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As one of the most common malignant tumors worldwide, gastric adenocarcinoma
(GC) and its prognosis are still poorly understood. Various genetic and epigenetic
factors have been indicated in GC carcinogenesis. However, a comprehensive and
in-depth investigation of epigenetic alteration in gastric cancer is still missing. In this
study, we systematically investigated some key epigenetic features in GC, including
DNA methylation and five core histone modifications. Data from The Cancer Genome
Atlas Program and other studies (Gene Expression Omnibus) were collected, analyzed,
and validated with multivariate statistical analysis methods. The landscape of epi-
modifications in gastric cancer was described. Chromatin state transition analysis
showed a histone marker shift in gastric cancer genome by employing a Hidden-
Markov-Model based approach, indicated that histone marks tend to label different
sets of genes in GC compared to control. An additive effect of these epigenetic
marks was observed by integrated analysis with gene expression data, suggesting
epigenetic modifications may cooperatively regulate gene expression. However, the
effect of DNA methylation was found more significant without the presence of the
five histone modifications in our study. By constructing a PPI network, key genes to
distinguish GC from normal samples were identified, and distinct patterns of oncogenic
pathways in GC were revealed. Some of these genes can also serve as potential
biomarkers to classify various GC molecular subtypes. Our results provide important
insights into the epigenetic regulation in gastric cancer and other cancers in general. This
study describes the aberrant epigenetic variation pattern in GC and provides potential
direction for epigenetic biomarker discovery.
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INTRODUCTION

Gastric adenocarcinoma (GC) is one of the most common malignancies worldwide (Bray
et al., 2018). Most GC patients with symptomatic tumors are diagnosed at an advanced
stage (Leung et al., 2008), making GC the leading cause of death (Bray et al., 2018).
Genetic and epigenetic alterations are key features acquired by cancer cells to increase
fitness and drive its progression through tumor evolution (Fiziev et al., 2017). Epigenetic
modifications, e.g., histone modifications and DNA methylation, have been indicated to
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play a considerable role in GC carcinogenesis (Klutstein
et al., 2016). However, a genome-wide landscape of
multiple histone marks, DNA methylation, and especially
the combinatorial chromatin state in cancer progression
remain largely uncharacterized, partly attributed to the lack of
multiple-omics data.

As vital features of cancer, genetic, and epigenetic alterations
lead to aberrant gene functions, changes in gene expression and
genome stability (Jones, 2014). In contrast to genetic lesions,
epigenetic changes in chromatin are biochemically reversible and
involve changes in structure and function through epigenetic
modifications (Allis and Jenuwein, 2016). Accumulating evidence
has suggested that global levels of histone modifications are
associated with clinical outcomes and progression of different
cancer types (Varier and Timmers, 2011). For example, low
cellular levels of H3K4me2, H3K9me2, or H3K18ac are each
significant and independent predictor of poor survival in
pancreatic adenocarcinoma (Manuyakorn et al., 2010); reduced
H3K4me3 may have therapeutic benefit in the treatment of
PI3K-activated cancers by applying chemical inhibition of
the histone methyltransferase MLL1 (Spangle et al., 2016).
Recent research showed that human cancer cells harbor global
epigenetic abnormalities, and these genetic and epigenetic factors
interact at all stages of cancer development to promote cancer
progression. Previous reports suggested that infection with
Helicobacter pylori (H. pylori) or Epstein-Barr virus (EBV),
pathogens that play an important role in GC development, was
related to increased levels of abnormal DNA methylation in
GC (Calcagno et al., 2013). Many studies have also indicated
that aberrant DNA methylation is not just a feature of end-
stage malignancy, but also an early and driver event in gastric
pathogenesis (Zeng et al., 2017; Takeshima and Ushijima, 2019).
The overwhelming evidence in gastric cancer suggests that both
DNA methylation and histone modification alterations co-occur,
making it somewhat challenging to discern their contributions
to gastric carcinogenesis. Parallel studies measuring both DNA
methylation and histone modifications would be hugely valuable
but might be technologically complex to achieve.

With the development of high-throughput chromatin
immunoprecipitation sequencing technology (Strahl and Allis,
2000), comprehensive profiling of various epigenetic marks
has now become available. Some researchers reported that
H3K4me1, H3K4me3, H3K27ac, and H3K36me3 were tightly
associated with active transcription (Benevolenskaya, 2007;
Creyghton et al., 2010), whereas H3K27me3 was correlated
with repressive loci (Barski et al., 2007). Commonly, DNA
methylation is mostly associated with gene silencing (Kazmi
et al., 2018). Here we systematically investigated the five core
histone modification marks (H3K4me1, H3K4me3, H3K27ac,
H3K27me3, H3K36me3) and DNA methylation pattern in GC
samples. A comparative analysis was conducted between tumor
and normal samples in this research to reveal genome-wide
distinct patterns of epigenetic modifications in GC, particularly
in the promoter regions. Through integrative analysis of different
epigenomic and transcriptomic data, we revealed distinct
patterns of oncogenic pathway activation and provided novel
insights into GC subtype-specific therapeutic opportunities.

