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We show that many structured epidemic models may be described using a straightforward product structure in this paper. Such
products, derived from products of directed graphs, may represent useful refinements including geographic and demographic
structure, age structure, gender, risk groups, or immunity status. Extension tomultistrain dynamics, that is, pathogen heterogeneity,
is also shown to be feasible in this framework. Systematic use of such products may aid in model development and exploration, can
yield insight, and could form the basis of a systematic approach to numerical structural sensitivity analysis.

1. Introduction

Simple epidemic models aim at insight through simplicity;
complex models aim at realism through detail [1]. Both
simple and complex models are still being developed (e.g.,
[2–7]). Addition of epidemiological refinements, such as age
structure, gender, geographic separation, or pathogen strains,
in general changes the behavior of simplemodels, and thuswe
must systematically compare models with different features.

In this paper, we show that many structured epidemic
models may be described using a straightforward product
structure. Such products therefore provide a compact repre-
sentation for a family of related models and could facilitate
model comparison and structural sensitivity analysis. Exam-
ples include modeling host susceptibility groups, gender, age
structure, multiple subtypes, and geographic separation. Our
attention will be restricted to compartmental models [8–10],
focusing on mathematical epidemiology [10–17].

The product we describe is related to standard graph
products. The relation between compartmental models and
graph theoretic or network concepts has been long appre-
ciated [18, 19], and, moreover, Markov processes arising
on product spaces have been analyzed by probabilists [20].
The graph structure arises when dynamical variables will be
represented as vertices of a graph, representing the number of

individuals in a given compartment. Individuals may change
state, such changes being represented by an arc from one
vertex to another, labeledwith the instantaneous rate at which
such a transition would occur.

2. Motivating Example: Community-
Structured Epidemic Model

Consider a simple SI (susceptible to infective) model describ-
ing an epidemic with no recovery. Individuals transition from
susceptible to infective and never return to the uninfected
state. The number of infected individuals is denoted 𝐼 of
susceptible individuals 𝑆.

This compartmental model is diagrammed in Figure 1.
The corresponding ODE system may be written

𝑑𝑆
𝑑𝑡 = −𝛽𝑆𝐼,
𝑑𝐼
𝑑𝑡 = 𝛽𝑆𝐼 − 𝛾𝐼.

(1)

Here, 𝛽 is a transmission coefficient, and 𝛾 is the per capita
mortality or removal rate due to disease. In this model, we
ignore population birth and death due to other causes.
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Figure 1: Directed graph diagram of simple 𝑆𝐼model.
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Figure 2: Directed graph diagram ofWatson model [22] defined by
adding community structure to the 𝑆𝐼model.

A simple extension to include heterogeneous epidemic
dynamics in multiple communities was introduced by Wat-
son et al. [21, 22]. In this model, no migration between com-
munities is assumed.However, individuals in one community
cause infection in other communities, with the structure seen
in Figure 2. The equations are

𝑑𝑆𝑖
𝑑𝑡 = −∑

𝑗

𝛽𝑖𝑗𝑆𝑖𝐼𝑗, 𝑖 = 1, . . . , 𝑛,

𝑑𝐼𝑖
𝑑𝑡 = ∑

𝑗

𝛽𝑖𝑗𝑆𝑖𝐼𝑗 − 𝛾𝑖𝐼𝑖, 𝑖 = 1, . . . , 𝑛,
(2)

where 𝑛 is the number of communities modeled. In the
Watson model, in general the transmission coefficients may
differ when considering transmission to susceptibles in one
community from infectives in any community (whether the
same or not). Each community is additionally assumed to
have a different rate 𝛾𝑖 of removal of infectives due to
mortality (or other causes), though these can be assumed to
be identical if desired.

This model extends the one-community SI model, by
structuring the population into multiple communities. In the
following section, we will show that the structured model
developed by Watson can be straightforwardly defined as
the product of the single-community SI model and a model
describing community structure.Wewill then illustrate other
uses of this product, including age structure, gender, hetero-
geneity of risk, and cotransmission of multiple diseases.

3. Graph Products

A directed graph is defined as a set of vertices, each identified
by a unique label, together with a set of arrows, or arcs, each
connecting a source vertex to a target vertex. In this paper,
we are concerned only with directed graphs, not undirected
ones. A number of different products of directed graphs are
defined, two of which are relevant.

3.1. Cartesian Product. Consider finite directed graphs 𝐴
and 𝐵, with 𝑛𝐴 and 𝑛𝐵 vertices, respectively. The Cartesian

product of these graphs [23] is a graph 𝐴◻𝐵 whose vertex
set is the set of ordered pairs (V, 𝑤) for all vertices V of 𝐴 and
𝑤 of 𝐵 (that is, the Cartesian product of the vertex sets of the
factor graphs 𝐴 and 𝐵). The arcs of 𝐴◻𝐵 consist of an arc
from (V, 𝑤𝑠) to (V, 𝑤𝑡) for every V, wherever there is an arc
from𝑤𝑠 to𝑤𝑡 in the factor graph 𝐵 and an arc from (V𝑠, 𝑤) to(V𝑡, 𝑤) for every𝑤 wherever there is an arc from V𝑠 to V𝑡 in𝐴.

We can speak of “levels” in the sense that each vertex of
a factor model corresponds to a subset, or level, of vertices
of the product model. The product replicates all the arcs of
𝐵 at every level of 𝐴 and all the arcs of 𝐴 at every level of
𝐵. Suppose we have two vertices (𝑎𝑖, 𝑏𝑗) and (𝑎𝑘, 𝑏𝑗), whose
second coordinate is the same, that is, whichmap to the same
level of 𝐵; it will be helpful to call these “siblings” and to say
they “descend” from a common “factor vertex” 𝐵, similarly
for vertices with the same first coordinate.

Figures 3(a), 3(b), and 3(c) illustrate two directed graphs
and their Cartesian product, respectively.

More generally, graphs withmultiple arcs joining a pair of
vertices can be defined, and the Cartesian product definition
above can be applied in this case as well.

3.2. Strong Product. The strong product of two directed
graphs𝐴 and𝐵 includesmore arcs than theCartesian product
[23].This product𝐴⊠𝐵 has the same vertex set, the Cartesian
product of the factors’ vertex sets, but in addition to the arcs
of the Cartesian product graphs, it also includes all arcs from
(V𝑠, 𝑤𝑠) to (V𝑡, 𝑤𝑡) where there is an arc from V𝑠 to V𝑡 and an
arc from 𝑤𝑠 to 𝑤𝑡.

Figure 3(d) illustrates the strong product of the graphs of
Figures 3(a) and 3(b).

The symbols ◻ and ⊠ for these operations are chosen to
evoke the structure of the product graphs, as illustrated in
Figures 3(c) and 3(d). These graph products are discussed in
more detail in the Appendix.

4. Products of Models

4.1. Linear Compartmental Models. A compartmental model
(whether in population biology, epidemiology, or pharmacol-
ogy) is often represented by a diagram such as in Figure 1,
which has the form of a directed graph (formally, a directed
multigraph) with labels on arcs. Multiple arcs may connect a
single pair of compartments, representing multiple processes
influencing that transition with potentially different rates.
As before, the vertices of the graph are compartments and
its arcs are transitions, with labels specifying the transition
rates. (We consider a compartmental model to be an abstract
object isomorphic to its directed multigraph diagram.) As
is well known, a compartmental model diagram can be
represented by a system of ordinary differential equations
or a continuous Markov jump process (among others). (For
instance, a compartmental model with a single compartment
𝑁, with a single inflow with rate Λ and outflow with rate
𝜇𝑁, can be represented by the simple stochastic immigration-
death process [24] or by the elementary ordinary differential
equation model 𝑑𝑁/𝑑𝑡 = Λ − 𝜇𝑁.)
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Figure 3: (a, b) Example directed graphs 𝐴 and 𝐵, respectively; (c) Cartesian product 𝐴◻𝐵; (d) strong product 𝐴 ⊠ 𝐵.

