
EBioMedicine 62 (2020) 103121

Contents lists available at ScienceDirect

EBioMedicine

journal homepage: www.elsevier.com/locate/ebiom
Research paper
Deep learning-based classification of primary bone tumors on
radiographs: A preliminary study
Yu Hea,1, Ian Panb,1, Bingting Baoa, Kasey Halseyb, Marcello Changc, Hui Liua, Shuping Penga,
Ronnie A. Sebrof, Jing Guana, Thomas Yig, Andrew T. Delworthh, Feyisope Ewejei, Lisa J. Statesj,
Paul J. Zhangd, Zishu Zhanga, Jing Wua,*, Xianjing Penge,*, Harrison X. Baib,*
aDepartment of Radiology, The Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, PR China
b Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Providence 02912, USA
c Stanford School of Medicine, Palo Alto 94305, USA
d Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia 19104, USA
eDepartment of Radiology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, Hunan 410008, PR China
fMusculoskeletal Imaging, Department of Radiology, University of Pennsylvania, Philadelphia 19104, USA
gWarren Alpert Medical School of Brown University, Providence 02903, USA
h Brown University, Providence 02912, USA
i Perelman School of Medicine at the University of Pennsylvania, Philadelphia 19104, USA
j Department of Radiology, Children's Hospital of Philadelphia, 19104, USA
A R T I C L E I N F O

Article History:
Received 23 April 2020
Revised 19 October 2020
Accepted 26 October 2020
Available online xxx
* Corresponding authors.
E-mail addresses:wujing622@csu.edu.cn (J. Wu), pen

(X. Peng), Harrison_Bai@Brown.edu (H.X. Bai).
1 Note: Yu He and Ian Pan share primary authorship.

https://doi.org/10.1016/j.ebiom.2020.103121
2352-3964/© 2020 The Authors. Published by Elsevier B.
A B S T R A C T

Background: To develop a deep learning model to classify primary bone tumors from preoperative radio-
graphs and compare performance with radiologists.
Methods: A total of 1356 patients (2899 images) with histologically confirmed primary bone tumors and pre-
operative radiographs were identified from five institutions’ pathology databases. Manual cropping was per-
formed by radiologists to label the lesions. Binary discriminatory capacity (benign versus not-benign and
malignant versus not-malignant) and three-way classification (benign versus intermediate versus malignant)
performance of our model were evaluated. The generalizability of our model was investigated on data from
external test set. Final model performance was compared with interpretation from five radiologists of vary-
ing level of experience using the Permutations tests.
Findings: For benign vs. not benign, model achieved area under curve (AUC) of 0�894 and 0�877 on cross-val-
idation and external testing, respectively. For malignant vs. not malignant, model achieved AUC of 0�907 and
0�916 on cross-validation and external testing, respectively. For three-way classification, model achieved
72�1% accuracy vs. 74�6% and 72�1% for the two subspecialists on cross-validation (p = 0�03 and p = 0�52,
respectively). On external testing, model achieved 73�4% accuracy vs. 69�3%, 73�4%, 73�1%, 67�9%, and
63�4% for the two subspecialists and three junior radiologists (p = 0�14, p = 0�89, p = 0�93, p = 0�02,
p < 0�01 for radiologists 1�5, respectively).
Interpretation: Deep learning can classify primary bone tumors using conventional radiographs in a multi-
institutional dataset with similar accuracy compared to subspecialists, and better performance than junior
radiologists.
Funding: The project described was supported by RSNA Research & Education Foundation, through grant
number RSCH2004 to Harrison X. Bai.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

Although primary bone tumors are uncommon with incidence
rates of 4�7% among children and adolescents in the United States
[1], primary malignancies of the bone and joints are ranked as the
third leading cause of death in patients with cancer who are younger
than 20 years of age [2]. Bone tumors vary widely in their biological
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Research in Context section

Evidence before this study

Primary malignancy of the bone and joints is ranked as the
third leading cause of death in patients with cancer who are
younger than 20 years. The plain radiograph remains the most
useful examination for differentiating benign from aggressive
lesions. Because of the low incidence and variety of uncommon
feature of primary bone tumors, few radiologists develop suffi-
cient expertise to make a definite diagnosis. For general radiol-
ogists and those working in resource limited regions,
radiographic interpretation can be less accurate, leading to mis-
diagnosis and unnecessary biopsies. Classification of primary
bone tumors correctly via radiography is a challenging problem
even for subspecialists. The aim of this project was to raise the
level of plain radiography analysis through deep learning to the
level of the musculoskeletal subspecialist. Artificial intelligence,
especially deep learning with convolutional neural networks
has shown great promise in classifying two-dimensional
images of some common diseases. With the use of PubMed and
Google Scholar, a systematic literature search was performed to
identify original research papers in English from inception to
October, 2019, using the terms (“bone tumors” OR “bone can-
cer”) AND (“DCNN” OR “deep learning” OR “machine learning”)
AND (“radiographs” OR “plain film”). No previously published
report was found.

Added value of this study

Our study is the first to establish a deep learning algorithm for
classifying primary bone tumors on conventional radiographs
using a multi-institutional dataset with similar accuracy to sub-
specialists and higher accuracy than junior radiologists. The
performance is expected to improve further in the future with
larger datasets.

Implications of all the available evidence

Correctly classifying bone tumors on plain radiograph is impor-
tant for clinical decision making as it can guide subsequent
management. Our algorithm has the potential to improve pri-
mary bone tumor radiographs interpretation to the level of the
subspecialists. If further validated, the algorithm can prevent
patients from undergoing unnecessary invasive biopsies and
help guide clinical management, especially in areas without
subspecialty expertise.
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behavior and require different management depending on their classi-
fication as benign, intermediate, or malignant, by the World Health
Organization (WHO) [3]. Benign bone tumors (e.g. osteochondroma,
osteoid osteoma, etc.) have a limited capacity for local recurrence, and
are almost always readily cured by complete local excision/curettage
[3]. Tumors in the intermediate group (e.g. giant cell tumor, chondro-
blastoma, etc.) have the potential to be locally aggressive or metasta-
size in rare cases. Therefore, bone tumors classified as intermediate
often require wide excision margins inclusive of normal tissue, and/or
the use of adjuvant therapy in order to ensure local control [3]. Malig-
nant bone tumors (e.g. chondrosarcoma, osteosarcoma, etc.) not only
have the potential for locally destructive growth and recurrence, but
also carry significant risk for distant metastases [3].

