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Motor imagery (MI) is arguably one of the most remarkable capacities of the human
mind. There is now strong experimental evidence that MI contributes to substantial
improvements in motor learning and performance. The therapeutic benefits of MI in
promoting motor recovery among patients with motor impairments have also been
reported. Despite promising theoretical and experimental findings, the utility of MI
in adapting to unusual conditions, such as weightlessness during space flight, has
received far less attention. In this review, we consider how, why, where, and when
MI might be used by astronauts, and further evaluate the optimum MI content.
Practically, we suggest that MI might be performed before, during, and after exposure
to microgravity, respectively, to prepare for the rapid changes in gravitational forces after
launch and to reduce the adverse effects of weightlessness exposition. Moreover, MI has
potential role in facilitating re-adaptation when returning to Earth after long exposure
to microgravity. Suggestions for further research include a focus on the multi-sensory
aspects of MI, the requirement to use temporal characteristics as a measurement tool,
and to account for the knowledge-base or metacognitive processes underlying optimal
MI implementation.
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INTRODUCTION

One main unique aspect of spaceflight is that astronauts do not feel the effects of gravity
and therefore experience a weightlessness sensation, also called zero gravity, or microgravity.
Technically, escaping the bonds of gravity, which can be simulated in parabolic flights, is known
to disrupt both vestibular and proprioceptive systems with symptoms including confusion in the
sense of up and down affecting the body schema (Grabherr et al., 2007), the body orientation
(Massion et al., 1998; Lackner and Dizio, 2000), and motor control (Papaxanthis et al., 1998;
Lackner and Dizio, 2000). Furthermore, additional long-term consequences of extended missions
in space include bones weakening (osteoporosis), loss of muscle mass, strength, and endurance
(Fitts et al., 2000; Williams et al., 2009), and decrease of blood volume and immunodeficiency
(White and Averner, 2001; Williams et al., 2009). Neural studies further revealed changes in
the patterns of brain activation after long missions in space (Van Ombergen et al., 2017). For
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instance, Roberts et al. (2017) reported narrowing of the central
sulcus and the cerebrospinal fluid spaces at the vertex, in
addition to an upward shift of the brain, which may cause visual
impairment and intracranial pressure syndrome. Interestingly,
when asking astronauts to either perform pure motor imagery
(MI) or visuospatial imagery, Demertzi et al. (2016) observed
greater activation of the supplementary motor area post-flight
during MI. These results provide evidence that exposure to
microgravity might not only affect the human physiology but also
the human brain.

Research comparing motor performance in normogravity and
microgravity contexts has accumulated in the past 25 years (for a
recent review, see Macaluso et al., 2018). Divergent findings have
emerged with some studies reporting alteration of movement
accuracy and control (Bock et al., 1992; Papaxanthis et al.,
1998; Bringoux et al., 2012), in addition to movement speed
(Carriot et al., 2004; Crevecoeur et al., 2010). On the other
hand, others studies failed to find significant differences in
motor control and movement patterns (Papaxanthis et al., 2005;
Bringoux et al., 2012). In a recent study, Macaluso et al. (2018)
provided evidence that humans might be able to maintain the
performance of functional goal-directed actions in weightlessness
by successfully managing the spatiotemporal constraints of the
movement through postural strategies reducing the displacement
of the center of mass.

In sum and with the caveat that the findings have been
inconsistent, the detrimental effects of microgravity on human
sensorimotor skills must be taken into account both before and
during the exposure to a weightlessness condition. In order
to counteract these effects, astronauts are usually subjected to
intense preparation including practice in simulators, training
under water, and parabolic flights (Loehr et al., 2015; Kalicinski
et al., 2017), and further have an allocated physical exercise
program during their mission in space (e.g., Petersen et al.,
2016). Active body mobilization remains, however, limited in
space whereby astronauts are confronted with a shortage of
time to complete such programs. A cost-effective, and non-
invasive adjunct to complement physical training to both prepare
the astronauts before a spaceflight and compensate for the
detrimental effects of weightlessness exposure is MI. MI has
demonstrated to enhance physical practice both in terrestrial
(Schuster et al., 2011) and astronaut populations (Papaxanthis
et al., 2003; Chabeauti et al., 2012; Bock et al., 2015). Finally,
there is a paucity of research investigating the effect of MI when
returning to normogravity while a strong theoretical basis would
support ergogenic effects.

THE MULTIFACETED NATURE OF
MOTOR IMAGERY

Motor imagery is a dynamic mental state during which
the representation of a movement is rehearsed without
engaging in the corresponding overt execution (Jeannerod,
1994). MI is a multimodal construct which consists of either
recalling previously perceived images or envisaging forthcoming
events through different sensory modalities. MI has multiple

applications in both sport sciences and physical rehabilitation,
and there is now converging evidence that MI enhances motor
learning (Driskell et al., 1994; Munzert and Zentgraf, 2009;
Schuster et al., 2011) and promotes motor recovery (de Vries
and Mulder, 2007; Malouin et al., 2013). Interestingly, MI has
been shown to improve motor performance both through online
learning processes, since they occur as a direct consequence of
practice, and offline learning processes (delayed performance
improvement), which indirectly result from practice (for an
extensive review, see Di Rienzo et al., 2016).