The class of linear compartmental models we consider
in this section includes the ordinary differential equation
models of the form

𝑑𝑋
𝑑𝑡 = 𝑎 +𝑀𝑋, (3)

where𝑋 is a vector of 𝑛 state variables, 𝑎 is a vector of constant
inflows, and𝑀 is an 𝑛 × 𝑛 transition rate matrix. The general
compartmental model, with sources and sink terms, can be
represented in the same graphical way by considering special
source and sink vertices in the graph.

A Cartesian product of linear compartmental models will
be defined in a way that is similar to the Cartesian product of
graphs. Suppose that 𝐴1, 𝐴2, . . . , 𝐴𝐾 are the states in model
𝐴; let 𝐵1, . . . , 𝐵𝐿 be the states of model 𝐵. The Cartesian
product of𝐴 with 𝐵 will have states (𝐴 𝑖, 𝐵𝑗) with 𝑖 = 1, . . . , 𝐾
and 𝑗 = 1, . . . , 𝐿. Two states (𝐴 𝑖, 𝐵𝑗) and (𝐴 𝑖, 𝐵𝑗󸀠) are siblings
in the same level 𝐴 𝑖 of the product. If we began, for example,
with an epidemic model with states susceptible, infective,
removed (SIR), and wished to construct a product with a
geographic model of multiple regions, we would expect to
have susceptibles, infectives, and removed individuals in each
region.

The Cartesian product of graphs, as we saw, replicates
each arc of each factor graph for each vertex of the other factor
graphs. In a compartmental model of a population system,
this would correspond to the very common assumption
of competing independent exponential risks. For example,
consider once again a simple SIR epidemic model, with
infection and recovery, and amodel of two communities with
migration between them. In a Cartesian product of the two,
we may wish to allow infection and recovery within each
community as well as migration of susceptibles from one
community to another,migration of infectives, andmigration

of recovered individuals. In the product model, infectives in
one community, for example, should be able to move to the
other community or recover within their own community—a
feature exactly reflected in the structure of a Cartesian graph
product.

However, note that, in general, we may well wish to
assume differences in these parameters. We may wish to
assume, for example, that recovery rates are higher in one
community or that migration rates of infectives are lower
than for susceptibles. Unlike a Cartesian graph product, a
Cartesian product of compartmental models must take into
account the arc labels, which are the transition rates; in
general, new parameters are necessarily introduced.

We propose the following definition for a Cartesian
product of linear compartmental models. If a transition in
model 𝐵 from 𝐵𝑗 to 𝐵𝑗󸀠 occurs with rate 𝛾, then for every
state 𝑖 in model 𝐴, a transition in the product model occurs
from (𝐴 𝑖, 𝐵𝑗) to (𝐴 𝑖, 𝐵𝑗󸀠) at rate 𝛾𝑖. Similarly, if a transition
in model 𝐴 from 𝐴 𝑖 to 𝐴 𝑖󸀠 occurs with rate 𝜃, then for every
state 𝑗 in model 𝐵, a transition in the product model occurs
from (𝐴 𝑖, 𝐵𝑗) to (𝐴 𝑖󸀠 , 𝐵𝑗) at rate 𝜃𝑗.

The presence of sources and sinks does not add any
fundamental complications. If a transition in model 𝐵 from
𝐵𝑗 to a sink occurs with rate 𝜇, then for every state 𝑖 in
model 𝐴, a transition from (𝐴 𝑖, 𝐵𝑗) to the sink occurs with
rate 𝜇𝑖 (similarly, mutatis mutandis, for transitions in 𝐴 to
a sink). Finally, if a transition from a source to state 𝐵𝑗 in
model 𝐵 occurs at rate Λ, then in the product model, for
every state 𝑖 in model𝐴, a transition from a source to (𝐴 𝑖, 𝐵𝑗)
occurs at rateΛ 𝑖 (and similarly for transitions from the source
which appear in model 𝐴). These, and only these, transitions
constitute the product model.

See the Appendix for more detail on the Cartesian
product of linear models.
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Figure 4: (a) Factor model representing community structure with nomigration; (b) simple Cartesian product formula applied to the 𝑆𝐼 and
community structure models, giving an incorrect result.

5. Epidemic Models

How can products like the Cartesian and strong products
of graphs be used in formulating epidemic models? As we
shall see, the product reviewed above can be extended to
this case as well. We must extend the Cartesian product of
compartmentalmodels to allow interaction between different
populations. (We note that similar considerations apply in the
more general ecological modeling setting, including Lotka-
Volterra predator-prey and competition equations, butwewill
not pursue these applications.)

5.1. Structured SIModel. In this section, we return to the clas-
sical Watson epidemic model, representing the SI epidemic
in multiple regions. We will extend the Cartesian product
of linear compartmental models, showing that the Watson
model is a product of the simple SI model and a geographic
model. In this special case, the geographicmodel will have no
transitions at all.

The SI model of the transmission process is the one
discussed above, with two states 𝑆 and 𝐼, and transitions as
pictured in Figure 1.

We now define a factor model which distinguishes indi-
viduals by community, to be combined with the SI model. If
there are 𝑛 communities, let𝑁1, 𝑁2, . . . , 𝑁𝑛 be the number of
individuals in each community. If no migration takes place,
andwe ignore demographic turnover, thismodel corresponds
to the differential equation system 𝑑𝑁𝑘/𝑑𝑡 = 0 for all 𝑘. For
simplicity, we will illustrate only the 𝑛 = 2 case (Figure 4(a)).

The state space of the product model will consist of
the numbers of susceptibles and infectives in community 1
and community 2, ordered pairs such as (𝑆,𝑁1), which can
be given names 𝑆1, 𝐼1, 𝑆2, and 𝐼2. Naive application of the
Cartesian product for compartmental models would begin
with the observation that the SI factor model includes a
transition from 𝑆 to 𝐼 at rate 𝛽𝐼. We would then iterate over
the levels 𝑗 = 1, 2 of the community model. We need a
transition from (𝑆,𝑁1) ≡ 𝑆1 to (𝐼,𝑁1) ≡ 𝐼1, but at what
rate?Generalizing theCartesian product formula given above
in the most direct way produces a model with transition
rates 𝛽1𝑆1𝐼1 and 𝛽2𝑆2𝐼2, corresponding to the graph seen in

Figure 4(b).This is a technically valid compartmental model,
but it does not account for potential transmission between
infectives in one community (e.g., 𝐼2) and susceptibles in the
other (e.g., 𝑆1).

We must therefore extend the Cartesian product of
compartmental models. In this example, we must take into
account that the rate of transmission between a susceptible
and an infective individual depends on the community
membership of the infective as well as that of the susceptible.
The extended definition is as follows.

As above, let 𝐴 and 𝐵 be models. The state space for
the extended Cartesian product 𝐶 is, as before, the Cartesian
product of the state spaces of𝐴 and of 𝐵. For𝐴, the transition
rates include functional forms 𝑓(𝐴 𝑖, 𝐴𝑗), that is, functional
dependencies on one or more states of 𝐴.