Differential diagnoses of primary bone tumor mostly depend on
the review of the conventional radiographs and the age of the patient.
The plain radiograph remains the most useful examination for differ-
entiating these cases, while CT and MRI are only helpful in selected
cases. Besides demographic information such as the patient’s age,
radiographic appearance of the tumor including size, location, mar-
gin, type of matrix, presence of periosteal reaction and cortical
destruction are other key clues in helping the radiologist differentiate
indolent from aggressive bone tumors [3]. Because bone tumors have
a variety of appearances and are relatively uncommon, few radiolog-
ists develop sufficient expertise to make a definite diagnosis. Among
general radiologists, accuracy in interpretation of bone lesions can be
low, leading to misdiagnosis which can be detrimental to patient out-
come [4]. Many patients with benign tumors are referred to bone
biopsy, which has the issue of increased morbidity and cost, and is
subject to sampling error [5] or evaluated with advanced imaging
modalities which increase health care costs.

Artificial intelligence, especially deep learning with convolutional
neural networks has shown great promise in classifying two-dimen-
sional images of some common diseases and relies on databases of
thousands of annotated or unannotated images [6�9]. Deep learning
models can recognize predictive features directly from images by uti-
lizing a back-propagation algorithm which recalibrates the model's
internal parameters after each round of training [10]. Recent studies
have shown the potential of deep learning in the assessment of solid
liver lesions on ultrasonography [11], renal lesions [12,13] and glioma
on MR Imaging [10,14�17] and abnormal chest radiographs [18].

An algorithm that can distinguish benign from malignant bone
tumors on routine radiographs with high accuracy can facilitate tri-
age, guide patient management, and save patients from unnecessary
procedures. In this study, we trained a deep learning algorithm to
classify primary bone tumors on plain film and compare performance
with radiologists of varying level of experience.

Materials and methods

Patient cohort

Patients with primary bone tumor confirmed by histology accord-
ing to the 2013 World Health Organization (WHO) classification were
retrospectively identified from five large academic centers from July
2008 to July 2019. Plain radiograph and clinical variables including
patient demographics (i.e., age and sex) were collected. The study
was conducted in accordance with Declaration of Helsinki and
approved by the Institutional Review Boards at all five institutions.
The inclusion criteria for the study were (i) histopathologically con-
firmed (biopsy or surgery) primary bone tumor according to current
WHO criteria, (ii) available pre-procedure plain radiograph including
all the projections it had which can show the lesion clearly, and (iii)
quality of the images was adequate for analysis, without motion or
artifacts. The images were screened by a radiologist (Y.H.) with
7 years of experience reading musculoskeletal (MSK) plain film. Our
final dataset consisted of 2899 images from 1356 patients (institution
1: 410 images from 160 patients, institution 2: 745 images from 333
patients, institution 3: 1105 images from 572 patients, institution 4:
390 images from 186 patients, institution 5: 249 images from 105
patients). Each patient contributed 1 lesion to the dataset. Of the
1356 lesions, 679 (1523 images) were benign based on histopathol-
ogy, 317 (635 images) were intermediate, and 360 (741 images) were
malignant (see Supplementary Figure S1, which demonstrates inclu-
sion and exclusion criteria). In respect of patient confidentiality and
consent, the radiographs and clinical information datasets analyzed
in this study are not available for download but are available upon
reasonable request to the corresponding author.

Preprocessing

All images were downloaded in DICOM format at their original
dimensions and resolution. Images were converted from DICOM to 8-
bit JPEG. Then the images were loaded into Click 2 Crop software
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(v5.2.2), and regions of interest containing the whole tumor were
manually cropped from the original image to include some surround-
ing while capturing the margin of the lesion, by a radiologist (Y.H.)
with 7 years of experience reading musculoskeletal (MSK) plain film.
Images were padded and resized to 512 by 512 pixels. Single-channel
images were converted to 3-channel images by repeating the single
channel 3 times [12,19,20]. Pixel values were normalized by scaling
values into the range [0, 1], then subtracting (0�485, 0�456, 0�406)
and dividing by (0�229, 0�224, 0�225) channel-wise.
Training and inference

Model training was performed in Python 3.7 and PyTorch 1.6
using a NVIDIA GV100 32GB graphics processing unit. Models were
based on the EfficientNet-B0 convolutional neural network architec-
ture [21]. Model weights were initialized with weights pretrained on
the ImageNet database. Training was performed using a batch size of
96, dropout probability of 0.2 before the final fully-connected layer,
and data augmentation consisting of horizontal flips, affine transfor-
mations, and contrast adjustments. Models were trained for 3-way
classification (benign, intermediate, and malignant) and binary classi-
fication (benign versus not-benign and malignant versus not-malig-
nant). The RAdam optimizer was used with a categorical cross-
entropy loss and a cosine annealing learning rate schedule with an
initial learning rate of 3 £ 10e�4. Models were trained for 20 epochs.
The selected model for each training episode was selected based on
the Cohen’s kappa score on the validation set. For each test fold, 3
training episodes were performed to form a 3-model ensemble. Pre-
dictions were averaged across all models and all radiographic views
to produce a final prediction for each case. During each training
epoch, 1 image from 1 patient is sampled so that the model is
exposed to the same number of images per patient over the course of
the entire training period. An external test set comprised of images
from two of our five institutions (institutions 4 and 5) was used to
evaluate the generalization performance of the model. The external
test set consisted of 639 images from 291 patients. Each patient con-
tributed 1 lesion to the dataset. Of the 291 lesions, 162 (368 images)
were benign based on histopathology, 61 (126 images) were interme-
diate, and 68 (145 images) were malignant. Please see Supplemen-
tary Figure S2 for schematic of our pipeline.
Evaluation