MATERIALS AND METHODS

Epigenetic and Transcriptomic Data Sets
of Gastric Cancer
All epigenetic modification data and gene expression data were
collected from the primary sample research of the same patient
cohort (Ooi et al., 2016), including 19 primary GCs and 19
matched normal gastric tissues (see details in Supplementary
Table S1). “Normal” (i.e., non-malignant) samples used in this
study were those collected from the stomach from sites distant
from the tumor and without obvious evidence of tumor or
intestinal metaplasia/dysplasia at the time of surgical evaluation.
Tumor samples were confirmed to contain > 40% tumor
cells by cryosectioning. More than 60% of the tumor were
Stage 3 or above (AJCC 7th edition) (Ooi et al., 2016). The
five histone modifications investigated in this study include
H3K4me1, H3K4me3, H3K27ac, H3K27me3, and H3K36me3.
Data generated from tumor and non-tumor adjacent tissues
and input libraries were obtained from the Gene Expression
Omnibus (GEO) database (GSE51776) (Muratani et al., 2014).
DNA methylation data from GEO (GSE85464) (Ooi et al., 2016)
were generated by Illumina HumanMethylation450 BeadChip,
measuring DNA methylation levels of 485,512 CpG sites in the
human genome. Gene expression data were generated from GEO
(GSE85465) (Ooi et al., 2016).

Reads Mapping
Reads generated from NanoChIP-seq were mapped to the human
reference genome (hg19) by the Bowtie2 program (Langmead
and Salzberg, 2012). Aligned reads were processed using samtools
to remove PCR duplicates (Li et al., 2009), and read lengths were
extended from 101 to 150 bp using MethylQA (Li et al., 2015).
RNA-seq reads were mapped to hg19 by Tophat2 program using
default parameters (Kim et al., 2013). The Cufflinks program
was applied to assemble the mapped RNA-seq reads with
default parameters and calculated the FPKM value (Fragments
Per Kilobase of exon model per Million mapped fragments)
(Trapnell et al., 2010).

Detection of Differential Histone
Modifications Regions
DiffReps program was used by default parameters for a
quantitative comparison of all the five histone modification
levels between tumor and non-tumor adjacent tissues
(adjusted P < 0.05) (Shen et al., 2013). The read densities
of the NanoChIP-seq library were corrected against the
corresponding input library.

Detection of Differential DNA
Methylation Regions
Differential methylated regions (DMRs) were obtained by the
DMRcate program using default parameters (Peters et al.,
2015). The candidate DMRs with an FDR < 0.05 (Benjamini-
Hochberg) were identified as differentially methylated regions.
Differentially methylated positions (DMPs) were identified by
the minfi program (Aryee et al., 2014), which employed the
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F-test to compare CpGs in the tumor and control samples, and
the CpGs with q-value < 0.05 were identified as differentially
methylated positions.

Identification of Genomic Feature With
Epigenetic Modifications
To investigate the potential co-localization relationships between
epigenetic alterations, genome-wide overlap analysis was
performed for each pair of epigenetic alterations by bedtools
intersect, and significance tests were performed using the
bedtools fisher (Quinlan and Hall, 2010). The differential
epigenetic alterations were mapped to various genomic features,
including promoter (< 1 kb), promoter (1–2 kb), UTR5, first-
exon, other-exon, first-intron, other-intron, UTR3, downstream
(of gene end), and distal intergenic for the hg19 genome.
Promoter regions were defined as region 2 kb up- and down-
stream of the transcription start sites (TSSs) of genes. The
genomic feature with altered epigenetic modifications was
identified by ChIPseeker (Yu et al., 2015).

Functional Enrichment Analysis
The R package clusterProfiler and gene annotation tool
Metascape were adopted to uncover the functional enrichment
(Yu et al., 2012; Zhou et al., 2019).

Chromatin States Analysis
ChromHMM enables the learning of chromatin states, annotates
their occurrences across the genome by automatically computing
state enrichments for external annotations (Ernst and Kellis,
2012). The narrow peak files of histone modifications obtained
from MACS2 were used as input data using a P-value cutoff of
1e-4 (Zhang et al., 2008). The analysis was conducted by 19 states
based on the theory from previous research (Fiziev et al., 2017).
The chromatin states were annotated according to the functional
annotations of the human genome (Ernst and Kellis, 2010).