In the example of the Watson epidemic model, we have
the following. The transition rate denoting transmission
events in the SI model has rate 𝑓(𝑆, 𝐼) = 𝛽𝑆𝐼. We will
construct the product model using the rule that, from every
compartment 𝑆𝑖 ∈ {𝑆1, 𝑆2}, that is, for every compartment
descended from the 𝑆 compartment, there is a transition to its
corresponding sibling descended from the 𝐼 compartment, at
rate 𝑓𝑖𝑗(𝑆𝑖, 𝐼𝑗) = 𝛽𝑖𝑗𝑆𝑖𝐼𝑗, for every 𝐼𝑗 ∈ {𝐼1, 𝐼2}. Note that the
infective compartment 𝐼𝑗 in this definition is distinct from the
target vertex of the transition—the transition arc points from
𝑆𝑖 to 𝐼𝑖, on the level 𝑖 of the source vertex, but the infective
compartment 𝐼𝑗 ranges over levels 𝑗 of the product model
independently of the source—and this distinction is crucial
to defining the correct set of transitions.

Where our earlier definition constructs one arc from each
𝑆 compartment to its corresponding 𝐼 compartment, this
definition constructs one arc from each 𝑆 compartment to
its 𝐼 compartment for each infective compartment that can
transmit to those susceptibles. This yields the model shown
in Figure 5. This extended Cartesian product yields two arcs
for transitions from 𝑆1 to 𝐼1, the first reflecting our intent
that individuals in community 1 can cause infections in their
own community and the second reflecting transmission to
community 1 from community 2. This can be canonically
represented as a single arc whose rate is the sum of the rates in
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Figure 5: Directed multigraph diagram of Watson model [22]
defined by applying the extendedCartesian product operation to the
𝑆𝐼 and two-community models.

the individual arcs, which, in this example, is (𝛽11𝐼1+𝛽12𝐼2)𝑆1,
as in the original presentation of this model by Watson
[22]. Similarly, two arcs appear for transitions from 𝑆2 to 𝐼2.
Thus, the extendedCartesian product correctly represents the
Watson model as a product of a within-community epidemic
process and a geographic model.

Here we provide a formal definition of this product.

Definition 1. A simple Cartesian product of two compart-
mental models 𝐴 and 𝐵 is a compartmental model 𝐴◻𝐵
whose set of compartments is the set of ordered pairs (𝑋𝑖, 𝑌𝑗)
for every compartment𝑋𝑖 of 𝐴 and 𝑌𝑗 of 𝐵.

For every arc 𝛼 of model 𝐴, with per capita transition
rate 𝑓𝛼(𝑋𝑠, 𝑍1, . . . , 𝑍𝑘), source compartment 𝑋𝑠, and target
compartment 𝑋𝑡, the arcs of the product model include all
arcs of the form

𝑥𝑠
𝑓𝛼𝑖,...(𝑥𝑠 ,𝑧1 ,...,𝑧𝑘)󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 𝑥𝑡, (4)

where 𝑥𝑠, 𝑧1, . . ., and 𝑧𝑘 range over all compartments of
the product model descending from 𝑋𝑠, 𝑍1, . . ., and 𝑍𝑘,
respectively, and 𝑥𝑡 is the compartment descending from 𝑋𝑡
that is otherwise on the same level as 𝑥𝑠, together with the
corresponding arcs derived from the arcs of factor model
𝐵. The subscripts of 𝑓𝛼𝑖,... distinguish the different arcs by
providing the names of the levels to which all of the product
compartments 𝑥𝑠, 𝑧1, . . . , 𝑧𝑘 belong. The set of arcs of the
product model consists of only the above arcs.

The product transition rates 𝑓𝛼𝑖,...(𝑥𝑠, 𝑧1, . . . , 𝑧𝑘) can be
defined as needed, to generate an appropriately concise form
for the transition rate functions, set unneeded transition rates
to zero, or to do other works of specifying the details of the
combined epidemic dynamics. Examples below demonstrate
several ways of using these functions to construct specific
models.

Before introducing a series of examples of productmodels
with epidemiological application, we note that the product
compartments, defined as ordered 𝑛-tuples such as (𝑆,𝑁1),
can be assigned variable names such as 𝑆1 in a number of
ways.Wewill use several different naming conventions in our
examples. Likewise the parameters such as 𝛽 and 𝛾 need to be
mapped in product transitions to differentiated variables such
as 𝛽12 and 𝛾1, as appropriate to the application. We consider

this to be part of the definition of the function 𝑓𝛼𝑖𝑗 (𝑆𝑖, 𝐼𝑗) and
other rate functions.

5.2. Community Model Featuring Demographics. We note
that the disease process factor model may be generalized to
include demographic turnover (“vital dynamics”). For exam-
ple, thismay feature a constant inflow of new susceptibles and
an exponential mortality or removal; the SI model could be
expressed in the form

𝑑𝑆
𝑑𝑡 = Λ − 𝛽𝑆𝐼 − 𝜇𝑆,
𝑑𝐼
𝑑𝑡 = 𝛽𝑆𝐼 − 𝜇𝐼.

(5)

Here, Λ is a constant recruitment rate, and 𝜇 is a per
capita death rate (see, e.g., [10]). If sources and sinks are
considered to be special compartments, the above definition
encompasses such inflow and outflow transitions. If we
construct the extended Cartesian product model of this SI
process with the same community model, we obtain the
correct product model, with differential equations

𝑑𝑆𝑖
𝑑𝑡 = Λ 𝑖 −∑

𝑗

𝛽𝑖𝑗𝑆𝑖𝐼𝑗 − 𝜇𝑖𝑆𝑖,

𝑑𝐼𝑖
𝑑𝑡 = ∑

𝑗

𝛽𝑖𝑗𝑆𝑖𝐼𝑗 − 𝜇𝑖𝐼𝑖.
(6)

This model is illustrated in Figure 6.
Other elaborations of the epidemic model can be com-

bined with regional models in the same way, including
the SIS process (used, for instance, to model gonorrhea
(e.g., [25]) and more recently to model infectious trachoma
[26]), the SIR model, more complex variants (e.g., [27–29]
out of a vast literature), or even models featuring vector-
borne transmission (e.g., [30–33]). Useful factor models can
include regional models with transportation, host genetics
[10, 34, 35], gender, vaccination status, multiple risk groups
(e.g., high and low risk of infection), or the presence of a
second infectious agent.

5.3. Compartmental Aging. Age-structured models are fre-
quently used in analysis of disease transmission to reflect
changes in susceptibility, frequency of complications, or
mixing patternswhich dependon age. Compartmentalmodel
product structure can easily reflect these features, as we
illustrate in the following example. Consider the standard SIR
model to be the first factor model:

𝑑𝑆
𝑑𝑡 = −𝛽𝑆𝐼,
𝑑𝐼
𝑑𝑡 = 𝛽𝑆𝐼 − 𝛾𝐼,
𝑑𝑅
𝑑𝑡 = 𝛾𝐼,

(7)

where 𝛽 and 𝛾 are transmission and recovery rates as above.
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Figure 6: Product model of 𝑆𝐼 process in two communities.

We then use the following compartmental aging process
as the second factor model:

𝑑𝐴0
𝑑𝑡 = Λ − 𝛼𝐴0 − 𝜇0𝐴0,
𝑑𝐴1
𝑑𝑡 = 𝛼𝐴0 − 𝛼𝐴1 − 𝜇1𝐴1,
𝑑𝐴2
𝑑𝑡 = 𝛼𝐴1 − 𝛼𝐴2 − 𝜇2𝐴2.