Radiologist evaluation

Two board-certified musculoskeletal subspecialists (H.L. and S.P.),
who see more than 100 bone tumors per year, with 25 and 23 years
of experience, and three junior radiologists, who with 6, 1, and 7 years
of experience reading MSK plain film respectively, blind to histopath-
ologic data, evaluated conventional radiographs of the bone lesions,
and labeled each case as benign, intermediate, or malignant with
their own interpretations. They were given clinical information of
age and sex of each patient. The 2 musculoskeletal subspecialists
interpreted the uncropped images of entire cohort (data from all five
institutions) and the cropped images of external test set (data from
institutions 4 and 5), while the 2 junior radiologists evaluated only
the uncropped and cropped images of external test set. One junior
radiologist (J.G.) only evaluated the uncropped images of the external
set, because she was exposed to the gold standard during the recrop-
ping process. Ground truth labels were obtained using the final
pathology results. The model’ results were compared with radiolog-
ists’ interpretations and final pathology results to assess model per-
formance. Information on the five radiologists is shown in
Supplemental Table S1.
Model evaluation

The model performance was evaluated using several metrics.
Receiver operating characteristic (ROC) curves and area under curve
(AUC) for benign versus not-benign and malignant versus not-malig-
nant were used to evaluate binary discriminatory capacity. Cohen’s
kappa scores and categorical accuracy were used to evaluate the
three-way classification performance of the model and radiologists.
Five-fold cross-validation was used to analyze model performance,
ensuring no patient overlap across different folds. First, the model
was divided into 5 disjoint partitions based on patient ID, each
approximately 20% of the overall dataset, which comprise the test
folds. Next, the remaining 80% of the dataset was used for training
(70%) and validation (10%). A separate model was trained for each
fold, and the out-of-fold predictions were obtained for the test fold.
The cross-validation scheme is illustrated in Supplemental Figure S3
and Supplemental Table S2. This cross-validation procedure allowed
us to obtain an out-of-fold prediction for each sample in the dataset
to maximize the sample size on which the model performance was
evaluated without data leakage. Model performance was also evalu-
ated on an external test set to evaluate generalizability beyond the
institutions present in the internal cohort. To evaluate the impact of
manual lesion cropping on model performance, a second radiologist
(J.G.) with 1 years of experience reading MSK plain film indepen-
dently recropped the images in the external test set, and model per-
formance was evaluated on the external test set using this set of
recropped images.

Statistical analysis

Statistical analysis was performed using the R statistical comput-
ing language, as well as non-parametric methods implemented in
Python 3.7. 95% confidence intervals for AUCs were obtained via the
DeLong method. For Cohen’s kappa scores and categorical accuracy,
95% confidence intervals were generated using 10,000 bootstrap
samples. Permutation tests with 10,000 iterations were used to calcu-
late p-values. p < 0�05 was considered to indicate a statistically sig-
nificant difference in performance. Comparison with radiologists was
performed only for 3-way classification. Subgroup analysis based on
age was also performed.

Results

Table 1 summarizes the 5 datasets used in this study. Overall, the
mean age was 24�7 § 18�1 years with 50�1% benign tumors (average
age 22�8 § 16�9), 23�4% intermediate tumors (average age 23�5 §
15�7), and 26�5% malignant tumors (average age 27�7 § 21�1), as
indicated by the final pathology results. There was a slight male pre-
dominance (58�2%). Differences in the distributions of age (One-way
analysis of variance, p < 0�01), sex (Chi-square test, p = 0�013) and
pathology (Chi-square test, p < 0�01) were statistically significant
among the 5 institutions. Please see Supplementary Figure S4 for
examples of benign, intermediate and malignant bone tumors.

On cross-validation, the AUCs for the two classifications were
0�894 and 0�907, respectively. For benign vs. not benign, at a naive
threshold of 0�5, the model achieved 82�7% sensitivity and 81�8%
specificity. Sensitivity and specificity for the model can be adjusted
along the ROC curve by calibrating the model threshold. For malig-
nant vs. not malignant, at a naive threshold of 0�5, the model
achieved 77�7% sensitivity and 89�6% specificity. On external testing,
the AUCs for these 2 classifications were 0�877 and 0�916, respec-
tively. The data were divided into quartiles by age for subgroup anal-
ysis: younger than 12 years old, 12�18 years old, 19�36 years old,
and older than 36 years old. Performance of 2 formulated binary clas-
sification problems: benign vs. not benign and malignant vs. not
malignant for the deep learning model are summarized in Table 2.



Table 1
Demographics for each of the 5 institutions.

Institution 1
(PENN)

Institution 2
(CHOP)

Institution 3
(China 2)

Institution 4
(China 1)

Institution 5
(China 3)

Hospital type Adult & Pediatric Pediatric Adult & Pediatric Adult & Pediatric Pediatric
Number of patients 160 333 572 186 105
Age, mean, years (SD) 40�3 (17�8) 12�6 (4�8) 28�4 (17�8) 31�3 (19�3) 7�5 (3�9)
Sex (% male) 82 (51�2) 188 (56�5) 328(57�3) 116 (62�4) 75 (71�4)
Pathology (%)
Benign 69 (43�1) 112 (33�6) 336 (58�7) 78 (41�9) 84 (80�0)
Intermediate 35 (21�9) 78 (23�4) 143 (25�0) 45 (24�2) 16 (15�2)
Malignant 56 (35�0) 143 (42�9) 93 (16�3) 63 (33�9) 5 (4�8)

Table 2
Model performance of 2 formulated binary classification problems: benign vs. not
benign and malignant vs. not malignant. 95% confidence intervals for AUCs were
obtained via the DeLong method.