Understanding the neural correlates of goal-directed actions,
whether executed or imagined, as well as the functional
neuroanatomical networks associated with expertise in MI, has
been an important achievement in cognitive brain research
since the advent of neuroimaging techniques. Accumulated
experimental evidences suggest that movement execution and
MI share substantial overlap (albeit incomplete) of active brain
regions (e.g., Jeannerod, 1994; Munzert and Zentgraf, 2009;
Guillot et al., 2012a; Hétu et al., 2013; Hardwick et al., 2018),
hence highlighting the functional equivalence between these
two forms of practice. The principle of functional equivalence
suggests that “motor imagery . . . should involve, in the
subject’s motor brain, neural mechanisms similar to those
operating during the real action” (Jeannerod, 2001, pp. S103–
S104). Executed movements and simulation (i.e., MI) of the
corresponding action engage comparable patterns of connectivity
between cortical motor regions (Gao et al., 2011). MI therefore
represents an efficient method to stimulate brain motor networks
mediating skill acquisition and consolidation (Di Rienzo et al.,
2016). Covert and overt practice of the corresponding movement
share other similarities. Firstly, the time course of mentally
simulated actions has been found to be highly correlated with that
of the executed movement (e.g., Decety et al., 1989; Papaxanthis
et al., 2002). Certain systematic distortions occur in this temporal
relationship influenced by several external factors including
action complexity and duration (for reviews, see Guillot and
Collet, 2005; Guillot et al., 2012b). Secondly, the peripheral
activity of the autonomic nervous system shows similar responses
prior and during both MI and actual practices (for review, see
Collet et al., 2013). Finally, MI has also been shown to be
influenced by biomechanical and motor constraints (Munzert
and Zentgraf, 2009). Taken together, these similarities between
actual and imagined movements promote MI as a relevant
alternative and/or complementary approach to physical practice.

Few studies to date have specifically investigated the specific
relationship between MI and microgravity (for review, see
Grabherr and Mast, 2010; Table 1). One exception by Papaxanthis
et al. (2003) showed that cosmonauts performed and imagined
movements with similar durations before and after exposure
to microgravity. Interestingly, both MI and actual times were
longer 2 days after return to Earth, and returned to pre-flight
values 6 days after landing. Their findings strongly support that
MI process replicates the neural modifications occurring during
the re-adaptation of the motor system on Earth’s gravito-inertial
environment. Based on these findings, MI is therefore predicted
to accurately mimic motor execution in the microgravity context.
Consequently, MI should ideally be performed before, during,
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TABLE 1 | Previous studies considering the effects of microgravity or zero gravity on motor imagery.

Authors Type of paper Main results

Chabeauti et al., 2012 Experimental Actual durations are significantly longer than motor imagery durations in a weightlessness condition,
with imagined durations being similar in normo- and microgravity. Changes elicited by microgravity
might therefore hinder the updating of the internal models of action.

Bock et al., 2015 Review/theoretical Theoretical guidelines of motor imagery training pograms designed to reach an optimal level of
preparation before exposure to microgravity, and improve performance of astronauts upon return to
Earth, before landing.

Grabherr and Mast, 2010 Review/theoretical By considering the effects of microgravity on the ability to perform mental and motor imagery, the
authors highlighted the lack of research investigating the effects of weightlessness on imagined
movements, in particular during exposure to microgravity.

Kalicinski et al., 2017 Review/theoretical Motor imagery of actions which are impossible on Earth (full body floating task) remains possible -
although being degraded - and might thus be beneficial for preparing astronauts before their
missions and space flights.

Papaxanthis et al., 2003 Experimental Actual and motor imagery durations were strictly similar both before and after exposure to
microgravity. Interestingly, these durations likewise increased 2 days after return to Earth, before
returning to approximate pre-flight values 6 days after landing.

and after exposure to microgravity, respectively, to prepare for
the sudden lack of gravity after launch, reduce the adverse effects
of weightlessness exposition, and facilitate re-adaptation when
returning from long exposure to microgravity.

Performing Motor Imagery
Before Microgravity
As earlier outlined by Bock et al. (2015), MI should be performed
before exposure to microgravity, for at least three main reasons:
(i) enhancing the ability to perform MI and the quality of the
MI experience, (ii) preparing for exposure to the weightlessness
condition, and specifically prepare astronauts for the sudden
lack of gravity after launch, and (iii) providing relevant pre-
adaptation of MI practice which is likely to be degraded during
microgravity exposure.

