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Abstract: Catharanthus roseus is a well-known traditional herbal medicine for the treatment of cancer,
hypertension, scald, and sore in China. Phytochemical investigation on the twigs and leaves of
this species led to the isolation of two new monoterpene indole alkaloids, catharanosines A (1)
and B (2), and six known analogues (3–8). Structures of 1 and 2 were established by 1H-, 13C- and
2D-NMR, and HREIMS data. The absolute configuration of 1 was confirmed by single-crystal X-ray
diffraction analysis. Compound 2 represented an unprecedented aspidosperma-type alkaloid with
a 2-piperidinyl moiety at C-10. Compounds 6–8 exhibited remarkable Cav3.1 low voltage-gated
calcium channel (LVGCC) inhibitory activity with IC50 values of 11.83 ± 1.02, 14.3 ± 1.20, and
14.54 ± 0.99 µM, respectively.

Keywords: Catharanthus roseus; monoterpene indole alkaloid; catharanosine A; Cav3.1 low voltage-
gated calcium channel (LVGCC)

1. Introduction

Monoterpene indole alkaloids (MIAs) are one of the largest natural product families
constructed from indole and monoterpene moieties, and commonly found in Apocynaceae,
Rubiaceae, and Loganiaceae families [1]. To date, more than 3000 MIAs have been reported,
many of which have been found to exhibited important pharmaceutical effects [2,3]. Repre-
sentative MIAs such as, reserpine, vinblastine/vincristine, and quinine are used clinically
for the treatment of hypertension, cancer, and malaria, respectively [4]. In light of their
diverse and complex structures and high druggability, MIAs have attracted great interest
from chemical and pharmacological communities and have been a potent resource for new
drug discovery.

Catharanthus roseus (L.) G. Don (Apocynaceae), a tropical perennial subshrub, is a
well-known traditional herbal medicine for treating cancer, hypertension, scald, and sore
in China [5]. Early phytochemical studies on this plant have led to the isolation of an array
of MIAs, including the well-known anticancer drugs vinblastine and vincristine [6]. The
discovery of these two drugs has been regarded as one of the most important developments
in both natural product chemistry and the clinical treatment of cancer during the 1960s to
1980s [7–10]. In recent years, some new and bioactive MIAs were still reported from this
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plant [11–17]. In our continuing search for structurally unique and pharmaceutically inter-
esting MIAs from medicinal plants [18–22], a phytochemical study of the twigs and leaves
of C. roseus was undertaken and led to the identification of two new MIAs, catharanosines
A (1) and B (2), and six known analogues (Figure 1). Compound 2 was found to represent
an unprecedented aspidosperma-type alkaloid with a piperidine moiety at C-10. Due to
the limited amount of 1 and 2, only compounds 3–8 were screened for their inhibitory
activity on Cav3.1 low voltage-gated calcium channel (LVGCC), an important therapeutic
target for cardiovascular disease [23]. Herein, the isolation, structure determination, and
bioactivities of compounds 1–8 are described.
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Figure 1. Structures of compounds 1–8.

2. Results
2.1. Structure Elucidation

The total crude alkaloid fraction was subjected to MCI gel, silica gel, and Sephadex
LH-20 to afford two new MIAs, catharanosines A (1) and B (2), and six known ana-
logues. Compared with literature data, the known compounds were identified as (R)-
19-hydroxytabersonine (3) [24], lochnerine (4) [25], normacusine B (5) [26], vincapusine
(6) [27], vincarodine (7) [28], and serpentine (8) [29], by comparing their spectroscopic data
with those reported in the literature.