AUC

Cross-validation
(Institution 1, 2 and 3, n=1065)

Not Benign 0�894 (0�874, 0�912)
Not Malignant 0�907 (0�886, 0�926)

Divided into quartiles by age for subgroup
Age (<12, n=268) Not Benign 0�891 (0�849, 0�928)

Not Malignant 0�915 (0�870, 0�953)
Age (12-18, n=277) Not Benign 0�933 (0�903, 0�960)

Not Malignant 0�933 (0�900, 0�962)
Age (19-36, n= 263) Not Benign 0�897 (0�858, 0�933)

Not Malignant 0�946 (0�910, 0�975)
Age (>36, n= 257) Not Benign 0�844 (0�849, 0�928)

Not Malignant 0�819 (0�870, 0�953)
External testing

(Institution 4 and 5, n=291)
Not Benign 0�877 (0�833, 0�918)
Not Malignant 0�916 (0�877, 0�949)

AUC: area under curve
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Fig. 1 depicts the ROC curves for the 2 formulated binary classification
problems: benign vs. not benign and malignant vs. not malignant on
cross-validation and external testing.

Three-way classification results for the deep learning model and
two subspecialists are shown in Table 3. For three-way classification,
Fig. 1. Receiver operating characteristic curves for the 2 formulated binary classification pro
(AUC) of internal cross-validation (CV, red) and external testing (blue) are also included.
Cohen’s kappa scores for the model and subspecialists were 0�548,
0�605, and 0�565, respectively. On cross validation, differences
between model predictions and subspecialist 1’s rating was found to
be statistically significant (Permutation tests, p = 0�03). Differences
between model predictions and subspecialist 2’s ratings were not
found to be statistically significant (Permutation tests, p = 0�52). In
addition, the data were divided into age quartiles, and detailed strati-
fied model performance by age is summarized in Table 3. Whereas
class distributions for both subspecialists were similar, the model
predicted a higher number of benign tumors (50�9% vs. 43�2% and
43�5%) and fewer intermediate tumors (18�1% vs. 23�6% and 24�5%).
Malignant tumor predictions were more similar across model and
subspecialists (31�0% vs. 33�1% and 32�0%).

Three-way classification results for the deep learning model and
five radiologists on uncropped images of external testing data are
shown in Table 4. Cohen’s kappa scores for the model and five radiol-
ogists were 0�560, 0�483 0�553, 0�555, 0�430, and 0�367, respec-
tively. Differences between model predictions and 1-3 radiologist’s
ratings were not found to be statistically significant (Permutation
tests, p = 0�14, p = 0�89 and p = 0�93). Differences between model
predictions and 4-5 radiologist’s ratings were found to be statistically
significant (Permutation tests, p = 0�02 and p < 0�05). In addition,
the data were divided into three equally sized age groups, and
detailed stratified model performance by age is shown in Table 4.
blems. benign vs. not-benign (a) and malignant vs. not-malignant (b). Area under curve



Table 3
Comparison of model performance with subspecialists on cross-validation. For Cohen’s kappa scores and categor-
ical accuracy, 95% confidence intervals were generated using 10,000 bootstrap samples. Permutation tests with
10,000 iterations were used to calculate p-values.

Accuracy Cohen's k Difference in k p-value

Total
(n=1065)

Model 72�1% 0�548 (0�504, 0�590)
Rater 1 74�6% 0�605 (0�564, 0�644) 0�057 (0�007, 0�107) 0�03
Rater 2 72�1% 0�565 (0�523, 0�607) 0�017 (-0�034, 0�068) 0�52

Age (<12, n=268) Model 73�9% 0�557 (0�473, 0�641)
Rater 1 71�3% 0�544 (0�464, 0�625) -0�013 (-0�106, 0�079) 0�77
Rater 2 73�9% 0�587 (0�506, 0�666) 0�030 (-0�069, 0�128) 0�56

Age (12-18, n=277) Model 76�7% 0�617 (0�537, 0�693)
Rater 1 77�4% 0�646 (0�570, 0�721) 0�029 (-0�065, 0�126) 0�55
Rater 2 75�6% 0�615 (0�534, 0�689) -0�002 (-0�098, 0�094) 0�96

Age (19-36, n= 263) Model 75�8% 0�610 (0�523, 0�692)
Rater 1 77�8% 0�653 (0�571, 0�731) 0�043 (-0�062, 0�148) 0�43
Rater 2 70�6% 0�541 (0�451, 0�628) -0�069 (-0�174, 0�036) 0�22

Age (>36, n= 257) Model 62�2% 0�384 (0�291, 0�473)
Rater 1 72�1% 0�558 (0�472, 0�641) 0�174 (0�065, 0�284) 0�003
Rater 2 68�3% 0�499 (0�413, 0�583) 0�115 (0�004, 0�227) 0�05

Rater 1 and 2 are subspecialists.

Table 4
Comparison of model performance with subspecialists and junior radiologists evaluating uncropped images of the
external testing data and stratified by age group. For Cohen’s kappa scores and categorical accuracy, 95% confidence
intervals were generated using 10,000 bootstrap samples. Permutation tests with 10,000 iterations were used to
calculate p-values.