Chromatin State Transition of the Tumor
and Normal Samples
Chromatin state transition probability between normal and
tumor cells was calculated based on the method described before
(Fiziev et al., 2017). The 200 bp bins were counted based on the
segment’s information supplied by each of tumor and normal
samples. Then, we intersected the bins occupied by 19 states
annotations of the tumor and normal samples, respectively. To
calculate the raw enrichment score, the number of intersected
bins (Numobserved) were divided by the expected number of such
bins (Numexpected) assuming a null model that the chromatin
states of tumor cells and chromatin states of normal cells were
independent.

RES (Raw Enrichment Score) =
Numobserved

Numexpected

Further, to normalize the enrichment score, we divided the
enrichment score of transitioning from state i in normal samples
to state j in tumor samples (RESNiTj ) by the enrichment score of

transitioning from state j in normal samples to state i in tumor
samples (RESNjTi ).

NESNiTj(Normalized Enrichment Score) =
RESNiTj

RESNjTi

The Analysis of Epigenetic Regulation of
Gene Expression
To examine the association between epigenetic alterations
and gene expression patterns, genes involved in epigenetic
modifications were grouped according to the characteristics
of the modifications. The genes were first divided into four
distinct groups based on the number of co-localizations of
various epigenetic modification alterations in their promoter
regions. Genes with a single type of epigenetic modification,
genes with two types of epigenetic modification, genes with
three types of epigenetic modification, and genes with no
less than four types of epigenetic modification alterations.
The four groups of genes were then further classified into
three different subgroups of active, repressed, or poised genes
based on the effect of epigenetic modification alterations on
the transcription of the corresponding genes, respectively.
As described above, H3K4me1, H3K4me3, H3K27ac, and
H3K36me3 serve as active signals, whereas H3K27me3 and
DNA methylation are repressive signals. The active subgroups
included genes regulated by up-regulated active and down-
regulated repressive signals, whereas the repressive subgroups
contained genes regulated by down-regulated active signals
and up-regulated repressive signals, and the poised subgroups
contained genes with conflicting epigenetic signals that were
either up-regulated active and up-regulated repressive signals,
or down-regulated active and down-regulated repressive signals.
We calculated the average log2 FPKM fold change for genes
between tumor and normal samples in each subgroup. Then, for
the following hub gene screening, overexpressed genes whose
log2 FPKM fold change > 1 in the active subgroups and
underexpressed genes whose log2 FPKM fold change <−1 in the
repressive subgroups were retained (paired t-test, P-value < 0.05)
(Ernst et al., 2017).

Construction of Protein-Protein
Interaction (PPI) Network for Hub Genes
To obtain the epigenetically regulated GC oncogenes, we
searched the oncogene database1 (Pletscher-Frankild et al.,
2015). String (Szklarczyk et al., 2018) was used to construct
the PPI network, and 293 genes resulted. The hub genes
were discerned by Cytoscape (Smoot et al., 2010). To filter
out the hub genes from genes involved in the PPI network,
we focused on genes that could be the potential targets of
the epigenetic change. We first obtained overexpressed genes
in the active subgroups and underexpressed genes in the
repressive subgroups based on the analysis results. Genes with
the “closeness” parameter over 130 were then screened for the
next step. Because the number of overexpressed genes was far

1https://diseases.jensenlab.org/Search
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more than underexpressed genes, we sampled all underexpressed
genes and the top 30% of overexpressed genes based on the
sort of “Degree” parameter. At last, we obtained 53 genes for
further analysis.

Reactome pathway enrichment was performed by the
ClueGO function of Cytoscape, and the association between
different pathways was calculated according to the kappa score
(Croft et al., 2013), which is used to define the term-term
interrelations (edges) and functional groups based on shared
genes between the terms.

Consensus Clustering
The hierarchical clustering of RNA-seq data was conducted using
the ward.D2 agglomeration method and Euclidean distance. All
32 normal samples and corresponding tumorous samples were
screened. The gene expression data of breast invasive carcinoma
(BRCA), colon adenocarcinoma (COAD), liver hepatocellular
carcinoma (LIHC), and thyroid cancer (THCA) were collected
from The Cancer Genome Atlas (TCGA).

Cox Regression Model
The Cox regression model was used to evaluate the association
between survival and the expression level of each hub gene (Cox,
1972). Genes that were significantly correlated with survival
(P < 0.05) were identified as members of the gene signature.
Furthermore, we assigned each patient a risk score according to a
linear combination of the gene expression values weighted by the
regression coefficients from the univariate Cox regression model.
The risk score for each patient was calculated as follows:

Risk_score =
n∑

i=1

βi × Expsignature(i)

where βi is the Cox regression coefficient of gene i, and n is
the number of genes significantly associated with survival. All
patients were thus divided into high-risk and low-risk groups
using the median risk score as the cutoff. The Kaplan-Meier
method was further used to estimate the overall survival time for
the four molecular subtypes. The differences in the survival times
were analyzed by the log rank test.