(8)

Here, 𝛼 is simply the rate of aging (one year per year), Λ is
a constant recruitment rate, and constants 𝜇𝑖 are age-class-
specific per capita mortality rates.

The number of age compartments could be chosen to
be any positive integer, in principle. Numerically, the use
of compartmental aging can yield large stiff systems of
equations, but compartmental aging approximates the use of
McKendrick-von Foerster equations for aging.

These two models and their Cartesian product model are
shown in Figures 7(a), 7(b), and 7(c). In the product model,
inflow term Λ 𝐼 represents vertical transmission, while Λ 𝑅

would represent individuals immune at birth. Either of these
rates can be set to zero for specific applications.

We note that, in this example, we have built recruitment
and mortality into the aging model, while in the previous
section we included them in the transmission model. There
is flexibility in where to include these demographic processes,
depending on what subscripts one wishes to have attached to
their rates in the product model. If needed they can even be
included in multiple factor models and assigned to constant
values including zero as appropriate in the product.

5.4. Risk-Stratified STI Model. Sexual behavior is highly het-
erogeneous, with some individuals having far more partners
per unit time than others. Moreover, such individuals may
preferentially mix with similar individuals.The epidemiolog-
ical role of a relatively small group of highly active people
in transmission of a sexually transmitted infection (STI) was
explored in a mathematical model of gonorrhea [36], and
similar approaches were used in HIV modeling [37].

Consider the following simple example. Suppose that we
begin with the factor model

𝑑𝑆
𝑑𝑡 = Λ − 𝛽𝑐𝑝𝑆

𝐼
𝑁 − 𝜇𝑆,

𝑑𝐼
𝑑𝑡 = 𝛽𝑐𝑝𝑆

𝐼
𝑁 − 𝛾𝐼 − 𝜇𝐼

(9)

representing disease transmission in a population of MSM
(men who have sex with men) [10]. Here 𝛽 represents
the transmission probability per partnership, 𝑐 equals a
susceptible individual’s rate of acquiring new sexual partners,
and 𝑝 is the probability that a susceptible individual’s partner
is chosen from a specific population of infectives (in the basic
factor model, there is only one population 𝐼 of infectives,
and in that model this probability 𝑝 is taken to have a
constant value of 1, but these probabilities will be nontrivial
in the product model, in which there are multiple infective
populations). Here 𝛾 is disease-specific per capita mortality,
Λ is a constant inflow rate of susceptibles, and𝜇 is the disease-
independent mortality rate. We will multiply this model by a
second factor model in which the population is divided into
a high risk group 𝐴 and a low risk group 𝐵, with transition
rates 𝜌 and 𝜎 between them:

𝑑𝐴
𝑑𝑡 = −𝜌𝐴 + 𝜎𝐵,
𝑑𝐵
𝑑𝑡 = 𝜌𝐴 − 𝜎𝐵.

(10)

The product model is shown in Figure 8. This model can
then represent the presence of a high risk core group with a
higher rate 𝑐𝐴 of acquiring partners than the other, as well
as nonrandom mixing between the groups, expressed by the
probabilities 𝑝𝐴𝐴, 𝑝𝐴𝐵, and so forth. Because the mixing
probabilities 𝑝𝐴𝐴 and 𝑝𝐴𝐵 for a susceptible individual in
group 𝐴 must sum to one, and likewise 𝑝𝐵𝐴 and 𝑝𝐵𝐵, we
could replace 𝑝𝐴𝐵 and 𝑝𝐵𝐵 by 1 − 𝑝𝐴𝐴 and 1 − 𝑝𝐵𝐴, but it
is not necessary to do so. As formulated, this system keeps
the biologically distinct roles of 𝑐 and 𝑝 separate, although
in some circumstances it may be desirable to combine them,
while respecting the constraint that (𝑆𝐴 + 𝐼𝐴)𝑐𝐴𝑝𝐴𝐵 = (𝑆𝐵 +𝐼𝐵)𝑐𝐵𝑝𝐵𝐴 [38]. However, onemay desire to have the quantities
𝑝 as functions of the state variables, reflecting that partner
choice probabilities may depend on the dynamically varying
group sizes [37, 39], in which case it is advantageous to retain
them as separate parameters so that they can be replaced by
more complex expressions straightforwardly.

5.5. Gender in STI Models. Modeling heterosexual transmis-
sion of an STI may proceed by dividing the population into
males and females. Such amodel can be developed along lines
very similar to the riskmodel in the previous section.Wemay
begin with a similar transmission factor model, here shown
as an SIS process:

𝑑𝑆
𝑑𝑡 = Λ − 𝛽𝑐𝑝𝑆

𝐼
𝑁 − 𝜇𝑆 + 𝛾𝐼,

𝑑𝐼
𝑑𝑡 = 𝛽𝑐𝑝𝑆

𝐼
𝑁 − 𝛾𝐼 − 𝜇𝐼.

(11)
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Figure 7: (a) 𝑆𝐼𝑅model, (b) age structure model, and (c) product of 𝑆𝐼𝑅model with age structure model.
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The second factor model will be simply

𝑑𝐹
𝑑𝑡 =

𝑑𝑀
𝑑𝑡 = 0, (12)

where we assume no transitions from male to female or vice
versa. In constructing the product model, we incorporate the
assumption of heterosexual-only transmission by defining

the partner choice probabilities 𝑝𝑖𝑗 to be one for opposite-
gender combinations (𝑝𝐹𝑀, 𝑝𝑀𝐹) and zero for the same-
gender combinations. The product model is then

𝑑𝑆𝐹
𝑑𝑡 = Λ 𝐹 − 𝛽𝐹𝑐𝐹 𝐼𝑀𝑁𝑀 𝑆𝐹 − 𝜇𝐹𝑆𝐹 + 𝛾𝐹𝐼𝐹,

𝑑𝑆𝑀
𝑑𝑡 = Λ𝑀 − 𝛽𝑀𝑐𝑀 𝐼𝐹

𝑁𝐹 𝑆𝑀 − 𝜇𝑀𝑆𝑀 + 𝛾𝑀𝐼𝑀,

𝑑𝐼𝐹
𝑑𝑡 = 𝛽𝐹𝑐𝐹 𝐼𝑀𝑁𝑀 𝑆𝐹 − 𝜇𝐹𝐼𝐹 − 𝛾𝐹𝐼𝐹,

𝑑𝐼𝑀
𝑑𝑡 = 𝛽𝑀𝑐𝑀 𝐼𝐹

𝑁𝐹 𝑆𝑀 − 𝜇𝑀𝐼𝑀 − 𝛾𝑀𝐼𝑀,

(13)

as seen in Figure 9.