Compound 1, colorless crystals, had a molecular formula of C20H24N2O3 according
to the 13C NMR data and the HR-EI-MS ion at m/z 340.1782 [M]+ (calcd. 340.1787), which
corresponded to 20 indices of hydrogen deficiency. The IR spectrum (Figure S9) displayed
absorption bands resulting from hydroxy (3439 cm−1), carbonyl (1712 cm−1), and aro-
matic (1630 and 1465 cm−1) functionalities. The presence of an oxindole chromophore
was revealed by the UV absorptions (Figure S8) at 205, 248, 298 nm [30]. The 1H NMR
spectrum displayed resonances (Table 1 and Figure S1) for a 1,2,4-trisubstituted benzene
ring (δH 6.59 dd, J = 8.4, 2.4 Hz, H-11; 6.65 d, J = 8.4 Hz, H-12; and 6.76 d, J = 2.4 Hz, H-9), an
olefinic proton (δH 5.09 q, J = 6.7 Hz, H-19), an oxymethylene (δH 3.34, m, H-17), a methyl
group (δH 1.40 d, J = 6.7 Hz, H3-18), and a methoxy group [δH 3.63 (s)]. The 13C NMR
spectrum (Figure S2), with the aid of the HSQC data (Figure S3), showed 20 carbon res-
onances (Table 1) attributable to two methyls (one methoxy at δC 55.7), four methylenes
(one oxygenated at δC 65.0), eight methines (three aromatic at δC 109.7, 111.8, and 114.9
and one olefinic at δC 114.6), and six nonprotonated carbons (three aromatic at δC 132.0,
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135.3, and 154.9, one olefinic at δC 135.6, and one lactam carbonyl at δC 184.4). Comparison
of the 1H and 13C NMR data (Table 1) of 1 with those of rauvomitorine V, an affinisine
oxindole type alkaloid from Rauvolfia vomitoria [31], revealed their structural similarity,
except the absence of one methoxy group and that one aromatic methine in 1 replaced one
aromatic nonprotonated carbon in the latter. The only methoxy group was located at C-10
through HMBC correlations (Figure 2) of H-9 (δH 6.76, d, J = 2.4 Hz) with C-7 (δC 57.4), C-8
(δC 132.0), C-10 (δC 154.9), and C-13 (δC 135.3), as well as cross-peaks of H-9 and H-11 with
the methoxy group in ROESY spectrum (Figure 2).

Table 1. 1H-NMR (600 MHz) and 13C-NMR (150 MHz) spectroscopic data of compounds 1 and 2 in
CDCl3 (δ in ppm, J in Hz).

No. 1 2

δH δC δH δC

2 184.4 3.71, s 83.3
3 3.11, d (8.8) 62.8 3.48, d (13.2) 50.8

2.90, d (13.2)
5 2.87, dd (6.0, 2.9) 59.3 3.38, m 51.6

2.69, m
6 2.50, dd (12.8, 6.0) 44.3 2.41, m 43.6

1.74, d (12.8) 2.17, m
7 57.4 52.8
8 132.0 124.2
9 6.76, d (2.4) 114.9 7.36, s 122.1

10 154.9 114.4
11 6.59, dd (8.4, 2.4) 111.8 158.0
12 6.65, d (8.4) 109.7 5.97, s 92.3
13 135.3 153.8
14 1.98, m 28.4 5.82, ddd (10.2, 4.9, 1.3) 124.4

1.33, m
15 2.65, s 26.1 5.18, d (10.2) 130.0
16 1.78, m 47.8 79.4
17 3.34, m 65.0 5.34, s 76.2
18 1.40, d (6.7) 12.0 0.43, t (7.4) 7.5
19 5.09, q (6.7) 114.6 1.56, m 30.9

0.97, m
20 135.6 42.7
21 3.38, s 48.3 2.76, s 66.5
22 171.8
2′ 4.29, br s 54.6
3′ 2.10, m 28.7