RESULTS

Epigenetic Modification Landscape in
Gastric Cancer
In this study, the differential epigenetic modified regions
(DEMRs) by five core histone modifications and DNA-
methylation in GC were identified (Table 1). In total, 8,424
DMRs were identified in GC (FDR < 0.05). A detailed
investigation of the differential methylation positions (DMPs)
revealed 90,468 differentially methylated CpGs sites, among
which 18,460 were found within the CpG islands (CGIs)
(q < 0.05, F-test, FDR-corrected). Most of the DMPs were
hypomethylation (87%, P < 2e-16, Wilcoxon rank-sum test)
(Supplementary Figures S1A,B) associated with non-CGIs

TABLE 1 | Counts of differentially epigenetic modified regions (DEMRs) for six
types of epigenetic modifications in GC.

Epigenetic modifications DEMRs Up/down

H3K4me1 2,744 1,617/1,127

H3K4me3 3,559 1,701/1,858

H3K27ac 7,557 4,856/2,701

H3K27me3 1,392 978/414

H3K36me3 4,453 2,690/1,763

mC 8,424 1,156/7,268

(P < 2.2e-16, Chi-square test, Yates’ continuity corrected).
Hypermethylation was found to be mostly associated with
CGIs (P < 2.2e-16, Chi-square test, Yates’ continuity corrected)
(Supplementary Figures S1C,D).

Epigenetic modifications show a specific degree of
redundancy, and certain epigenetic modifications may work
in a combinatorial manner (Wang et al., 2008). We found
that ∼49.7% of the genes in the genome were associated
with at least one type of epigenetic change, and 24.8% of the
genomic regions were marked by two co-localized epigenetic
modifications (Figure 1A). H3K27ac/mC (Fisher’s two-
tailed P = 6.5598e-292), H3K4me3/mC (Fisher’s two-tailed
P = 3.0205e-273), and H3K4me3/H3K27ac (Fisher’s two-
tailed P = 0) were commonly found pairs that were highly
significant (Figure 1B), and the most frequent triplet marks were
H3K4me3/H3K27ac/mC (Fisher’s two-tailed P = 4.8021e-150)
and H3K4me1/H3K27ac/mC (Fisher’s two-tailed P = 7.8464e-
17). Among genes modified by the six types of epigenetic
modifications in Figure 1B, AOC1 was an oncogene in human
gastric cancer that activates the AKT signaling pathway (Xu
et al., 2020). MYC has been described as a key factor in several
human carcinogenic processes (Calcagno et al., 2008). The
overexpression of PRKCI was associated with poor outcomes in
patients with gastric and other cancers (Hashimoto et al., 2019).
Upregulation of BCAT1 was associated with poor prognosis in
numerous types of tumors and its high expression significantly
worsen overall survival in gastric tumors (Xu et al., 2018).
To systematically investigate the distribution of epigenetic
alterations in different genomic regions, the genome was
portioned into 10 regions (Figure 1C). UTR5, UTR3, first-exon
and downstream were the least favored regions by altered
epigenetic marks. Promoters were the main targets of DNA
methylation (54.45%) and H3K4me3 modification (53.41%).
Altered H3K36me3 was mostly mapped to the coding sequence
and introns (71.79%).

To explore the biological significance of genes regulated by
epigenetic alterations, we next performed the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis
for these genes (Figure 1D). Among the top enriched pathways,
some were shared by different epigenetic alterations. For
example, “Gastric Cancer” and “Wnt signaling pathway” etc. On
the other hand, a fair number of pathways were associated with
only one specific epigenetic alteration, e.g., “Herpes simplex virus
1 infection,” which is involved in Helicobacter pylori infection
(Tsamakidis et al., 2005). Overall, these observations suggested
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FIGURE 1 | The epigenetic alteration for different genomic features in GC. (A) The proportion of genomic regions occupied by different numbers of epigenetic
alterations. In the upper pie chart, 61% of genomic region were occupied by 1 epigenetic mark, and the remaining regions were co-occupied by varying numbers of
epigenetic marks. Base on the genomic region occupied by 1 mark, the lower pie chart showed the proportion of genomic regions occupied by different types of
epigenetic marks. (B) Overview of co-localization for each epigenetic modification. The intersection area indicates the count of co-altered epigenetic modifications,
corresponding to the number in the Venn diagram. Different types of epigenetic marks altered together were connected by black lines. (C) The percentage of
genomic features with altered epigenetic modifications. Upregulated and downregulated epigenetic modifications were colored in purple and orange, respectively.
(D) KEGG enrichment analysis for all DHMRs. The X-axis denotes different types of epigenetic modification.

that epigenetic regulation plays an essential role in cancer-
associated biological processes.