Accuracy Cohen's k Difference in k p-value

Total
(n = 291)

Model 73�4% 0�560 (0�481, 0�639)
Rater 1 69�3% 0�483 (0�394, 0�567) -0�077 (-0�180, 0�021) 0�14
Rater 2 73�4% 0�553 (0�468, 0�634) -0�007 (-0�112, 0�096) 0�89
Rater 3 73�1% 0�555 (0�472, 0�633) -0�005 (-0�115, 0�103) 0�93
Rater 4 67�9% 0�430 (0�340, 0�519) -0�130 (-0�240, -0�020) 0�02
Rater 5 63�4% 0�367 (0�285, 0�449) -0�193 (-0�293, -0�093) 0�0005

Age (<10, n = 97) Model 74�2% 0�383 (0�210, 0�542)
Rater 1 79�4% 0�478 (0�278, 0�655) 0�095 (-0�128, 0�314) 0�41
Rater 2 79�4% 0�515 (0�334, 0�678) 0�132 (-0�080, 0�343) 0�23
Rater 3 79�4% 0�535 (0�367, 0�695) 0�152 (-0�080, 0�393) 0�25
Rater 4 80�4% 0�448 (0�239, 0�637) 0�065 (-0�177, 0�314) 0�61
Rater 5 69�1% 0�229 (0�064, 0�390) -0�154 (-0�341, 0�017) 0�11

Age (10-24, n = 97) Model 77�3% 0�630 (0�498, 0�755)
Rater 1 70�1% 0�496 (0�336, 0�640) -0�134 (-0�311, 0�038) 0�13
Rater 2 72�2% 0�538 (0�392, 0�676) -0�092 (-0�261, 0�075) 0�28
Rater 3 77�3% 0�618 (0�473, 0�749) -0�012 (-0�183, 0�156) 0�88
Rater 4 69�1% 0�450 (0�291, 0�596) -0�180 (-0�352, -0�011) 0�045
Rater 5 52�6% 0�217 (0�085, 0�354) -0�413 (-0�576, -0�246) <1�0e-6

Age (>24, n = 97) Model 68�8% 0�514 (0�366, 0�648)
Rater 1 58�3% 0�386 (0�250, 0�521) -0�128 (-0�304, 0�047) 0�15
Rater 2 68�8% 0�526 (0�385, 0�660) 0�012 (-0�178, 0�200) 0�89
Rater 3 62�5% 0�413 (0�263, 0�556) -0�101 (-0�294, 0�093) 0�31
Rater 4 54�2% 0�282 (0�132, 0�429) -0�232 (-0�426, -0�033) 0�025
Rater 5 68�8% 0�479 (0�345, 0�608) -0�035 (-0�198, 0�137) 0�71

Rater 1 and 2 are subspecialists, while rater 3-5 are junior radiologists.

Y. He et al. / EBioMedicine 62 (2020) 103121 5
Comparison of model performance on the images in the external
test set cropped by the original radiologist (Y.H.) and the second radi-
ologist (J. G.) demonstrated no significant difference (Cohen’s kappa
score of 0.560 versus 0.549, p = 0.67).

Three-way classification results for the deep learning model and
five radiologists on cropped images of external testing data are
shown in Supplementary Table S3. Intra-rater reliability for evalua-
tion using cropped versus uncropped images on the external test
data showed that radiologist 1-3’s ratings were moderate while radi-
ologist 5’s rating was fair. Cohen’s kappa scores of intra-rater reliabil-
ity for the four radiologists were 0�544, 0�560, 0�509, and 0�385,
respectively.

Figs. 2�4 depicts examples of model-subspecialist disagree-
ment under 3 scenarios for prediction of malignancy. Fig. 2 depicts
3 examples of malignant tumors that were predicted to be not
malignant by both deep learning model and subspecialists,
selected from total number of 15 lesions in the first scenario.
These cases either had uncharacteristic appearances (n = 8) or
were located in unusual locations (e.g., vertebral body or coccyx)
(n = 7). Examples include an osteosarcoma that is completely scle-
rotic (Fig 2a), a chondrosarcoma that has no calcification of carti-
lage matrix (Fig 2b), and an Ewing sarcoma that has no cortical
destruction or periosteal reaction (Fig 2c). Fig. 3 depicts one exam-
ple of malignant tumor that was predicted to be malignant by the
deep learning model and otherwise by the subspecialists, selected
from total number of 9 lesions in the second scenario. Almost all
these cases were ill-defined lytic lesions without aggressive peri-
ostitis (Fig 3). Fig. 4 demonstrates 2 instances of the opposite of
Fig. 3, selected from total number of 22 lesions in the third sce-
nario. These cases all have an aggressive type of periosteal reaction
(lamellated, amorphous or sunburst) (Fig 4a), or have a permeative
or moth-eaten appearance (Fig 4b).



Fig. 2. Three examples of malignant tumors that were predicted to be not malignant by both deep learning model and subspecialists. a, Osteosarcoma in upper left tibia predicted to
be benign by the deep learning model (67�1%) and benign by 2 subspecialists. b, Chondrosarcoma in upper right femur predicted to be intermediate by the deep learning model
(80�5%) and benign and intermediate by 2 subspecialists. c, Ewing sarcoma in right cuboid bone predicted to be benign by the deep learning model (77�2%) and intermediate by 2
subspecialists.
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Discussion

In this study, we constructed and evaluated a deep learning model
for lesion classification on a collection of 2899 images from 1356
patients with histologically confirmed primary bone tumors and pre-
operative radiographs. The model achieved similar grouping ability
in three-way classification when compared to subspecialists, and bet-
ter performance than the junior radiologists.