5.6. Interacting Transmission of Leprosy and Tuberculosis. The
extended Cartesian product of compartmental models can be
applied to problems involving two separate infectious disease
processes. In the joint leprosy-tuberculosis model appear-
ing in [40], the epidemiological effects of cross-immunity
between two mycobacterial species were analyzed using a
compartmental model. This model may be represented as
a product of two-factor models, the first being a simple
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Figure 10: Compartmental model of tuberculosis transmission.

tuberculosis model based on susceptible (𝑋), latent TB (𝐿),
and active tuberculosis (𝑇):

𝑑𝑋
𝑑𝑡 = Λ − 𝜇𝑋 − 𝛽𝑋𝑇,
𝑑𝐿
𝑑𝑡 = (1 − 𝑝) 𝛽𝑋𝑇 − 𝜇𝐿 − ]𝐿,
𝑑𝑇
𝑑𝑡 = 𝑝𝛽𝑋𝑇 + ]𝐿 − 𝜇𝑇,

(14)

whereΛ is a recruitment rate,𝜇 is an overallmortality rate, ] is
a rate of progression of latent tuberculosis to active disease, 𝛽
is a transmission coefficient (hazard rate per infective) (𝛽𝑇 in
the paper), and𝑝 is the probability a newly infected individual
will develop active tuberculosis rapidly instead of becoming
latently infected with tuberculosis (Figure 10).

The second factor model represents the progression of
leprosy from susceptible 𝑈, to latent infection with leprosy
(𝑊), and to multibacillary disease (𝑀) or paucibacillary
disease (𝑃). The leprosy factor model is then (Figure 11)

𝑑𝑈
𝑑𝑡 = − (𝑏𝑃 + 𝑐𝑀)𝑈,
𝑑𝑊
𝑑𝑡 = (𝑏𝑃 + 𝑐𝑀)𝑈 − (𝜃 + 𝜙)𝑊,
𝑑𝑃
𝑑𝑡 = 𝜃𝑊,
𝑑𝑀
𝑑𝑡 = 𝜙𝑊,

(15)

where here 𝑏 is the transmission coefficient for paucibacillary
leprosy (𝛽𝑃 in the paper), 𝑐 is the transmission coefficient for
lepromatous leprosy (𝛽𝑀 in the paper), 𝜃 is the rate at which

U bUP
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W W P

W

M

Figure 11: Compartmental model of leprosy transmission.
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Figure 12: Cartesian product of leprosy (Figure 11) and tuberculosis
(Figure 10) models, describing interaction of the two transmission
processes. Multiple arrows and labels are suppressed for legibility.

latently infected individuals develop paucibacillary disease
(]𝑃 in the paper), and 𝜙 is the rate at which latently infected
individuals develop multibacillary disease (]𝑀 in the paper).

The product model (Figure 12) represents the epidemio-
logical interference of the two closely related mycobacterial
infections. Individuals latently infected with one may have
partial immunity against the other. This product structure
could be applied to other settings such as HIV-TB interac-
tions (e.g., [41]).

6. Strong Products

The extended Cartesian product is too restrictive when con-
structing models of multiple diseases. For instance, one may
be infected by two pathogens during a single encounter with
a dually infected person. Thus, it may be necessary to allow
individuals to proceed to dual infection directly from the
susceptible class without passing through the singly infected
states. The extended Cartesian product defined earlier does
not permit this possibility.

Just as the Cartesian product of graphs can be extended
to a strong product of graphs, an analogous strong product
is possible for products of compartmental models. As we
will show below, a strong product of compartmental models
will permit derivation of multistrain or multidisease models
featuring simultaneous transmission.
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Figure 13: Strong product of two strains’ 𝑆𝐼𝑆 dynamics.

As an example, consider the following simple SIS epi-
demic model, which we might apply to transmission of
Chlamydia trachomatis, the etiologic agent of trachoma (a
blinding disease) [42, 43]. In principle, multiple strains of
the trachoma agent can circulate [44]. Consider a model of
a single strain, in which 𝑆 is the number of susceptibles and 𝐼
is the number of infectives:

𝑑𝑆
𝑑𝑡 = −𝛽𝑆

𝐼
𝑁 + 𝛾𝐼,

𝑑𝐼
𝑑𝑡 = 𝛽𝑆

𝐼
𝑁 − 𝛾𝐼,

(16)

where 𝛽 is a transmission coefficient, 𝛾 is a recovery rate, and
𝑁 = 𝑆 + 𝐼 is the total population.

We can construct a multistrain model with partial cross-
immunity [45, 46] using a suitably defined strong product,
defined as follows. Let 𝐴 and 𝐵 be models, with states
labeled 𝐴 𝑖 and 𝐵𝑗, respectively. The vertices of the strong
product model 𝐴 ⊠ 𝐵 are, as in the previously defined
products, the Cartesian product of the vertex sets of the factor
models. Every arc of each factor model gives rise to one
or more arcs within each level of the product model, as in
the other products, one for each interaction with product
compartments.There are also additional, diagonal arcs in the
product model that cross levels, representing more than one
of the factor model’s transitions taking place simultaneously.

In Figure 13, we present the strong product of the above
SIS model with itself.

The arcs of the Cartesian product of models are present,
representing infection of an individual by either strain 1
or 2, but there are additional arcs as well, including the
diagonal transition from 𝑆 to 𝐼12 representing simultaneous
transmission of both strains 1 and 2 to a fully susceptible
individual in a single encounter with an individual carrying
both strains.

Unlike the Cartesian product, here a single interaction
between compartments can manifest in multiple transitions.
The interaction between examples 𝑆 and 𝐼12 can result in
transmission of either or both strains, and these cases are
represented by three arcs in the diagram, with transmission
rates 𝛽 distinguished by brackets.

A formal definition of the strong product of compartmen-
tal models, which generates the above example product, is as
follows.

Definition 2. A strong product of two compartmental models
𝐴 and 𝐵 is a compartmental model 𝐴 ⊠ 𝐵 whose set
of compartments is the set of ordered pairs (𝑋𝑖, 𝑌𝑗) for
every compartment 𝑋𝑖 of 𝐴 and 𝑌𝑗 of 𝐵. Models 𝐴 and
𝐵 are considered to be distinct models for the purpose of
this definition, and each model’s transitions are considered
distinct from the other, even when a product is taken of a
model with itself.

For every set 𝛼 = {𝛼1, . . . , 𝛼𝑝} of factor models’
transitions, belonging to distinct factor models, each with
source compartment 𝑋𝛼𝑖𝑠 , target compartment 𝑋𝛼𝑖𝑡 , and
per capita transition rate 𝑓𝛼𝑖(𝑋𝛼𝑖𝑠 , 𝑍𝛼𝑖1 , . . . , 𝑍𝛼𝑖𝑘𝑖 ), the product
model includes all arcs of the form

𝑥𝑠
𝑓
𝛼1,...,𝛼𝑝
𝑖,... (𝑥𝑠 ,𝑧1 ,...,𝑧𝑘)󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 𝑥𝑡, (17)

where 𝑥𝑠 ranges over the compartments of the productmodel
that descend from all the factor vertices {𝑋𝛼1𝑠 , . . . , 𝑋𝛼𝑝𝑠 }, each𝑧𝑗 ranges over the product compartments that descend from
all vertices in the set {𝑍𝛼𝑖𝑗 }, and 𝑥𝑡 descends from all of
{𝑋𝛼𝑖𝑡 } and is otherwise on all the same levels as 𝑥𝑠. The
arcs of the product model are only those generated by the
above definition. As previously, the subscripts 𝑖, . . . to the
rate function 𝑓 distinguish the different product arcs by
indicating the levels to which all the function’s arguments
belong.

In our SI example, we have defined the rate functions
𝑓 to produce appropriate products of transmission (𝛽) and
recovery (𝛾) transitions, with distinct but compact subscripts,
and to omit transitions in which transmission of one strain
occurs simultaneously with recovery from the other one.