The Chromatin States Shift in Gastric
Cancer
Chromatin states and their genomic occurrences provide a
systematic annotation of DNA elements and regulatory regions
and can be used to interpret genome-wide association of

epigenetic modification and gene expression in cancer (Filion
et al., 2010; Ernst et al., 2011).

A combinatorial chromatin state transition analysis was
conducted for GC vs. normal samples. A final model with
19 states was adopted for further downstream analysis
(Figure 2A). By triangulating the defined chromatin states
with known genome organization features, we grouped the
19 chromatin states according to the following putative
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FIGURE 2 | Chromatin state analysis. (A) ChIP signals matrix showed the histone modification profiles of tumor samples and normal samples for the 19 states
inferred by the ChromHMM algorithm. First column gave state number and candidate state description, and second column gave the state abbreviations. In the
heatmap of the emission parameter, each row corresponded to a different state, and each column corresponded to a different histone mark. The darker blue color
corresponded to a higher frequency of occurrence of the mark in the state on the scale from 0 (white) to 1 (blue). The heat map of Genomic annotations displays
enrichment for various external genomic annotations. A darker green color corresponded to a higher enrichment on the genomic feature. Overlap of different
genomic features (CpG island, Exon, Gene, Intron, TES_2kb, TES, TSS_2kb, TSS, ZNF genes) with chromatin state called in tumor and normal cells. TES indicated
transcription end site, and TES_2kb indicated regions within 2kb of the TES. TSS indicated transcription start site, and TSS_2kb indicated regions within 2kb of TSS.
(B) Heatmap showed the raw enrichment score of state transitions between normal and tumor samples. The color bars on the left and top corresponded to the
color bar of state description in (A). “T” on left color bar indicated tumor sample, and “N” on the top color bar indicated normal samples. The frequent state
transitions were highlighted with purple frame. (C) Heatmap showed normalized enrichment score of transitions of chromatin states from normal to GC samples. The
color intensities range from white (relative enrichment < 1) to orange and blue (relative enrichment > 1). The normalized enrichment score of more than two were
shown. The region with non-repressive states was labeled with orange color, and the region with the repressive state was labeled with a blue color with red frame.

annotations: promoter regions (state 1–4), transcribed
(state 5–8), enhancers (state 9–14), Zinc finger genes (state
15), bivalent promoter regions (state 16), bivalent or weak
enhancer (state 17), polycomb repressed (state 18), and
quiescent (state 19).

Pairwise state transitions between normal and GC samples
were investigated (Figure 2B), and frequent transitions were
found between closely located genomic regions, e.g., promoter
regions (state 1–4). Pearson’s chi-square test for independence
further supported the above findings (Supplementary
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Figure S2). To further understand the state transitions, we
normalized the enrichment of state transitions between normal
and GC samples with respect to the same pair with opposite
directions. Some predominant transitions between states were
identified. For example, the frequency of state transition from
weak TSS (state 4) to active TSS (state 1) is 3.8 times more
compared with active TSS to weak TSS transition (Figure 2C).
Although frequent transitions were found between specific
genomic regions, the frequency of many such transitions was
equal between the same pair of states from normal to GC samples.
For instance, the frequency for state 6 to state 7 transition was
equivalent to that for state 7 to state 6 transitions (Figure 2C).

To explore the biological significance of predominant
chromatin state transition, we performed pathway enrichment
analysis for genes associated with the specific pairwise transition
in their promoter regions. We found that promoters harboring
weak to active TSS transition in GC were preferentially
mapped to several cancer-associated terms, such as “cell cycle
phase transition,” “cell division,” “DNA repair” (Supplementary
Figure S3A), suggesting increased cell division and accelerated
cell cycle in GC. Meanwhile, sizable genes switched from
Active/Flanking TSS to Bivalent/Poised TSS in GC were enriched
with GO term such as “regulation of cell adhesion” and “negative
regulation of cell differentiation,” consistent with the fact
that many malignant tumors are dedifferentiated cells bearing
little or no resemblance to the normal cells (Supplementary
Figures S3B–D).

Overall, these results suggest that transition from normal to
tumor phenotypes is accompanied by chromatin states transition
within specific regions. In particular, our results revealed
significant predominant epigenetic transitions from normal to
tumor cells, indicating the crucial role of combinatorial histone
modifications in GC.

The Combined Effects of Histone
Modifications and DNA Methylation on
Gene Expression
Histone modifications and DNA methylation are two key factors
regulating gastric carcinogenesis. However, whether these two
factors function independently or coordinately in GC is still
unknown. In our study, we first examined the impact of DNA
methylation on gene expression and found that 61.4% of the
genes exhibited a significant negative correlation (r = −0.436,
P = 1.12e-156) (Supplementary Figures S4A,B). Hence, we used
this group of genes for the following correlation analysis.