Correctly classifying bone tumors on plain radiograph is impor-
tant for clinical decision making as it can guide subsequent manage-
ment [3]. This is especially true in locales where there is a relative
lack of subspecialty radiology expertise. Because many bone lesions
are uncommon or rare, few radiologists develop sufficient expertise
to diagnose them accurately. In clinical practice, one relies on learn-
ing and recalling characteristic imaging features of various lesions,
both of which are subject to bias. Inappropriate classification of
benign bone tumor can lead to unnecessary biopsy and subsequently
Fig. 3. Examples of malignant tumor that was predicted to be malignant by the deep
learning model and otherwise by subspecialists. Osteosarcoma in distal right femur,
predicted to be malignant by the deep learning model (99�9%) and intermediate by 2
subspecialists.
increased morbidity and cost. In fact, a study utilizing questionnaires
revealed that biopsy wounds yielded complications in 17�3% of
patients with malignant primary tumors of bone or soft tissue who
underwent biopsy, and that biopsy was detrimental to these patients’
prognosis and overall outcome 8�5% of the time [22]. Biopsy of malig-
nant bone tumor without appropriate planning can increase the risk
of tumor seeding along the biopsy tract, with the incidence of seeding
reported as up to 19�2% following osteosarcoma biopsy [23]. Sam-
pling error presents as another problem for bone biopsy. A diagnosis
was not obtained successfully in 7�9% of cases reported with CT
image-guided core biopsies of musculoskeletal tumors [24], as well
as in 4�7% of open biopsy cases [25,26]. Incorrect diagnosis from ter-
tiary cancer centers also range from 6% to 12% for image-guided core
needle biopsies [27]. When the referring center is accounted for, this
rate increases to 23% [28]. In addition, CT-guided core biopsy is asso-
ciated with re-biopsy rate up to 20% of cases [26]. There are also a
host of other factors that can prevent providers from obtaining ade-
quate tissue for diagnosis. For instance, many bone tumors are
extremely vascular and often yield what appears to be blood only.
For lesions that have massive bony sclerosis, such as osteosarcomas,
the material obtained is often of poor quality and non-diagnostic.
Specimens of benign or malignant cystic lesions or tumors with
necrosis are also difficult to obtain for biopsy. The aim of this project
was to raise the level of plain radiography analysis through deep
learning to the level of the musculoskeletal subspecialists.
Fig. 4. Two examples of malignant tumor predicted to be malignant by the subspecial-
ists and otherwise by the deep learning model. a, Ewing sarcoma in left femur diaphy-
sis, predicted to be benign by the deep learning model (95�0%). b, Plasma cell
myeloma in T12 vertebral body, predicted to be benign by the deep learning model
(81�5%).



Most radiologists rely on “pattern recognition” to differentiate
benign from malignant lesions on plain radiograph, which can often
lead to erroneous conclusion. Some common radiologic criteria used
for this distinction include cortical destruction [29], periostitis [29],
orientation or axis of the lesion [30], and zone of transition [30].
However, all have limitations. Cortical bone can be replaced by part
of the noncalcified matrix (fibrous matrix or chondroid matrix) of
benign fibro-osseous lesions and cartilaginous lesions, giving the
false impression of cortical destruction on plain film [31]. Periostitis
and orientation of the lesion can be nonspecific [30]. Although the
zone of transition is arguably the most useful indicator of whether a
lesion is benign or malignant (i.e. a narrow zone of transition indi-
cates a benign lesion and vice versa), it only applies to lytic lesions—a
blastic or sclerotic lesion will always appear to have a narrow zone of
transition and may erroneously be diagnosed as benign even if it is
malignant [31]. Despite the challenges, we have identified no study
in the literature which applies deep learning to differentiate benign
from malignant bone lesions on plain radiograph. Past studies had
the limitations of small cohort size, focus on specific differential diag-
noses, and use of advanced imaging modalities [7,8,32,33].

Our model demonstrated good binary discriminatory capacity on
cases from different hospitals stratified by age. For the older than
36 years old group, the model’s binary discriminatory capacity was
slightly lower than that of the younger age group. This can be
explained by the smaller sample size on which the deep learning
algorithm was trained since most bone tumors were diagnosed in
pediatric patients. The good model performance on external testing
supports generalizability of our algorithm.

On cross-validation and external testing, our model achieved sim-
ilar categorical accuracy to the subspecialists for the 3-category clas-
sification. This demonstrates that classification of primary bone
tumors on radiographs is a challenging problem even for experienced
radiologists subspecialized in MSK. Our model performed better than
the junior radiologists for all the different age groups, except the
younger than 10 years old group. That may be caused by our external
testing data containing excessively high proportion of benign bone
tumor, such as osteochondroma and osteoid osteoma, which is easy
to recognize even for less experienced radiologists.

Deep learning is often considered black box. To understand the
choices and mistakes that the model and subspecialists made, we
investigated specific cases of model-subspecialist disagreement
under 3 scenarios for prediction of malignancy. We also concentrated
on wrong prediction of malignant tumors because this would have
impacted management and outcome if our algorithm were used in
lieu of biopsy. In the first scenario where both model and subspecial-
ists were wrong, we found that the tumors either had uncharacteris-
tic appearances or were located in unusual locations, such as
vertebral bodies or the coccyx, where the characterization on plain
film was poor. In the second scenario where the model was right but
the subspecialists were wrong, we found that almost all the cases
were ill-defined lytic lesions without aggressive periostitis. It appears
that our deep learning model was better than the subspecialists at
evaluating the zone of transition, which is often considered the most
reliable plain film indicator for benign versus malignant lesions as
discussed above. In the third scenario where the model was wrong
and the subspecialists were right, there are some common findings.
These cases all had a permeative, moth-eaten appearance or an
aggressive type of periosteal reaction (lamellated, amorphous, or
sunburst). Although many benign lesions can cause aggressive peri-
ostitis such as infection, eosinophilic granuloma, and trauma, our
study only included primary bone tumors so aggressive periostitis
helped the subspecialist recognize them as malignant. It seems that
our deep learning model was not good at recognizing a permeative
appearance or aggressive periostitis and associating it with malig-
nancy. This can be explained by either a lack in number or variety of
these patterns or both in training. It is also important to note that the
difference in class distribution between model and subspecialist pre-
dictions. The deep learning model predicted a greater number of
benign tumors (50�9% vs. 43�2�43�5%) than subspecialists, largely at
the expense of intermediate lesions (18�1% vs. 23�6�24�5%). This is
most likely due to the class distribution in the training set (48�7%
benign, 24�0% intermediate, and 27�2% malignant), as deep learning
model predictions will tend toward the training distribution. This
may also suggest that benign and intermediate lesions share similar
features learned by the model, causing confusion between these 2
classes.

