � �

PDL2�total
dt

= rPDL2
out;PDL1

Asyn ½IFNg�+ IFNg50

1 � total

rPDL1;IFNg½PDL1�baselinerPDL2
+ kin;PDL1 ½PDL1�baselinerPDL2 � ½

� kon;PD1;PDL2

dsyn
½PD1�½PDL2�+ koff ;PD1;PDL2½PD1 : PDL2�

(Equation S41)

Equations S36, S37, S38, S39, S40 and S41 describe the PD-1-related dynamics in the model. The model spe-

cies represent the 2-D densities of the checkpoint molecules in the synapse with a surface area, Asyn. kon and

koffare the association and dissociation rates of checkpoint interactions; the coefficients for kon and koff of anti-

body-target binding in Equation S38 represent the stochiometric corrections because of antibody bivalency

(Harms et al., 2014); gT is the volume fraction of tumor interstitium that is available to the antibody; caPDL1 is

the intrinsic antibody cross-arm binding efficiency (Harms et al., 2014); the denominator, dsyn, is the thickness

of the confinement space between two cells during the interaction, which aims to transfer the 3-D binding af-

finity to 2-D (Jansson et al., 2005);NA is Avogadro’s number. kout, PDL1is the expression rate of PD-L1/2 by IFNg;

rPDL1, IFNg is the number of fold increase of PD-L1/2 expression from baseline level by IFNg; kin, PDL1 is the

degradation/internalization rate of unbound PD-L1/2 molecules (Shin et al., 2017); rPDL2 is the ratio of PDL2

to PDL1. The number of bound PD-1molecules to PD-L1/2molecules in the tumor determines theHill function,

HPD1, for inhibitory effects of Treg and cancer cell on Teff (Equation S42).

HPD1 =
ð½PD1 : PDL1�+ ½PD1 : PDL2�ÞnPD1

ð½PD1 : PDL1�+ ½PD1 : PDL2�ÞnPD1 +PD1nPD1
50

(Equation S42)

Dynamics of CTLA-4-related checkpoint molecules

Interactions among CTLA-4, CD28, CD80/86, and anti-CTLA-4 antibody are modeled similarly based on a

published model (Jansson et al., 2005). Briefly, CD28 and CTLA-4 expressed on naı̈ve T cells compete for
iScience 25, 104702, August 19, 2022 25



ll
OPEN ACCESS

iScience
Article
CD80 and CD86 on APCs. CD28 and CD86 are monovalent, whereas CD80 and CTLA-4 are bivalent. There-

fore, CD28 and CD86 can form a monovalent complex, whereas CD28 and CD80, CD86 and CTLA-4 can

form bivalent complexes via trans interactions; Also, because of the bivalency of CD80 and CTLA-4, they

can form three types of multivalent complexes in a zipper-like fashion (Jansson et al., 2005). In addition,

PD-L1 can disrupt CD80 homodimers and form PDL1:CD80 heterodimers via cis interactions, which allows

CD80 to bind with CD28 but potentially weaken interactions between CD80 and CTLA-4 (Equations S43,

S44, S45 and S46) (Zhao et al., 2019b). CD28 is a co-stimulatory signal that enhances the naı̈ve T cell acti-

vation by increasing the number of T cell divisions. Because CTLA-4 outcompetes CD28 because of its

higher binding affinity to CD80/CD86, the blockade of CTLA-4 restores ligand availability for CD28 that

leads to enhanced T cell activation and proliferation. Similar to those in the PD-1-related dynamics, stoi-

chiometric corrections are incorporated for antibody bivalency and dimerization of CTLA-4 and CD86 on

cell surface which also results in bivalency (Bhatia et al., 2005; Harms et al., 2014; Linsley et al., 1995).

The ratio of bound CD28 molecules to CD80/86 molecules on mAPCs determines the Hill function,

HCD28, to calculate the number of T cell divisions by costimulatory signals (Equations S47 and S48).

d½CD80m�
dt

= � 2kon;CD80:CD80

dsyn
½CD80m�½CD80m�+ koff ;CD80:CD80½CD80�

� kon;CD80:PDL1

dsyn
½CD80m�½PDL1�+ koff ;CD80:PDL1½PDL1 : CD80�

(Equation S43)
d½PDL1 : CD80�
dt

=
kon;CD80;PDL1

dsyn
½CD80m�½PDL1� � koff ;CD80;PDL1½PDL1 : CD80�

� kon;CD28;CD80

dsyn
½PDL1 : CD80�½CD28�+ koff ;CD28;CD80½PDL1 : CD80 : CD28�

� kon;CTLA4;CD80

dsyn
½PDL1 : CD80�½CTLA4�+ koff ;CTLA4;CD80½PDL1 : CD80 : CTLA4�

(Equation S44)

d½PDL1 : CD80 : CD28� k
dt
=

on;CD28;CD80

dsyn
½PDL1 : CD80�½CD28� � koff ;CD28;CD80½PDL1 : CD80 : CD28�

(Equation S45)

d½PDL1 : CD80 : CTLA4� k
dt
=

on;CTLA4;CD80

dsyn
½PDL1 : CD80�½CTLA4� � koff ;CTLA4;CD80½PDL1 : CD80 : CTLA4�

(Equation S46)