Preventing the negative effects of microgravity on MI during
exposure to microgravity is of particular interest. A study of
such detrimental effects was reported by Chabeauti et al. (2012),
who provided evidence that actual durations were significantly
longer than imagined durations in a weightlessness condition,
and that imagined durations did not differ when comparing data
collected in normogravity and microgravity. These results suggest
that changes elicited by microgravity are likely to hinder the
updating of the internal models of action, hence altering the
ability to preserve the temporal congruence between actual and
MI performance. Based on these findings, developing MI before
exposure to microgravity, and notably the ability to decrease
MI speed, might contribute to preserve the internal models
of action, and therefore promote the ability to preserve the
temporal equivalence between MI and physical practice during
the subsequent flight. In particular, performing slow-motion
imagery is known to facilitate a more in-depth and detailed
analysis of motor skills being imaged (Jenny and Hall, 2013),
which may be useful when anticipating the effects of microgravity
on actual performance speed.

While not directly reflecting the influence of microgravity
per se, Kalicinski et al. (2017) recently designed a study
investigating the ability to imagine a movement which is

not possible to perform under the presence of gravity (i.e.,
in a floating position). Although MI remained possible, they
found that the elaboration and the control of mental images
were degraded, and therefore postulate that MI of vestibular
challenging movements might be relevant for astronauts, during
their pre-flight training. Specific accurate MI exercises might
thus be designed with a focus on the forthcoming lack of
gravity. In this particular situation, external visual imagery,
which requires to be dissociated from the action itself, might
be particularly relevant. Concurrently, developing the ability to
imagine the movement mainly from a visual perspective, i.e.,
without integrating the feeling of the sensations and balance
elicited by the action during kinesthetic imagery, may contribute
to prepare astronauts for exposure to microgravity.

Motor Imagery to Reduce the Adverse
Effects of Microgravity During the Flight
As mentioned previously, converging evidence supports the
contention that MI improves motor performance and facilitates
motor learning in a similar way (i.e., functionally equivalent) to
actual practice of the corresponding movement. Neuroimaging
studies provided evidence that the cerebral plasticity occurring
during the incremental acquisition of a motor sequence through
actual practice was also reflected during MI (Lafleur et al., 2002;
Jackson et al., 2003). In a seminal study, Pascual-Leone et al.
(1995) reported an enlargement of the cortical representation
of target muscles controlling a motor sequence learnt by
MI, thus providing clear evidence of neuroplasticity from MI
practice. Interestingly, in recent years, researchers investigated
how optimally combining embedded MI and physical practice
of the same movement in order to achieve peak performance.
Allami et al. (2014) provided evidence that MI may replace up
to 75% of the physical training if a minimal ratio of physical
practice is delivered. Similarly, Reiser et al. (2011) reported
strength gains after different ratios of MI and physical practice. In
clinical settings, Malouin et al. (2004) observed that one session of
rehabilitation including 15% of MI and 85% of physical practice
resulted in comparable motor performance gains to 3 weeks
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of physical therapy. The same authors reported that prior MI
practice might reduce by four the amount of physical practice
required to reach the same level of performance (Malouin et al.,
2009). Taken together, these findings emphasize the importance
of embedding MI during physical practice training programs.
MI is particularly useful when this physical practice training
is restricted, for example, during spaceflights. As suggested by
Kalicinski et al. (2017), MI exercises during space flight should
also be performed with a focus on adjusting to gravitational forces
to prepare astronauts for daily activities after landing. While MI
must be seen as a complement to physical practice, rather than
being an alternative, MI may need to be the predominant form of
training at certain times during long flights, when there is limited
space for exercise equipment.

Another important reason to consider the use of MI in
weightlessness conditions is its expected beneficial effects on
the limitation of strength loss. There is a general consensus
that MI contributes to improve strength (Yue and Cole, 1992;
Ranganathan et al., 2004; Yao et al., 2013), muscle activation
and force performance (Di Rienzo et al., 2015; Grosprêtre
et al., 2017). More importantly, MI has been shown to limit
the loss of strength in patients with motor disorders and
persons suffering from immobilization (Newsom et al., 2003;
Lebon et al., 2012; Clark et al., 2014). As physical exercise
and active mobilization are limited when facing weightlessness
conditions, MI appears to be a plausible alternative to physical
practice which may compensate for the lack of actual muscle
contractions, which are known to affect the sensorimotor
representations of the immobilized body parts (Meugnot et al.,
2014). Specifically, the slowdown of the sensorimotor processes
may be counteracted by kinesthetic imagery practice, while these
beneficial effects would not systematically appear with visual
imagery (Meugnot et al., 2015).