To assess the relationship between combined epigenetic
marks and gene expression, genes were divided into four
categories according to the number of differential epigenetic
modifications at their promoter regions. As described above,
H3K4me1, H3K4me3, H3K27ac, and H3K36me3 serve as active
signals, whereas H3K27me3 and DNA methylation are repressive
signals. Among the four categories, these genes were further
classified into active, repressive, or poised subgroups according
to the effect of epigenetic modifications. As seen in Figure 3A,
the global gene expression levels in the active subgroups
were increased, while those in the repressive subgroups were

decreased. Furthermore, with increased number of altered
epigenetic marks, the additive effect became more apparent and
accumulative. Notably, with the increased number of significantly
altered epigenetic modifications, the regulatory effects of multiple
epigenetic marks tend to be significant and effective. Thus,
these results suggested that various epigenetic modifications may
function synergistically to regulate gene expression.

To further investigate the pathways regulated by the combined
epigenetic alterations, we performed the KEGG pathway
enrichment analysis of up- and down-regulated genes in each
subgroup (Table 2). First, several cancer-associated pathways
were identified in each of the subgroups. For example, in
the 1-marker group, the “cell cycle” pathway was activated,
and in the 2-markers group, the “gastric cancer” pathway
was activated and the “apoptosis” pathway was inhibited.
Thus, we obtained information on cancer-related pathways
associated with epigenetic alterations, as well as how the
combinations of epigenetic alterations regulate the relevant
pathways (activation/repression).

To compare the influence of unique and multiple epigenetic
modifications at promoter regions, we grouped the differentially
modified genes based on the number of epigenetic marks (one
mark group and more than one mark group). Interestingly,
the correlation between fold change of DNA methylation and
gene expression was weak in the latter group. The effect of
DNA methylation tends to be more evident when it acts alone
(Figure 3B). In addition, the proportion of genes modified
by DNA methylation and other histone modifications was
far less than the genes altered by DNA methylation only
(Figure 3B). This observation indicated that DNA methylation
tends to function independently. Then, the pairwise correlation
of epigenetic alterations was investigated for promoter and gene
body region, respectively (Figures 3C,D). In general, relatively
strong associations were maintained among the five core histone
modifications at the promoter regions, whereas the correlation
between DNA methylation and histone modifications was weak.

Distinct Oncogenic Pathways Associated
With Epigenetic Modifications
Systematic characterization of gastric cancer genomes has
identified somatic mutations in several key signaling pathways
(Kimura et al., 2004). Globally, most of the frequently mutated
genes, such as MYC, KARS, MDM2, were also regulated
by various types of epigenetic modifications, implying the
interactions between genetic and epigenetic processes in tumor
onset and progressions. In the critical signaling pathways of
gastric cancer, the alteration of epigenetic modification of genes
may result in distinctive biological consequences.

To explore the effect of epigenetic alteration on oncogenic
pathways, we first filtered the genes with multiple epigenetic
modifications in the oncogene database. A protein-protein
interaction network (PPI) was then constructed to identify the
vital hub genes. In total, 53 genes were identified as potential
essential gastric cancer-related genes regulated by epigenetic
modifications. We next performed pathway enrichment analysis
for these essential genes through the Reactome pathway database
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FIGURE 3 | The association between epigenetic modifications and gene expression. (A) Additive effects of epigenetic alterations on gene expression. Genes were
grouped into active subgroups (orange), poised subgroups (blue), and repressive subgroups (purple). The X-axis denotes the counts and patterns of epigenetic
marks, and the Y-axis shows the log2 FPKM fold change of gene expression. (B) The coefficient of Spearman’s correlation was calculated between epigenetic
alterations and fold change of gene expression. Promoters of genes modified by only one epigenetic mark (blue) or more than two marks (orange) were indicated.
The coverage denotes the proportion of genes in each category. (C) Pearson’s correlation analysis of paired epigenetic alterations at the promoter and (D) the
coding DNA sequence (CDS) (P < 0.05). Non-significant results were denoted with “NA.”

search (P < 0.05) (Figure 4A). Among the enriched pathways,
“ERBB2 signaling pathway” contains essential genes ERBB2,
ERBB3, EGF, EGFR, KRAS, and SRC. EGFR plays a role in
gastric mucosa proliferation and gastric cancer development.
Overexpression of EGFR was found associated with poor cancer
prognosis. One of the downstream components of EGFR
pathways is Ras, an oncogenic GTPase that has three isoforms,
including KRAS, HRAS, and NRAS. Mutation of KRAS gene
has been detected in the intestinal type of gastric cancer
(Molaei et al., 2018).