7. Exploration of a Family of Models

In this section, we illustrate the use of the extended Cartesian
product in model development and exploration, using a
model of targeted screening for gonorrhea as a simple exam-
ple. Such a model can be expressed using four components:
a natural history model, a partitioning of the population
by gender, a division into low and high risk groups, and a
process of screening of individuals (Figure 14). For the natural
history model, we will use the simple SIS process as in [25]
for illustration, while recognizing that for some STIs a more
complex transmission model may be needed, for example, to
reflect partial immunity [47]. Because within- and between-
gender transmission can vary greatly, we include a division
of the model population by gender, with the assumption
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Figure 14: Component models for gonorrhea process: (a) transmission model, a classic SIS process; (b) gender model, a male-female binary
system, with the assumptions that nonbinary proportions and transition rates are low; (c) risk model, consisting of high and low risk groups;
(d) exposure model, consisting of groups unexposed and exposed to screening.

that rates of gender transition and proportions of nonbinary
individuals are small in comparison to the model dynamics.
We include a high and low risk group as in [36], with
transitions between the risk groups, and finally we include an
exposure model tracking the individuals exposed to a control
measure such as frequent screening [48].

The product of these fourmodels (constructed by extend-
ing the above definition of the extended Cartesian product
of two models or by taking a product of products) has
sixteen compartments and describes a process of transmis-
sion with rates affected by the genders, risk group mem-
bership, and exposure status of both susceptibles and infec-
tives (Figure 15). The product structure naturally generates
a process that includes both homosexual and heterosexual
transmission. As drawn here, the effect of the screening
program is expressed by changes in the removal rate 𝛾 such
that screened individuals are removed from the infective state
more quickly than those who are not screened.

Using the extended Cartesian product definition of this
model, it is straightforward to generate partial products using
subsets of the set of four factor models shown in Figure 14,
yielding a spectrum of models of intermediate complexity
(Figure 16), which can be evaluated on their ability to fit
observed data.Methods to evaluate the goodness of fit of such
a model to data might include least squares (e.g., [49]) or
likelihood methods (e.g., [50]).

More importantly, it is also straightforward using this for-
mulation to generate models with greater detail, for example,
by using more than two risk groups (Figure 17). In this way,
models with arbitrarily large numbers of risk groups can be
straightforwardly and systematically evaluated for goodness
of fit to find the best description of the true process available
in this framework, a process which cannot be undertaken
without an automated model generation framework of this
sort.

8. Discussion

Products of compartmental models, defined as straightfor-
ward generalizations of graph products, represent useful
operations in developing epidemiological models. Similar

mathematical structures arise from addition of age structure,
gender, geographic differences, or other forms of heterogene-
ity to an epidemicmodel. Such similarities reveal the presence
of a “design pattern” [51] that is captured by the extended
Cartesian products we define here.

The products presented in this paper by no means
represent the full range of possible products of models. For
the products we presented, the state space of the product
model is the Cartesian product of the state spaces of the factor
models. Some casesmay require only a subset of this: consider
an HIVmodel in which the infective classes are structured by
CD4 count and viral load classes, which are not relevant to
the susceptible classes. Such examples can be easily handled
by straightforward generalizations of the products given in
this paper. More complex products are required when the
state space of the product model must include history (for
example, the order in which individuals were infected by
pathogen strains).

The extended Cartesian product is well suited to the
operation of adding host heterogeneity to an epidemicmodel,
and so it may facilitate automated generation of a family of
epidemic models. Similarly, the extended strong product is
suited to the process of adding pathogen heterogeneity to an
epidemic model. We have developed software to implement
these products. All models and figures in this paper were
generated by this software, which is freely available as a
module for the Sage mathematics computing system [52].
This software enables systematic numerical exploration of
a large family of related models, to automate evaluation of
specific refinements of an epidemic process for relevance to
observed dynamics, and could form the basis of a systematic
approach to numerical structural sensitivity analysis.

Appendix

A. Graph Products

Formally a directed graph is a set of vertices together with
arcs, defined as a set of ordered pairs of vertices. We consider
graph products for which the vertices of the graph product
are formed from the Cartesian product of the vertices of each
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Figure 15: Four-level product model of gonorrhea transmission with stratification into gender, risk, and exposure categories. Transmission
rate is abbreviated here for readability: 𝜆𝑎𝑏𝑐 = 𝑆𝑎𝑏𝑐𝑐𝑏𝑐∑𝑑𝑒𝑓 𝛽𝑏𝑒𝑝𝑏𝑐𝑒𝑓𝐼𝑑𝑒𝑓, where 𝑎, 𝑏, 𝑐 and likewise 𝑑, 𝑒, 𝑓 range over exposure, gender, and risk
groups, respectively.
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Figure 16: Some candidate models for explanation of recorded transmission dynamics: (a) transmission with exposure only; (b) with gender
only; (c) with risk groups only; (d) with exposure and gender; (e) with exposure and risk groups; and (f) with gender and risk groups.

of the factor graphs. Notationally, if 𝑆1, 𝑆2, . . . , 𝑆𝑛 are sets of
vertices, then their Cartesian product is the set 𝑆1 × 𝑆2 × ⋅ ⋅ ⋅ ×𝑆𝑛 = {(𝑠1, 𝑠2, . . . , 𝑠𝑛) | 𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2, . . . , 𝑠𝑛 ∈ 𝑆𝑛}, with the
elements of 𝑆1 × 𝑆2 × ⋅ ⋅ ⋅ × 𝑆𝑛 being tuples of elements of the
component sets 𝑆1, 𝑆2, . . . , 𝑆𝑛.

For application tomathematicalmodels, the arrows (arcs)
will represent transition rates between states represented by
vertices. Each arc will therefore require an associated label.
We allow multiple arcs between the same vertices and thus
we must use multigraphs, represented as a set {(V, 𝑤, 𝑒)} ⊆
𝑉 × 𝑉 × 𝐸. Here, 𝑉 is the vertex set of the graph and 𝐸 is its
set of arc labels. Each of these tuples is visualized as an arrow
from V to 𝑤 with label 𝑒 (which we may denote as {V 𝑒󳨀→ 𝑤}).

The Cartesian product 𝐺1 ◻𝐺2 ◻ ⋅ ⋅ ⋅ ◻𝐺𝑛 of directed
graphs𝐺1, 𝐺2, . . . , 𝐺𝑛 is a graph whose vertex set is the Carte-
sian product𝑉1×𝑉2×⋅ ⋅ ⋅×𝑉𝑛 of the vertex sets𝑉𝑖 of each graph
𝐺𝑖 and whose arcs are of the form (V1, V2, . . . , V𝑖, . . . , V𝑛) 𝑒󳨀→
(V1, V2, . . . , 𝑤𝑖, . . . , V𝑛), where the two tuples are identical in
all but the 𝑖󸀠th position and where there is an arc connecting

V𝑖 to𝑤𝑖 in𝐺𝑖. In this paper, the products defined will yield the
arc labels (transition rates) in the product graph.

For each vertex in one of the factor models, each vertex
in the other model is replicated. If the first factor is a graph
with vertices𝐴 and𝐵, with an arc from𝐴 to𝐵, and the second
is a graph with vertices 1 and 2 and an arc from 1 to 2, then
the product graph contains vertices which could be denoted
as 𝐴1, 𝐴2, 𝐵1, and 𝐵2. Each arc of one graph is replicated for
every vertex of the other. Thus, for example, the arc from 1 to
2 in the second factor graph corresponds to an arc from 𝐴1
to 𝐴2 for the first vertex of the first model and also to an arc
from 𝐵1 to 𝐵2 for the second vertex. Similarly, the arc from
𝐴 to 𝐵 in the first model corresponds to an arc from 𝐴1 to
𝐵1 (for arc 1 of the second model) and from𝐴2 to 𝐵2 (for the
other).