1.80, m
4′ 1.92, m 23.4

1.53, m
5′ 1.86, m 22.0

1.66, m
6′ 3.10, d (11.8) 45.7

2.83, m
N-Me 2.65, s 37.9

10-OMe 3.63, s 55.7
11-OMe 3.80, s 55.7
22-OMe 3.76, s 52.3

OAc 170.8
2.03, s 21.0
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The relative configuration of 1 was assigned via the ROESY (Figure S6) and 13C NMR
data (Table 1). The configuration of the spirocyclic C-7 was assigned as S by the ROESY
correlations (Figure 2) of H-9 with H-6β, H-14β, and H-16, coupled with the diagnostic
chemical shifts of C-2 (δC 184.4), C-3 (δC 62.8), and C-8 (δC 132.0) [32,33]. The ROESY
correlations of H-3 and H-5 with H2-21, of H-5 with H2-17, and of H-9 with H-16 indicated
the α-orientations of H-3, H-5, and H2-17. The rigid structure of the bridge ring system
required H-15 to be α-oriented. Moreover, the E-geometry for the double bond between
C-19 and C-20 was determined by the ROESY cross-peak of H-15 and H3-18. Finally, single-
crystal X-ray diffraction analysis of 1 using Cu-Kα radiation unambiguously assigned
the absolute configuration as (3S, 5S, 7S, 15R, 16R) based on a Flack parameter of 0.11(8)
(Figure 3). Accordingly, the structure of 1 was deduced and named as catharanosine A.
Many sarpagine type alkaloids have been reported from natural resources [34–38], however,
only a few of the corresponding oxindoles were discovered, including affinisine, talpinine,
and chitosenine types oxindole alkaloids [31,39–42]. To date, no general scaffold name
for this small group of oxindole alkaloid are reported, so we tentatively name them as
spiroindoxyl sarpagane alkaloid.
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The HREIMS spectrum of 2 showed a molecular ion peak at m/z 539.3000 [M]+ (calcd.
539.2995), consistent with a molecular formula of C30H41N3O6, suggesting 24 indices of
hydrogen deficiency. The IR spectrum (Figure S18) exhibited absorptions attributable
to hydroxy (3432 cm−1) and carbonyl (1741 cm−1) groups, and a benzene ring (1621,
1506, and 1453 cm−1). The characteristic UV absorptions (Figure S17) at 213, 261, 309 nm
indicated a dihydroindole chromophore [43]. In 1H NMR spectrum (Figure S10 and
Table 1), two aromatic singlets at δH 7.36 (s, H-9) and 5.97 (s, H-12) were observed for the
10,11-disubstituted dihydroindole moiety. The 13C NMR spectrum (Figure S11 and Table 1)
showed the presence of five methyls (one N-methyl, one acetyl methyl, and two methoxy
groups), four methylenes, seven methines (one oxygenated at δC 76.2, two aromatic at δC
92.3 and 122.1, and two olefinic at δC 124.4 and 130.0), and nine nonprotonated carbons
(one oxygenated at δC 79.4, two ester carbonyl at δC 170.8 and 171.8 and four aromatic at
δC 114.4, 124.2, 153.8, and 158.0). In addition, the carbon resonances (Table 1) at δC 54.6,
28.7, 23.4, 22.0, and 45.7, along with the 1H-1H COSY correlations (Figure 4) of H-2′/H2-
3′/H2-4′/H2-5′/H2-6′, indicated the presence of 2-piperidinyl unit in 2. The 1H and 13C
NMR spectroscopic data (Table 1) of 2 closely resembled those of vindoline [44], with the
exception of the aforementioned 2-piperidinyl moiety. The HMBC correlations (Figure 4)
from H-9 (δH 7.36) to C-7 (δC 52.8), C-8 (δC 124.2), C-10 (δC 114.4), and C-13 (δC 153.8), from
H-2′ (δH 4.29, br s) to C-9 (δC 122.1), C-10, and C-11 (δC 158.0), as well as the cross-peak
of H-12 with N-methyl and 11-methoxy groups, revealed the linkage of vindoline with
piperidine moiety through C-10-C-2′ bond.
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The ROESY correlations (Figure 4) of H-2/H-6β and H-6β/H-3β suggested the
β-orientation of H-2 and the R* configuration for C-7. H-17, H-21, and the ethyl groups
were determined as α-orientated by the ROESY cross-peaks of H-21/H3-18 and H-17/H2-
19. The β-orientation of 16-OH was established by similar carbon resonances at C-2 (δC 83.3;
∆δC +0.1), C-16 (δC 79.4; ∆δC −0.1), and C-17 (δC 76.2; ∆δC +0.0) with those of vindoline [44].
However, other ROESY correlations for 2 were insufficient to determine the configuration
at C-2′. Consequently, the structure of compound 2 was identified and named as cathara-
nosine B. To our knowledge, compound 2 represented the first aspidosperma-type alkaloid
with a 2-piperidinyl moiety at C-10. Biogenetically, compound 2 was likely to be formed
through electrophilic substitution at C-10 of vindoline by ∆1-piperidinium cation derived
from L-lysine via decarboxylation and oxidation under the catalysis of lysine decarboxylase
and amine oxidase, and subsequently cyclization and protonation (Scheme 1) [45,46].
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2.2. Biological Activity