There are several limitations to our work. First, this is a retrospec-
tive study with cases identified from a search of pathology databases
at five institutions. In the general population, benign bone tumors are
far more common than malignant ones. But due to the tertiary care
center character of the five including centers, most typical benign
bone tumors are diagnosed directly, without biopsy and pathology.
Therefore, our data contained a smaller number of benign bone
tumor and large number of intermediate and malignant bone tumor,
indicating selection bias. Second, we included only primary bone
tumors, but did not consider other situations (e.g. osteomyelitis,
metastasis, bone-tumor mimickers, etc.) commonly encountered in
clinical practice that often cause diagnostic difficulty. It is also well
known that benign processes such as infection and eosinophilic gran-
uloma can mimic malignant tumors [5]. However, a lot of cases were
without pathology or were not diagnosed with confidence on pathol-
ogy. Future studies will include these cases. Third, the images were
cropped by a MSK radiologist to highlight the tumor before being
inputted into the network. To evaluate the impact of this manual
cropped on model performance, a junior radiologist was asked to
recrop the images in the external set and model performance was
evaluated on this recropped set to compare with the original radiolo-
gist. Although we believe that manual cropping keeps the radiologist
in the loop who are already interpreting the study, is easy to imple-
ment clinically and requires only seconds to complete, it is important
to emphasize that the current pipeline is not ready for real-time clini-
cal use. Future study will incorporate deep learning based lesion
localization before classification to achieve a fully automated pipeline
for clinical integration. Finally, our cohort size is still small compared
to the millions of images on ImageNet used to train deep neural net-
work models. Algorithm development can benefit from incorporation
of more data from additional institutions, which will result in better
performance.

In conclusion, our study shows that deep learning with DCNN can
classify primary bone tumors on conventional radiographs using a
multi-institutional dataset with similar accuracy to subspecialists,
and better performance than the junior radiologists. Our algorithm
has the potential to improve primary bone tumor radiographs inter-
pretation to the level of the subspecialists. Future study will focus on
development of a fully automatic pipeline including lesion localiza-
tion, incorporation of studies such as CT or MRI through deep learn-
ing and inclusion of bone tumor mimic pathologies.
Author Contributions

HXB and ZZ conceived the study; YH, JW, BB, MC,XP and PJZ col-
lected the data; YH and JG preprocessed the images; HL, RAS, SP and
JG evaluated the bone lesions; IP analyzed the data; HXB and KH
helped in the analyses and discussion of the results; YH and IP wrote
the manuscript; TY, ATD, EF, LJS helped in manuscript editing and
revision. All authors contributed to the review, edit, and approvaled
the final version of the manuscript.

Ethics approval and consent to participate
The study was conducted in accordance with Declaration of Hel-

sinki and approved by the Institutional Review Boards at Hospital of
University of Pennsylvania, Children's Hospital of Philadelphia,



Hunan Children’s Hospital, Xiangya Hospital and Second Xiangya
Hospital.

Consent for publication

The need for informed consent was waived by the institutional
review board for this retrospective study.

Availability of data and materials

In respect of patient confidentiality and consent, the radiographs
and clinical information datasets analyzed in this study are not avail-
able for download but are available upon reasonable request to the
corresponding author.

Data sharing

Source code have been uploaded to a public GitHub repository at:
https://github.com/i-pan/bone-tumor.

Declaration of Competing Interest

The authors declare that they have no conflicts of interests.

Acknowledgments

We acknowledged the help of Ke Jin (K.J.) in data collection.

Funding sources

The project described was supported by RSNA Research & Educa-
tion Foundation, through grant number RSCH2004 to H. Bai. The con-
tent is solely the responsibility of the authors and does not
necessarily represent the official views of the RSNA R&E Foundation.
The funders had no role in study design, data collection, data analysis,
interpretation, writing of the manuscript.

Supplementary materials

Supplementary material associated with this article can be found,
in the online version, at doi:10.1016/j.ebiom.2020.103121.

Reference

[1] Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent can-
cer statistics, 2014. CA Cancer J Clin 2014;64:83–103.

[2] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018;68:7–30.
[3] Fletcher CDM. World Health Organization. International Agency for research on

cancer. WHO classification of tumours of soft tissue and bone. 4th ed Lyon: IARC
Press; 2013. p. 468..

[4] Do BH, Langlotz C, Beaulieu CF. Bone Tumor Diagnosis Using a Naive Bayesian
Model of Demographic and Radiographic Features. J Digit Imaging 2017;30:640–7.

[5] Helms. WEBCA. Fundamentals of diagnostic radiology. Philadelphia: Wolters
Kluwer Health; 2012. p. 1420.

[6] Lakhani P, Sundaram B. Deep learning at chest radiography: automated classifica-
tion of pulmonary tuberculosis by using convolutional neural networks. Radiol-
ogy 2017;284:574–82.
[7] Bradshaw T, Perk T, Chen S, et al. Deep learning for classification of benign and
malignant bone lesions in [F-18]NaF PET/CT images. J Nucl Med 2018;59:327.

[8] Cheng CT, Ho TY, Lee TY, et al. Application of a deep learning algorithm for detec-
tion and visualization of hip fractures on plain pelvic radiographs. Eur Radiol
2019;29:5469–77.

[9] De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning
for diagnosis and referral in retinal disease. Nat Med 2018;24:1342–50.

[10] Chang K, Bai HX, Zhou H, et al. Residual convolutional neural network for the
determination of IDH status in low- and high-grade gliomas from MR imaging.
Clin Cancer Res 2018;24:1073–81.

[11] Xi IL, Wu J, Guan J, et al. Deep learning for differentiation of benign and malignant
solid liver lesions on ultrasonography. Abdom Radiol 2020. doi: 10.1007/s00261-
020-2564-w.

[12] Xi IL, Zhao Y, Wang R, et al. Deep learning to distinguish benign from malignant
renal lesions based on routine MR imaging. Clin Cancer Res 2020;26:1944–52.

[13] Zhao Y, Chang M, Wang R, et al. Deep learning based on MRI for differentiation of
low- and high-grade in low-stage renal cell carcinoma. J Magn Reson Imaging
2020. doi: 10.1002/jmri.27153.