The strong product (or strong Cartesian product) of
graphs𝐺1, . . . , 𝐺𝑛, written𝐺1⊠𝐺2⊠⋅ ⋅ ⋅⊠𝐺𝑛, is the graphwhose
vertex set is the Cartesian product of the graphs’ vertex sets,
which has an arc from (V1, . . . , V𝑛) to (𝑤1, . . . , 𝑤𝑛) if and only
if, for every 𝑖, either there is an arc from V𝑖 to 𝑤𝑖, or V𝑖 = 𝑤𝑖.
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The Cartesian product 𝐺1 ◻𝐺2 ◻ ⋅ ⋅ ⋅ ◻ 𝐺𝑛 of directed graphs
𝐺1, 𝐺2, . . . , 𝐺𝑛 is a graph whose vertex set is the Cartesian
product 𝑉1 × 𝑉2 × ⋅ ⋅ ⋅ × 𝑉𝑛 of the vertex sets 𝑉𝑖 of each graph
𝐺𝑖 and whose arcs are of the form (V1, V2, . . . , V𝑖, . . . , V𝑛) 𝑒󳨀→
(V1, V2, . . . , 𝑤𝑖, . . . , V𝑛), where the two tuples are identical in
all but the 𝑖󸀠th position and where there is an arc connecting
V𝑖 to 𝑤𝑖 in 𝐺𝑖.
A.1. Adjacency Matrices. The Cartesian product graph can
also be defined by its adjacency matrix. Let the adjacency
matrices of finite graphs 𝐴 and 𝐵, respectively, be 𝑀𝐴 and
𝑀𝐵. Let 𝐼𝐴 and 𝐼𝐵 be identity matrices of the same size as𝑀A
and𝑀𝐵, respectively. The Cartesian product graph 𝐴◻𝐵 has
adjacencymatrix𝑀𝐶 = 𝑀𝐴⊕𝑀𝐵 = 𝑀𝐴⊗𝐼𝐵+𝐼𝐴⊗𝑀𝐵, where⊗ is the Kronecker product. Writing𝑀󸀠

𝐶 = 𝑀𝐵 ⊕ 𝑀𝐴 yields
an adjacency matrix for the product graph which is the same,
except for the ordering of the vertices in the product (and
the order in which the Cartesian product of sets of vertices
is taken). More generally, graphs with multiple arcs between

two vertices can be defined, in which case the elements 𝑎𝑗𝑖 of
the adjacency matrix record the number of directed arcs to 𝑗
from 𝑖.TheCartesian product definition above can be applied
in this case as well.

The strong product of two directed graphs 𝐴 and 𝐵
includes more arcs than the Cartesian product [23]. This
product 𝐴 ⊠ 𝐵 has the same vertex set, the Cartesian product
of the factors’ vertex sets, but in addition to the arcs of the
Cartesian product graphs, it also includes all arcs from (V𝑠, 𝑤𝑠)
to (V𝑡, 𝑤𝑡), where there is an arc from V𝑠 to V𝑡 and an arc from
𝑤𝑠 to 𝑤𝑡. Using the same notation as above, the adjacency
matrix of the strong product graph is𝑀𝐷 = 𝐼𝐴 ⊗𝑀𝐵 +𝑀𝐴 ⊗𝐼𝐵 +𝑀𝐴 ⊗𝑀𝐵.

Products of more than two graphs can be represented by
analogous, though more tedious, matrix operations.

A.2. Linear Compartmental Models. Suppose we consider a
compartmental model with states𝑋0, 𝑋1, . . . , 𝑋𝑘 represented
by the first-order linear system

𝑋̇ = 𝑎 +𝑀𝑋, (A.1)

where 𝑎 is a vector of exogenous inflow terms and 𝑀 is a
transition ratematrix. In general,𝑀 could contain sink terms;
for example, let 𝑋1 represent the number of individuals in
a population with constant recruitment Λ and constant per
capita mortality, so that 𝑋̇1 = Λ − 𝜇𝑋1. In this case,𝑀 is a
1 × 1matrix [−𝜇].

Consider two continuous time chains, with state spaces
𝑋𝐴𝑖 , 𝑖 = 1, . . . , 𝑛𝐴 and 𝑋𝐵𝑗 , 𝑗 = 1, . . . , 𝑛𝐵, respectively.
Suppose that the transition rate matrix for each is given
by 𝑀𝐴 and 𝑀𝐵, respectively (assumed time-independent,
for simplicity). A transition rate matrix may contain both
positive (inflow) terms and negative (outflow) terms. A
transition to𝑋𝐴𝑘 from state𝑋𝐴𝑖 at rate 𝜆will be represented in𝑀𝐴 by a term in the 𝑖, 𝑖th element of𝑀𝐴 of −𝜆 and a term in
the 𝑘, 𝑖th element of𝑀𝐴 of 𝜆

𝑀𝐴 = [[
[

−𝜆 𝜇 𝜎
𝜆 −𝜇 − 𝜃 0
0 𝜃 −𝜎

]]
]
. (A.2)

Any transition rate matrix can be represented as a sum over
arcs:

𝑀𝐴 = [[
[

−𝜆 0 0
𝜆 0 0
0 0 0

]]
]
+ [[
[

0 𝜇 0
0 −𝜇 0
0 0 0

]]
]
+ [[
[

0 0 0
0 −𝜃 0
0 𝜃 0

]]
]

+ [[
[

0 0 𝜎
0 0 0
0 0 −𝜎

]]
]
.

(A.3)

A Cartesian product of two Markov chains 𝐴 and 𝐵 can
then be defined as follows. We will denote the arcs of model
𝐴 by 𝛼𝐴; for each arc there is a matrix𝑀𝛼𝐴

𝐴 whose elements
are 0, except for the inflow and outflow represented by that
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Figure 18: (a) Diagram of states and transition rates, for example, Markov model; (b) diagram for the second example, Markov model; (c)
diagram of states and transition rates for simple Cartesian product of models; (d) diagram of states and transition rates for general Cartesian
product of models, as defined in the text.

arc, as illustrated above. The decomposition of the transition
rate matrix𝑀𝐴 by arcs is then𝑀𝐴 = ∑𝛼𝐴𝑀𝛼𝐴

𝐴 . Similarly, the
transition rate matrix𝑀𝐵 of model 𝐵, decomposed by arcs, is
𝑀𝐵 = ∑𝛼𝐵𝑀𝛼𝐵

𝐵 . If 𝐼𝐴 and 𝐼𝐵 are identity matrices of the same
dimension as𝑀𝐴 and𝑀𝐵, respectively, a special case of the
Cartesian product can be written

𝑀𝐶 = ∑
𝛼𝐴

𝐼𝐵 ⊗𝑀𝛼𝐴
𝐴 +∑

𝛼𝐵

𝑀𝛼𝐵
𝐵 ⊗ 𝐼𝐴. (A.4)

Figure 18 depicts two such models (Figures 18(a) and 18(b))
and their product as defined here (Figure 18(c)). This special
case only represents a model in which the two chains behave
completely independently.