Clinical Indications of Crucial Pathway
Genes Modified by Epigenetic Marks
The epigenetically regulated key genes may serve as important
indications in the clinical practice of GC. We found that the

53 key oncogenic pathway genes showed significant tumor-
specific expression patterns in the clinical samples. Hierarchical
clustering of the TCGA gastric cancer genome using these
key genes resulted in a consistent separation of tumors vs.
normal groups (Figure 4B and Supplementary Figure S5).
Promisingly, these genes could also be used as general markers
for other cancer types. For example, clear separations of tumor
vs. normal samples were also achieved for human breast
cancer, colon cancer, hepatocellular liver carcinoma, and thyroid
cancer (Supplementary Figure S6). This result highlights the
importance of these key biomarker genes in the general diagnosis
of different cancer types.

To further explore whether these genes can be effectively used
as a prognosis signature, e.g., the survival of GC patient, Cox
regression analysis was performed to evaluate the effect of gene
expression on the GC patient status. All gastric tumor patients
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TABLE 2 | KEGG enrichment analysis of up- and down-regulated genes in each subgroup with P-value cutoff 0.05.

Groups Subgroups Term ID Description −log10(P)

1 Marks Active hsa04080 Neuroactive ligand-receptor interaction 7.13

ko04110 Cell cycle 3.35

ko05033 Nicotine addiction 2.78

Repressive ko04270 Vascular smooth muscle contraction 4.87

hsa04911 Insulin secretion 4.72

ko04977 Vitamin digestion and absorption 2.93

2 Marks Active ko04610 Complement and coagulation cascades 4.65

hsa00350 Tyrosine metabolism 3.52

hsa05226 gastric cancer 3.00

Poised ko04137 Mitophagy–animal 2.29

ko04722 Neurotrophin signaling pathway 2.04

hsa00515 Mannose type O-glycan biosynthesis 1.61

repressive ko04024
hsa04728

cAMP signaling pathway
Dopaminergic synapse

3.37
3.12

ko04210 Apoptosis 1.82

3 Marks Active ko05160 Hepatitis C 4.13

ko04914 Progesterone-mediated oocyte maturation 2.40

hsa04392 Hippo signaling pathway–multiple species 2.39

Poised ko04971 Gastric acid secretion 2.92

ko05414 Dilated cardiomyopathy 2.69

hsa05200 Pathways in cancer 2.27

Repressive ko04960
ko04070
ko04144

Aldosterone-regulated sodium reabsorption
Phosphatidylinositol signaling system
Endocytosis

3.50
2.66
1.84

Over 4 Marks Active hsa04146 Peroxisome 2.07

Poised NA – –

Repressive NA – –

−log10(P) indicated the −log10 P-value for enrichment. The top three enriched terms were shown based on the sort of −log10(P). Non-significant results were denoted
with “NA.”

FIGURE 4 | The association between oncogenic pathways and epigenetic modifications. (A) The Reactome pathway enrichment analysis for 53 essential hub
genes. (B) Hierarchical clustering of 64 gastric cancer samples (32 tumor samples and 32 corresponding non-tumor adjacent samples) from TCGA using expression
profiles of epigenetically regulated genes in key signaling pathways.
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FIGURE 5 | Subtype-specific progression associated genes. (A) Kaplan-Meier estimates of overall survival rate for all samples (ALL), CIN, GS, EBV, and MSI subtype
of TCGA patient cohort according to the expression pattern of subtype-specific genes in (B). Red line indicated that GC patients with high-risk scores were
associated with a lower median survival rate, and green line indicated that GC patients with low-risk scores were associated with a higher median survival rate.
(B) Subtype specific gastric cancer progression associated genes (P < 0.05 were shown). Red (Risky) indicated that higher gene expression associated with worse
survival, and blue (Protective) indicated that higher gene expression associated with better survival.

of TCGA were divided into high-risk and low-risk groups based
on the risk scores calculated from the formula described in
the method. As shown in Figure 5A, GC patients with high-
risk scores were associated with a lower median survival rate
compared to those with low-risk scores. These identified key
oncogenes were also found effective in various GC subtypes.
Histologically, gastric tumors were classified into intestinal and
diffuse types according to the Lauren’s classification, and current
histopathologic systems can influence the choice of endoscopy
or surgery to some extent (Sanjeevaiah et al., 2018). Besides,
the TCGA has proposed a molecular classification method to
divide GC into four subtypes: EBV-positive tumors, microsatellite
unstable tumors (MSI), genomically stable tumors (GS), and
tumors with chromosomal instability (CIN) (Network, 2014;
Cristescu et al., 2015). Considering the heterogeneity of the
disease and the guidance for precise treatment of individual
patients, such molecular data-based classification may prove
to be more clinically influential in therapeutic prediction and
prediction of patient prognosis (Chia and Tan, 2016). Among the

53 genes, 23 were identified as GC-specific prognostic markers
based on the four molecular subtypes (P < 0.05) (Figures 5A,B).
The marker genes identified in this study may provide further
opportunity for epigenetic targeted cancer therapy.