[14] Chang K, Beers AL, Bai HX, et al. Automatic assessment of glioma burden: a deep
learning algorithm for fully automated volumetric and bidimensional measure-
ment. NeuroOncol 2019;21:1412–22.

[15] Zhou H, Chang K, Bai HX, et al. Machine learning reveals multimodal MRI patterns
predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and
high-grade gliomas. J Neurooncol 2019;142:299–307.

[16] Kuthuru S, Deaderick W, Bai H, et al. A visually interpretable, dictionary-based
approach to imaging-genomic modeling, with low-grade glioma as a case study.
Cancer Inform 2018;17 DOI: 1176935118802796.

[17] Zhou H, Vallieres M, Bai HX, et al. MRI features predict survival and molecular
markers in diffuse lower-grade gliomas. Neuro Oncol 2017;19:862–70.

[18] Pan I, Agarwal S, Merck D. Generalizable Inter-Institutional Classification of
Abnormal Chest Radiographs Using Efficient Convolutional Neural Networks. J
Digit Imaging 2019;32:888–96.

[19] Luo YH, Xi IL, Wang R, et al. Deep learning based on mr imaging for predicting
outcome of uterine fibroid embolization. J Vasc Interv Radiol 2020;31 1010-7.e3.

[20] Bai HX, Wang R, Xiong Z, et al. Artificial intelligence augmentation of radiologist
performance in distinguishing COVID-19 from pneumonia of other origin at chest
CT. Radiology 2020;296:E156–E65.

[21] Mingxing T, Quoc V L. EfficientNet: rethinking model scaling for convolutional
neural networks: ICML 2019 [Available from: https://arxiv.org/pdf/1905.11946.
pdf.

[22] Mankin HJ, Lange TA, Spanier SS. THE CLASSIC: The hazards of biopsy in patients
with malignant primary bone and soft-tissue tumors. The Journal of Bone and
Joint Surgery, 1982;64:1121-1127. Clin Orthop Relat Res 2006;450:4–10.

[23] Seeger LL. Revisiting tract seeding and compartmental anatomy for percutaneous
image-guided musculoskeletal biopsies. Skeletal Radiol 2019;48:499–501.

[24] Altuntas AO, Slavin J, Smith PJ, et al. Accuracy of computed tomography guided
core needle biopsy of musculoskeletal tumours. ANZ J Surg 2005;75:187–91.

[25] Wallace MT, Lin PP, Bird JE, Moon BS, Satcher RL, Lewis VO. The accuracy and clin-
ical utility of intraoperative frozen section analysis in open biopsy of bone. J Am
Acad Orthop Surg 2019;27:410–7.

[26] Ashford RU, McCarthy SW, Scolyer RA, Bonar SF, Karim RZ, Stalley PD. Surgical
biopsy with intra-operative frozen section. An accurate and cost-effective method
for diagnosis of musculoskeletal sarcomas. J Bone Jt Surg Br 2006;88:1207–11.

[27] Jelinek JS, Murphey MD, Welker JA, et al. Diagnosis of primary bone tumors with
image-guided percutaneous biopsy: experience with 110 tumors. Radiology
2002;223:731–7.

[28] Saifuddin A, Mitchell R, Burnett SJ, Sandison A, Pringle JA. Ultrasound-guided nee-
dle biopsy of primary bone tumours. J Bone Jt Surg Br 2000;82:50–4.

[29] Teo HE, Peh WC. Primary bone tumors of adulthood. Cancer Imaging 2004;4:74–
83.

[30] Umer M, Hasan OHA, Khan D, Uddin N, Noordin S. Systematic approach to muscu-
loskeletal benign tumors. Int J Surg Oncol 2017;2:e46.

[31] Remotti F, Feldman F. Nonneoplastic lesions that simulate primary tumors of
bone. Arch Pathol Lab Med 2012;136:772–88.

[32] Filograna L, Lenkowicz J, Cellini F, et al. Identification of the most significant mag-
netic resonance imaging (MRI) radiomic features in oncological patients with ver-
tebral bone marrow metastatic disease: a feasibility study. Radiol Med 2019;
124:50–7.

[33] Yin P, Mao N, Zhao C, et al. Comparison of radiomics machine-learning classifiers
and feature selection for differentiation of sacral chordoma and sacral giant cell
tumour based on 3D computed tomography features. Eur Radiol 2019;29:1841–7.

https://github.com/i-pan/bone-tumor
https://doi.org/10.1016/j.ebiom.2020.103121
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0001
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0001
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0003
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0003
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0003
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0004
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0004
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0005
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0005
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0006
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0006
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0006
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0007
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0007
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0008
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0008
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0008
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0009
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0009
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0010
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0010
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0010
https://doi.org/10.1007/s00261-020-2564-w
https://doi.org/10.1007/s00261-020-2564-w
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0012
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0012
https://doi.org/10.1002/jmri.27153
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0014
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0014
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0014
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0015
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0015
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0015
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0016
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0016
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0016
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0017
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0017
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0018
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0018
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0018
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0019
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0019
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0020
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0020
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0020
https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/pdf/1905.11946.pdf
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0022
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0022
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0022
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0023
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0023
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0024
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0024
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0025
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0025
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0025
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0026
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0026
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0026
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0027
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0027
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0027
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0028
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0028
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0029
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0029
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0030
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0030
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0031
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0031
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0032
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0032
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0032
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0032
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0033
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0033
http://refhub.elsevier.com/S2352-3964(20)30497-7/sbref0033

	Deep learning-based classification of primary bone tumors on radiographs: A preliminary study
	Introduction
	Materials and methods
	Patient cohort
	Preprocessing
	Training and inference

	Evaluation
	Radiologist evaluation
	Model evaluation
	Statistical analysis

	Results
	Discussion
	Author Contributions
	Consent for publication
	Availability of data and materials
	Data sharing
	Declaration of Competing Interest
	Acknowledgments
	Funding sources

	Supplementary materials
	Reference