Due to the traditional use of C. roseus for treating hypertension in China, compounds
3–8 were evaluated for the effects on Cav3.1 low-voltage-gated calcium channel, which
plays an important role in the regulation of cardiovascular disease. At a concentration of
50 µM, compounds 6–8 showed strong inhibitions on Cav3.1 (Figure 5), while compounds
3–5 exhibited weak activity with inhibition rate of less than 50%. Then, compounds 6–8
were further evaluated for their dose-dependent relationships on Cav3.1 at a concentration
range from 1.6 to 50.0 µM. The results showed that compounds 6–8 dose-dependently
inhibited on Cav3.1 with IC50 values of 11.83 ± 1.02, 14.30 ± 1.20, and 14.54 ± 0.99 µM, as
compared to mibefradil, an inhibitor of T-type VGCC, with IC50 value of 3.09 ± 0.41 µM
(Figure 6). These results indicated that compounds 6–8 were important antihypertensive
active components of C. roseus.
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of 6-8 and mibefradil on peak current of Cav3.1. Data points represent mean ± SD of three or four repetition measurements.
Solid curve represents fit to the Hill equation. (E–H) Representative Cav3.1 peak current traces in the absence and presence
of different concentrations of 6–8 and mibefradil. (I–L) Normalized I-V curves of Cav3.1 control (blue), Cav3.1 with 12.5 µM
6–8 (red), 3 µM mibefradil, and washout (black). All the data were represented as mean ± SD (n = 3). (M–P) Current traces
obtained with Cav3.1 at various membrane potentials (from −80 to +60 mV in 10 mV increasement at 4 s intervals) from a
holding potential of −100 mV (upper panel). Current traces obtained with Cav3.1 with 6–8 (12.5 µM) and mibefradil (3 µM)
using same stimulating voltages (lower panel).

3. Materials and Methods
3.1. General

Optical rotations were measured with a Horiba SEPA-300 polarimeter (Horiba, Tokyo,
Japan). Melting point was recorded on an X-4 micro melting point apparatus (Beijing
Second Optical Instrument Factory, Beijing, China). IR spectra were obtained by a Tensor
27 spectrophotometer (Bruker, Karlsruhe, Germany) with KBr pellets. UV spectra were
obtained using a Shimadzu UV-2401A spectrophotometer (Shimadzu, Kyoto, Japan). 1D
and 2D spectra were run on a Bruker AM-400 or an Avance III 600 spectrometer (Bruker,
Karlsruhe, Germany) with TMS as the internal standard. Chemical shifts (δ) were expressed
in ppm with reference to the solvent signals. EIMS were recorded on a Waters Autospec
Premier P776 spectrometer (Waters Corporation, Milford, MA, USA). Column chromatog-
raphy (CC) was performed using silica gel (200–300 mesh, Qingdao Marine Chemical Co.,
Ltd., Qingdao, China) and MCI gel (75–150 mm; Mitsubishi Chemical Corporation, Tokyo,
Japan). Fractions were monitored by TLC (GF254, Qingdao Marine Chemical Co., Ltd.,
Qingdao, China), and spots were visualized by heating silica gel plates sprayed with 10%
H2SO4 in EtOH. All solvents were distilled prior to use.
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3.2. Plant Material

The whole plants of C. roseus were purchased from the Herb Material Market of
Juhuacun, Kunming, Yunnan Province, P. R. China, in June 2011, and identified by Prof.
Xiao Cheng, Kunming Institute of Botany, Chinese Academy of Sciences. A voucher
specimen (20110620C) was deposited at the State Key Laboratory of Phytochemistry and
Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences.

3.3. Extraction and Isolation

The air-dried whole plants of C. roseus (60 kg) were powdered and extracted with
methanol (4 × 200 L) under reflux. The methanol was evaporated under reduced pressure
to produce a residue, which was dissolved in hot water and adjusted to pH 2 with 0.5% HCl
and then extracted with ethyl acetate (50 L × 3). The water-soluble portion was adjusted
to pH 9.0 with sat. Na2CO3 and partitioned with CHCl3 to yield the total crude alkaloids
(200 g), which were chromatographed over silica gel column using a step-gradient eluting
with CHCl3-Me2CO (1:0-0:1) to obtain five fractions A–E. Fraction B was applied to MCI gel
column eluted with MeOH-H2O (40%-100%) to give subfractions B1–B4. Fraction B1 was
subjected to silica gel CC (CHCl3-MeOH, 10:1) to obtain compounds 6 (15 mg), 7 (15 mg),
and 8 (12 mg). Fraction B2 was subjected to silica gel CC (CHCl3-MeOH, 10:1) to obtain
compounds 3 (13 mg) and 4 (11 mg). Fraction C was subjected to silica gel CC (CHCl3-
MeOH, 9:1) to obtain compound 5 (5 mg). Fraction D was applied to MCI gel column
eluted with MeOH-H2O (30:70, 40:60, 50:50, 60:40, 70:30, 80:20, 90:10, 100:0, each 3 L) to
give subfractions D1-D3. Fraction D1 was subjected to silica gel CC (CHCl3-MeOH, 20:1)
and then purified by Sephadex LH-20 (CHCl3-MeOH, 1:1) to obtain compound 1 (2 mg).
Compound 2 (1.5 mg) was obtained by Sephadex LH-20 (MeOH) from Subfraction D3.