Overall, it is important to keep in mind that the nature
and the quality of MI (i.e., the ability to preserve the temporal
equivalence between imagined and actual times) during exposure
to microgravity should be thoroughly controlled as MI is likely
to be degraded in weightlessness conditions. Assessing and
developing the individual MI ability before the mission therefore
appears another critical prerequisite to maintain its accuracy
during the flight.

Performing Motor Imagery
After Microgravity
To our knowledge, no study has investigated the selective
effects of MI after exposure to microgravity in order to
specifically determine whether it may facilitate re-adaptation
to normogravity. Experimental studies including MI trials after
microgravity were mainly designed to compare with data
collected before spaceflights. Interestingly, Papaxanthis et al.
(2003) showed that on the second day post-flight, both actual and
MI durations increased compared to pre-flight measurements,
before returning to approximate pre-flight values 6 days after
landing. Data therefore revealed similar evolutions for both types
of practice, hence highlighting that dynamics of the motor system
are appropriately reflected during MI.

Practically, astronauts exhibit pronounced long-term
microgravity-related effects requiring weeks to months of
rehabilitation for complete recovery. As MI has been shown to
promote recovery and functional rehabilitation in patients with
motor disorders (Malouin et al., 2013), specific MI exercises may
be performed to facilitate re-adaptation and therefore limit the
harmful consequences of long exposure to microgravity. Based
on findings by Papaxanthis et al. (2003) and predictions derived
from simulation theory (Jeannerod, 2006), MI would be expected
to have a priming effect on expected physical changes when
returning from a weightlessness period. Practically, astronauts
spend weeks engaged in hypertrophy training to rebuild muscle
and repairing bone after a long mission. Post-flight MI exercises
might thus be practiced to promote strength (re)gains and
facilitate fluid and effective movement execution of complex
motor and balance tasks.

CONCLUSION: HOW TO IMPLEMENT MI
INTO THE PREPARATION AND MISSION
OF THE ASTRONAUTS

Motor imagery should ideally be performed before, during, and
after exposure to microgravity to prepare for the lack of gravity,
counteract the effects of weightlessness and promote the re-
adaptation to normogravity. A quite similar theoretical viewpoint
had been nicely proposed by Bock et al. (2015), who more
specifically focused on the preparation period few days before
landing. These authors developed two phases of individual MI
training program to reach an optimal level of preparation before
exposure to microgravity. In the first phase, astronauts should
familiarize with MI and develop their MI ability, concurrently
with physical practice. Practically, programs might incorporate
MI of exercises related to conditions encountered during the
forthcoming flight. The second step would be scheduled a few
days just before landing and improve performance of astronauts
upon return to Earth. Whereby MI might be used and provide
before landing and improve performance of astronauts upon
return to Earth benefits such as during and after the flight should
certainly be extended at other times.

MI is a multimodal construct and should ideally combine the
different imagery modalities, including visual imagery through
the first and third-person perspectives, as well as kinesthetic
imagery. As mentioned previously, this latter form of imagery
practice, which requires to feel sensations usually elicited by the
action, including force and balance, may be of particular interest
during and after the flight, while external visual imagery may
be more relevant before the flight. There is further converging
evidence that including kinesthetic imagery into MI programs
specifically contributes to enhance motor performance and
limit strength loss. These benefits may thus be of particular
interest to further limit strength loss during the flight and
promote strength (re)gains after the flight. Another critical issue
relates to the timing of mentally simulated movements. As
the ability to achieve temporal congruence between imagined
and actual practice is likely to be altered during exposure to
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microgravity, it is important to develop such capacity before
the launch, and to carefully control it while practicing during
the flight. Based on data reported by Chabeauti et al. (2012),
voluntarily modulating MI speed may therefore be punctually
relevant, in order to compensate for the time distortion induced
by zero gravity and the corresponding lack of updating of
internal models. This remains a working hypothesis awaiting
experimental research, as previous data in the field of sport
provided strong evidence that voluntarily decreasing imagery
speed might similarly affect subsequent actual speed. Finally,
few experimental studies highlighted the influence of circadian
rhythms on MI accuracy, most especially on MI temporal features
(Gueugneau et al., 2009, 2017; Gueugneau and Papaxanthis,
2010; Debarnot et al., 2012; Rulleau et al., 2015). Based
on these findings providing evidence of harmful effects of
time-of-day on accuracy of motor predictions, MI exercises
should ideally be performed within the same period of the

day. To account for the above dimensions of imagery in an
applied context, interventions would need to include specific
training on the metacognitive aspects of MI. Specifically,
knowledge-based training on how to apply MI optimally
would support any interventions (MacIntyre et al., 2014).
Overall, future experimental studies are certainly needed and
encouraged to confirm all expected and theoretical beneficial
effects discussed in the present paper. Developing MI ability
might be relevant for ongoing space tourism or personal
spaceflight projects, which begin to appear for leisure or
business purposes.
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