DISCUSSION

In this work, a genome-wide landscape of epigenomic variation
in gastric cancer was portrayed based on reasonable sample
series and rigorous statistical analysis. At the genome level,
epigenetic alterations were frequently found in GC. To examine
the histone modification pattern in GC, we carried out chromatin
state transition analysis. Notably, the feature of non-bivalent
chromatin states was rather stable. Accompanied by chromatin
state transition in GC, certain combinatorial histone marks tend
to label different sets of genes in the GC genome compared to
control. The predominant chromatin states transition suggested
that this pattern of combinatorial histone modification may
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functionally dysregulate gene expression in GC. Pathway
enrichment analysis showed that the predominant state transition
was involved in several cancer-associated GO terms, including
“cell cycle,” “cell division,” “DNA repair,” “regulation of cell
adhesion,” “negative regulation of cell differentiation,” and
“response to wounding” etc.

DNA methylation and histone modification influence the
genome function through changing chromatin architecture and
stability. For the first time, we revealed that multiple epigenetic
modifications might regulate gene expression synergistically,
and their effects are accumulative. Interestingly, we found
that the impact of DNA methylation on gene expression was
more significant without the presence of histone modifications,
suggesting that histone modification tends to mock the effect of
DNA-methylation when both marks are present.

Epigenetically modified genes were mapped to distinct
oncogenic pathways by constructing a PPI network. A series
of notable pathways dysregulated by multiple epigenetic
modifications were revealed by using the key genes. For example,
the “SUMOylation pathway” genes were enriched, including
BRCA1, CDKN2A, DNMT1, ESR1, MDM2, NFKBIA, PARP1,
TOP2A, and TP53. SUMOs (small ubiquitin-like modifiers) are
ubiquitin-like proteins that become conjugated to substrates
through a pathway that is biochemically similar to ubiquitination
(Poukka et al., 2000). Recently, dysregulated SUMOylation has
been observed in human cancers (Kim and Baek, 2006; Eifler
and Vertegaal, 2015). However, there is no study focusing on
the influence of sumoylation-related genes on the risk of GC.
Our study revealed that the “SUMOylation pathway” genes
not only associated with GC but also regulated by epigenetic
modifications. Thus, the “SUMOylation pathway” may be a
potential target for epigenetic cancer therapy. Furthermore, the
hierarchical clustering of the TCGA gastric cancer genome using
these key genes resulted in a precise grouping of tumors from
normal samples. Promisingly, these key genes are also efficient in
the classification of other types of cancers, such as breast cancer,
colon cancer, hepatocellular liver carcinoma, and thyroid cancer.

By evaluating the significant association between gene
expression and overall survival, we identified some potential
biomarkers for all gastric cancer, as well as CIN, MSI, GS, and
EBV subtype, respectively (Figure 5B). For example, EGF and
MYC, the well-known oncogenes in GC (Cai et al., 2019), were
identified as general markers. Although some of the marker genes
are commonly found in different GC subtypes, most of them were
subtype specific. For instance, CD44 showed increased resistance
for chemotherapy- or radiation-induced cell death (Takaishi
et al., 2009) and was previously identified as a marker gene for
gastric cancer stem cells. Our study revealed that CD44 was likely
the distinct biomarker for CIN subtype. Besides, the previous
study indicated that CCND1 overexpression was associated with a
more favorable prognosis and responded better to anti-estrogen
therapy in breast cancer (Bieche et al., 2002). In our study, we
identified CCND1 as the potential specific biomarker for the
EBV subtype. Our results suggested that subtype-specific epi-
regulated biomarkers tend to associate with the overall survival
of patients. Such findings may facilitate the prognosis of gastric
cancer subtype in clinical practice.

CONCLUSION

In summary, we first carried out a comprehensive investigation
of various epigenetic alterations in GC. Through systematic
profiling of six epigenetic modifications and transcriptomic
analysis, we defined the chromatin state transition associated
with tumorigenesis of gastric adenocarcinoma. The combined
effects of multiple epi-modification marks on gene expression
were then discussed. The results of the additive effect analysis of
epigenetic alteration in gene expression not only explained the
manner of epigenetic regulation, but also gave us information on
what pathway would be affected through combined epigenetic
modifications. Meanwhile, the results suggested a possible
interplay among histone modification and DNA methylation.
Finally, we identified a list of potential prognostic biomarker
genes regulated by epigenetic modifications. Our findings
will facilitate more accurate classification and diagnosis of
patients with gastric cancer and hold premises for better
prevention and therapy of gastric cancer as well as other cancer
types in general.
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