3.4. Spectroscopic Data of Compounds 1 and 2

Catharanosine A (1): Colorless crystals, mp 104−108 ◦C; [α]23
D -21.80 (c 0.12, MeOH);

UV (MeOH): λmax (logε) 298 (2.61), 248 (3.04), 205 (3.64) nm; IR (KBr) υmax: 3439, 2932,
1712, 1630, 1465, 1206 cm−1. 1H and 13C NMR spectral data, see Table 1; HR-EI-MS m/z
340.1782 (calcd. for C20H24N2O3, 340.1787).

Catharanosine B (2): Yellow oil; [α]23
D -98.25 (c 0.14, MeOH); UV (MeOH): λmax (logε)

309 (3.29), 261 (3.52), 213 (3.99) nm; IR (KBr) υmax: 3432, 2937, 1741, 1621, 1506, 1453,
1433, 1383, 1231, 1041 cm−1. 1H and 13C NMR spectral data, see Table 1; HR-EI-MS m/z
539.3000[M + H]+ (calcd. for C30H41N3O6, 539.2995).

3.5. X-ray Crystal Data of 1

C20H24N2O3·H2O, M = 358.43, a = 12.2146(2) Å, b = 12.2146(2) Å, c = 24.9041(6) Å,
α = 90◦, β = 90◦, γ = 90◦, V = 3715.60(15) Å3, T = 100(2) K, space group P41212, Z = 8,
µ(CuKα) = 0.727 mm−1, 17875 reflections measured, 3394 independent reflections
(Rint = 0.1146). The final R1 values were 0.0651 (I > 2σ(I)). The final wR(F2) values were
0.1599 (I > 2σ(I)). The final R1 values were 0.0654 (all data). The final wR(F2) values were
0.1603 (all data). The goodness of fit on F2 was 1.125. Flack parameter = 0.11(8). Crystal-
lographic data for compound 1 have been deposited in the Cambridge Crystallographic
Data Centre (deposition numbers: CCDC 2106217). Copies of these data can be obtained
free of charge via www.ccdc.cam.ac.uk.

3.6. Cav3.1 T-Type Calcium Channel Inhibitory Activity Assay

HEK293T cells purchased from ATCC were cultured at 37 ◦C with 5% CO2 in Dul-
becco’s modified Eagle medium with glucose, L-glutamine, pyruvate, 10% FBS, and 1%
Pen-Strep. Cells were seeded at low density onto 24-well plates 24 h before transfection.
Adherent cells were transfected using Lipofectamine 2000 reagent (Invitrogen) with 300 ng
Cav3.1 cDNA and recorded after 48 h. Whole-cell voltage-clamp recordings were per-
formed at room temperature (24 ◦C). The peak currents of Cav3.1 were elicited by 150 ms
depolarization from a holding potential of −100 mV to −40 mV at 4 s intervals. Borosil-

www.ccdc.cam.ac.uk
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icate glass micropipettes were pulled to produce a resistance of 4–6 MΩ and filled with
intracellular recording solution containing 130 mM CsCl, 2 mM MgCl2, 10 mM EGTA,
5 mM Na-ATP, 10 mM HEPES (pH 7.2 with CsOH). The extracellular recording solution
was composed of 145 mM CsCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM glucose, 10 mM HEPES
(pH 7.4 with CsOH). The current trace of Cav3.1 in different states was analyzed by the
Clampfit 10.6. Data were processed using the software Graphpad Prism 8.0.

4. Conclusions

In summary, two new MIAs, catharanosine A (1) and catharanosine B (2), together with
six known compounds (3–8) were isolated from the twigs and leaves of Catharanthus roseus.
The absolute configuration of compound 1 was confirmed by X-ray crystal diffraction anal-
ysis. Compound 2 represented the first aspidosperma-type alkaloid with a 2-piperidinyl
moiety at C-10. Compounds 6–8 dose-dependently inhibited on Cav3.1 with IC50 values of
11.83 ± 1.02, 14.30 ± 1.20, and 14.54 ± 0.99 µM.

Supplementary Materials: Supplementary Materials are available online. Figures S1–S9: 1D and 2D
NMR, HREIMS, UV, and IR spectra of compound 1. Figures S10–S18: 1D and 2D NMR, HREIMS, UV
and IR spectra of compound 2.
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