To obtain a more general product, we replace the identity
matrices with general diagonal matrices. The elements of the
diagonalmatrix are not assumed identical.We letΛ𝛼𝐵𝐴 be such
a diagonal matrix of the same dimension as𝑀𝐴, representing
a scaling matrix for each arc of model 𝐵 for every state of
model 𝐴. Similarly, Λ𝛼𝐴𝐵 , a matrix of the same dimension as
𝑀𝐵, is a scaling matrix for each arc of model𝐴 for every state
of model 𝐵. A more general product is then expressed by

𝑀𝐶 = ∑
𝛼𝐴

Λ𝛼𝐴𝐵 ⊗𝑀𝛼𝐴
𝐴 +∑

𝛼𝐵

𝑀𝛼𝐵
𝐵 ⊗ Λ𝛼𝐵𝐴 , (A.5)

producing a product process like the one pictured in
Figure 18(d).

Note that a given arc connecting two vertices may, in
applications, represent two separate processes. For instance,
we may have a compartment representing live individuals
and another dead and wish to model the rate of death due
to two causes, say 𝜇1 and 𝜇2. Canonically, we may represent

the total transition from live to dead as a single arc with rate
𝜇1 + 𝜇2 (assuming independent competing risks), but in the
decomposition above, if we represent the transition by two
separate arcs, the Cartesian product formula may be applied
in the same way.

Let us use the notation 𝑧 ∝ 𝑍 to indicate that
compartment 𝑧 descends from factor compartment 𝑍. The
transition matrix for the extended Cartesian product model
is

𝑀𝐶 = ∑
𝛼

[
[
∑

𝑧1∝𝑍
𝛼
1

⋅ ⋅ ⋅ ∑
𝑧𝑘∝𝑍

𝛼
𝑘

Λ𝛼,𝑧1,...,𝑧𝑘𝐵

⊗𝑀𝛼
𝐴 (𝑧1, . . . , 𝑧𝑘)]

]

+∑
𝛼

[
[
∑

𝑧1∝𝑍
𝛼
1

⋅ ⋅ ⋅ ∑
𝑧𝑘∝𝑍

𝛼
𝑘

𝑀𝛼
𝐵 (𝑧1, . . . , 𝑧𝑘) ⊗ Λ𝛼,𝑧1,...,𝑧𝑘𝐴

]
]
,

(A.6)

where 𝑘 is considered to depend on 𝛼.
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of the World Health Organization, vol. 51, no. 4, pp. 361–373,
1974.

[30] R. Ross, “An Application of the Theory of Probabilities to the
Study of a priori Pathometry. Part I,” Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol.
92, no. 638, pp. 204–230, 1916.

[31] R. Ross and H. P. Hudson, “An Application of the Theory
of Probabilities to the Study of a priori Pathometry. Part II,”
Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 93, no. 650, pp. 212–225, 1917.

[32] N. T. Bailey,The Biomathematics of Malaria, Biomathematics of
Diseases, no. 1, C. Griffin & Co., London, 1982.

[33] D. L. Smith, K. E. Battle, S. I. Hay, C. M. Barker, T. W.
Scott, and F. E. McKenzie, “Ross, Macdonald, and a theory for
the dynamics and control of mosquito-transmitted pathogens,”
PLoS Pathogens, vol. 8, no. 4, Article ID e1002588, 2012.

[34] R. M. Anderson and R. M. May, “Coevolution of Hosts and
Parasites,” Parasitology, vol. 85, no. 2, pp. 411–426, 1982.

[35] R. M. May and R. M. Anderson, “Epidemiology and genetics in
the coevolution of parasites and hosts,” Proceedings of the Royal
Society, vol. 219, pp. 281–313, 1983.

[36] H. W. Hethcote and J. A. Yorke, Gonorrhea Transmission
Dynamics and Control, vol. 56, Springer, New York, USA, 1984.

[37] R. M. Anderson, S. Gupta, and W. Ng, “The significance of
sexual partner contact networks for the transmission dynamics
of HIV,” Journal of Acquired Immune Deficiency Syndromes, vol.
3, no. 4, pp. 417–429, 1990.



16 Computational and Mathematical Methods in Medicine

[38] J. A. Jacquez, C. P. Simon, J. Koopman, L. Sattenspiel, and T.
Perry, “Modeling and analyzing HIV transmission: the effect of
contact patterns,” Mathematical Biosciences, vol. 92, no. 2, pp.
119–199, 1988.

[39] H.W.Hethcote, “Proportionatemixing,” inModels for Infectious
Human Diseases: Their Structure and Relation to Data, V. Isham
and G. Medley, Eds., vol. 6, Cambridge University Press, 1996.

[40] T. Lietman, T. Porco, and S. Blower, “Leprosy and tuberculosis:
The epidemiological consequences of cross-immunity,” Ameri-
can Journal of Public Health, vol. 87, no. 12, pp. 1923–1927, 1997.

[41] T. C. Porco, P. M. Small, and S. M. Blower, “Amplification
dynamics: Predicting the effect of HIV on tuberculosis out-
breaks,” Journal of Acquired Immune Deficiency Syndromes, vol.
28, no. 5, pp. 437–444, 2001.

[42] D. Gao, T. M. Lietman, C.-P. Dong, and T. C. Porco, “Mass drug
administration: the importance of synchrony,” Mathematical
Medicine and Biology. A Journal of the IMA, vol. 34, no. 2, pp.
241–260, 2017.

[43] T. Lietman, T. Porco, C. Dawson, and S. Blower, “Global
elimination of trachoma: How frequently should we administer
mass chemotherapy?” Nature Medicine, vol. 5, no. 5, pp. 572–
576, 1999.

[44] L. Kari, W. M.Whitmire, J. H. Carlson et al., “Pathogenic diver-
sity among Chlamydia trachomatis ocular strains in nonhuman
primates is affected by subtle genomic variations,” Journal of
Infectious Diseases, vol. 197, no. 3, pp. 449–456, 2008.

[45] K. Dietz, “Epidemiologic interference of virus population,”
Journal of Mathematical Biology, vol. 8, no. 3, pp. 291–300, 1979.

[46] M. J. Keeling and P. Rohani, Modeling Infectious Diseases in
Humans and Animals, Princeton University Press, Princeton,
NJ, USA, 2008.

[47] R. C. Brunham, B. Pourbohloul, S. Mak, R. White, and M. L.
Rekart, “The unexpected impact of a Chlamydia trachomatis
infection control program on susceptibility to reinfection,”
Journal of Infectious Diseases, vol. 192, no. 10, pp. 1836–1844,
2005.

[48] K. C. Lee, Q. Ngo-Metzger, T. Wolff, J. Chowdhury, M. L.
Lefevre, and D. S. Meyers, “Sexually transmitted infections:
Recommendations from the U.S. preventive services task force,”
American Family Physician, vol. 94, no. 11, pp. 907–915, 2016.

[49] H. W. Hethcote and J. W. Van Ark,Modeling HIV Transmission
and AIDS in the United States, vol. 95, Springer Science &
Business Media, 2013.

[50] D. J. Blok, R. E. Crump, R. Sundaresh et al., “Forecasting the
new case detection rate of leprosy in four states of Brazil: A
comparison of modelling approaches,” Epidemics, vol. 18, pp.
92–100, 2017.

[51] C. Alexander, S. Ishikawa, M. Silverstein, J. R. i Ramió, M.
Jacobson, and I. Fiksdahl-King, A Pattern Language, Gustavo
Gili, 1977.

[52] L. Worden and T. C. Porco, “Sage box models,” 2017, https://
github.com/tcporco/SageBoxModels.

https://github.com/tcporco/SageBoxModels
https://github.com/tcporco/SageBoxModels