CD28 = ½CD28 : CD80�+ ½CD28 : CD86�+ 2 � ½CD28 : CD80 : CD28�+ ½PDL1 : CD80 : CD28�
bound

(Equation S47)
nCD28
HCD28 =
ðCD28boundÞ

ðCD28boundÞnCD28 +CD28nCD28
50

(Equation S48)

Overall, the density of checkpoint molecules in the model represents their average expression level on all

cancer/immune cells in the tumor, so that the calculated Hill functions represent the overall effect mediated

by PD-1 and CD28.
Myeloid-derived suppressor cells (MDSC) module

MDSCmodule describes MDSC recruitment into the tumor and secretion of arginase-I (Arg-I) and nitric ox-

ide (NO) with their inhibitory effects on T cells. Equation S49 describes MDSC recruitment mediated by

CCL2, which is secreted by cancer cells. kMDSC, mig represents the recruitment rate estimated by themedian

MDSC density in patients with breast cancer (Diaz-Montero et al., 2009).

d½MDSC�
dt

= kMDSC;migVTHCCL2 �
 
kMDSC;death + kcell;clear

KC;rec

C2
total + KC;rec

!
½MDSC� (Equation S49)

The major immunosuppressive factors secreted by MDSC are assumed to be Arg-I and NO, whose expres-

sion rates are estimated based on in vitro experiments on breast cancer cells (Serafini et al., 2008). Because

only the enzymatic activity of Arg-I is measured in enzyme unit, mU, we use mU as a placeholder of Arg-I

concentration in the model, assuming that the protein concentration is proportional to the enzymatic ac-

tivity. The unit of its production rate is then set to be mU*(microliter)/cell/day to estimate the amount of

Arg-I produced by MDSC per day. The units of production rates of NO and CCL2 are set to be
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nanomole/cell/day. Although both Arg-I and NO inhibit cytotoxic killing of cancer cells by Teff, only Arg-I

facilitates Treg expansion in the tumor (Serafini et al., 2008).
Nab-paclitaxel module

Pharmacokinetics

The plasma concentration of nab-paclitaxel is simulated by integrating a published 3-compartment PK

model, which was calibrated by clinical measurements from eight clinical trials involving patients with

advanced or metastatic solid tumors (Chen et al., 2014a). The intratumoral concentration of nab-paclitaxel

is then approximated by tumor-to-plasma ratio measured by in vivo studies (Rajeshkumar et al., 2016; Yang

et al., 2007). The PK parameters and body surface area are varied within the clinically reported 95% confi-

dence intervals to represent the inter-individual variability (Chen et al., 2014a). Tumor-to-plasma ratio of

nab-paclitaxel is also varied during virtual patient generation (Table S1).

Pharmacodynamics

Although the cytotoxic effect of nab-paclitaxel on cancer cells is well-established by in vitro and in vivodata from

breast cancer mouse models, one of the challenges in chemotherapy is the development of chemo-resistance,

which can be characterized into two types: intrinsic and acquired (Ji et al., 2019). Intrinsic chemo-resistance is

causedbypre-existingmechanismsbefore the therapy begins, whereas the acquired chemo-resistance appears

during the therapy. As a result, the effective concentration (EC50) of nab-paclitaxel can be different among the

patients and change over time. To account for the intrinsic chemo-resistance, different values of EC50 are as-

signed for nab-paclitaxel on the initial cancer clone to each virtual patient. The distribution of EC50 is estimated

by data reported in the Genomics of Drug Sensitivity in Cancer (GDSC) database (Yang et al., 2013). Further, we

implement an additional cancer clone (C2) using the cancer module, which represents the chemo-resistant can-

cer cells induced during treatments. We assume that the chemo-resistant clone has the same growth dynamics

as the initial cancer clone (C1) butwith a 100 times higher EC50 of nab-paclitaxel (N�emcová-Fürstová et al., 2016).

The development of the chemo-resistant clone from the initial cancer clone is simplified by a first-order reaction

mediatedby TGF-b (Bhola et al., 2013), with a reaction rate of kC, resistC1HTGFb. In addition to its cytotoxic activity,

nab-paclitaxel is reported to induce VEGF-Aexpressionwith lowdoses (Volk et al., 2008) and apoptosis of endo-

thelial cell with a dose-dependent rate (Mollard et al., 2017). The rates of the drug-induced effects are estimated

by preclinical studies on breast cancer (Table S2).
Macrophage module

The Macrophage module adds M1- and M2-like macrophages, IL-10, and IL-12 into the QSP model as new

model species. We assume that pro-inflammatoryM1-likemacrophages are first recruited into the tumor by

CCL2 (Opalek et al., 2007), where they undergo reversible macrophage polarization. M2 polarization is

mediated by TGF-b and IL-10 (Makita et al., 2015; Zhang et al., 2016), and M1 polarization is mediated

by IFNg and IL-12 (Martinez and Gordon, 2014; Watkins et al., 2007). One of the major functions of M1-

like macrophage is phagocytosis of cancer cells, which is described in Equation S1. This process is known

to be inhibited by IL-10 and checkpoints molecules including SIRPa and PD-1 expressed on macrophages

(Bian et al., 2016; Gordon et al., 2017). Other effects of macrophages are mediated by cytokines. Specif-

ically, IL-12 is secreted by M1-like macrophages (Dorman and Holland, 2000); IL-10, TGF-b, and VEGF-A

are secreted by M2-like macrophages (Martinez and Gordon, 2014). Functions of these cytokines are

demonstrated in various equations above. For both newly added and pre-existing cytokines in the model,

secretion rates are calibrated by the cytokine concentration in biopsy samples from breast cancer. If biopsy

samples are not available, we use the serum concentration measured from patients with breast cancer.

d

dt
½Mac�M1 = kMac;migVTHCCL2 + kM1;pol

�
HIL12 + HIFNg

�½Mac�M2

�
 
kM2;pol

�
HTGFb + HIL10

�
+ kMac;death + kcell;clear

KC;rec

C2
total + KC;rec

!
½Mac�M1 (Equation S50)

 

d

dt
½Mac�M2 = kM2;pol

�
HTGFb + HIL10

�½Mac�M1 � kM1;pol

�
HIL12 + HIFNg

�
+ kMac;death

+ kcell;clear
KC;rec

C2
total + KC;rec

!
½Mac�M2

(Equation S51)
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d½CD47 : SIRPa�
dt

=
kon;CD47:SIRPa

dsyn
½CD47�½SIRPa� � koff ;CD47:SIRPa½CD47 : SIRPa� (Equation S52)

nSIRPa
HSIRPa =
½CD47 : SIRPa�

½CD47 : SIRPa�nSIRPa + SIRPanSIRPa
50

(Equation S53)

H = 1 � ð1 � H Þð1 � H Þ (Equation S54)
Mac;C SIPRa PD1;M

Equations S50 and S51 describe the dynamics of macrophages. kMac, mig is the recruitment rate; kM1, pol and

kM2, pol are rates of M1 and M2 polarization; kMac, death is the death rate of macrophage; and kcell, clear is the

clearance rate of macrophage upon tumor eradication (see T cell activation and homing). Checkpoint inter-

action between CD47 and SIRPa is described by Equation S52 similarly to the interactions in Checkpoint

module. Equations S42,S53 and S54 calculate the Hill function, HMac, C, which represents the overall inhib-

itory effect of immune checkpoint on phagocytosis by TAMs (Equation S1).
In silico clinical trial

According to the distribution estimated for parameters of interest (Table S1), a virtual patient population is

generated using Latin-Hypercube Sampling (LHS). Each randomly generated parameter set, which represents

a patient in principle, is substituted into the model for simulation. Simulations are performed in MATLAB

SimBiology Toolbox (MathWorks, Natick, MA) using sundials solver with absolute and relative tolerance of

1e-9 and 1e-6, respectively. For each virtual patient, the randomly generated initial tumor diameter is inputted

to represent their pre-treatment tumor size, and themodel is simulated starting from a small number of cancer

cells until the tumor reaches the desired pre-treatment tumor size. Virtual patients that do not reach the

desired pre-treatment tumor size are eliminated from the simulation. Once tumor reaches the desired pre-

treatment size, drug administration is simulated via a SimBiology dose object, which specifies the dose

amount, the infusion time, and the dose schedule; and tumor growth is then simulated for 400 days. At the

post-processing step, the virtual patients are further filtered to make sure that their characteristics (e.g.,

T cell and macrophage densities) fall within physiologically reasonable ranges. Eventually, tumor diameter

and percentage changes from baseline are calculated assuming a spherical tumor by Equations S55 and

S56. Here, DT is the tumor diameter, DT, perc is the percentage change from baseline, and D0
T is the initial tu-

mor diameter. The response status of each virtual patient is then evaluated by DT, perc based on RECIST 1.1

(Eisenhauer et al., 2009) or immune-related response criteria (irRC) (Wolchok et al., 2009). Duration of

response is calculated from the first time point when partial or complete response is observed until progres-

sive disease (as defined by RECIST 1.1) or the end of the simulation.

DT = 2

�
3

4p
VT

�1
3

(Equation S55) 
0
!

DT ;perc =
DT � DT

D0
T

� 100% (Equation S56)

QUANTIFICATION AND STATISTICAL ANALYSIS

Global uncertainty and sensitivity analysis was performed by Latin-Hypercube Sampling and Partial Rank

Correlation Coefficient (LHS-PRCC) methods (Marino et al., 2008) to examine the impact of varied param-

eters on model observations. For comparison between model predictions and clinical observations, boot-

strap sampling is used to resample the virtual patient population with a sample size matching the trial size

(i.e., the number of patients enrolled in the trial). The bootstrap median and the 95 percentile confidence

intervals are then calculated. Statistical analyses were performed in MATLAB 2020b (MathWorks, Natick,

MA) and RStudio 1.4 (PBC, Boston, MA).
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