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ABSTRACT

Spinal trauma accounts for a large portion of injuries to the spine area, particularly 
as societies are entering an era of aging populations. Consequently, spine fractures 
accompanied by osteoporosis are becoming more prevalent. Achieving successful 
fusion surgery in patients with spine fractures associated with osteoporosis is even more 
challenging. Pseudarthrosis in the spine does not yield clinically favorable results; however, 
considerable effort has been made to achieve successful fusion, and the advancement of bone 
graft substitutes has been particularly crucial in this regard. Autograft bone is considered 
the best fusion material but is limited in use due to the quantity that can be harvested 
during surgery and associated complications. Accordingly, various bone graft substitutes 
are currently being used, although no specific guidelines are available and this mainly 
depends on the surgeon's choice. Therefore, the purpose of this review, across part I/II, is 
to summarize bone graft substitutes commonly used in spine surgery for spine fusion in 
patients with spine trauma and to update the latest knowledge on the role of recombinant 
human bone morphogenetic protein-2.
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INTRODUCTION

Fusion is one of the most common techniques used to treat various pathological conditions 
of the spine, from degenerative diseases to tumors.4,24,45) Successful fusion is absolutely 
necessary, especially in patients with spine trauma who have instability in the spine. 
Successful fusion forms a solid bone union between the vertebras, eliminating motion and 
stabilizing the spine.9,40,46) Many attempts have been made to preserve and overcome the loss 
of spine motion, which is a major limitation of the fusion technique, but have not yet shown 
better results than the fusion technique.31,35) Bone graft substitutes have been widely used in 
the spine field to achieve successful fusion.21,23,27) Autologous bone has been used as the gold 
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standard for spinal fusion because this provides all the required biological characteristics, 
including osteogenic, osteoconductive, and osteoinductive properties. However, the exclusive 
use of autologous bone as bone graft material is limited because of complications related 
to harvesting of autograft and lack of supply.13,17,41) Therefore, as an alternative, many bone 
graft substitutes have been researched, developed, and used in the spine market and exhibit 
improved osteogenic properties and produce successful fusion results.6,22,23,27,28) However, 
firm guidelines are still lacking for bone graft substitutes that must be used for successful 
bone fusion, and the selection is made based on the experience and preferences of surgeons. 
In this review, our aim is to provide an overview of commonly used bone graft substitutes 
in spine fusion, with a particular focus on an updated review of recombinant human bone 
morphogenetic protein (rh-BMP), which has grown in prominence as a bone material 
in recent years. Furthermore, this review is intended to serve as a basis for selecting the 
appropriate fusion material during fusion surgery to achieve successful fusion.

BIOLOGY OF SPINE FUSION

The process of spine fusion, which includes interbody fusion and intertransverse process 
fusion, is similar to that of fracture healing and involves a combination of intramembranous 
and endochondral ossification. Human studies are unavailable because of clinical and ethical 
issues, and information related to fusion biology is indirectly obtained through animal 
studies.5,38) Boden et al.3,4) explained the process of spine fusion using a rabbit model. The 
authors divided the process of autograft bone fusion into five stages. The first stage is the 
inflammatory process (weeks 1–2). During endplate preparation for interbody fusion, the 
cartilage endplate is removed, and the bony endplate is decorticated, causing the formation 
of a hematoma around the endplate and bone graft. Inflammatory cells invade, inducing the 
generation of cytokines. Fibroblast-like cells in the formed inflammatory tissue transform 
into a fibrovascular stroma. In the second stage, the vascularization process (week 3) occurs. 
Vascular buds appear in the fibrovascular stroma. Subsequently, primary membranous bone 
formation occurs at the decortication site, and collagen and cartilage scaffolds start forming 
between the decorticated sites for endochondral ossification. The region of membranous 
ossification is referred to as the outer zone of fusion, and the endochondral ossification 
region is called the central zone. Following this, osteoinduction and osteoconduction 
processes occur. This is the reparative phase and occurs in weeks 4–5. The osteoinduction 
process is characterized by increased vascularization, the reabsorption of necrotic tissue, and 
the differentiation of pluripotential mesenchymal cells into chondroblasts and osteoblasts. 
New bone extends into the central zone of the fusion mass, and the cortical portion of the 
graft continues to be reabsorbed. The osteoconduction process involves new bone ingrowth 
into the host bone, and a fusion bridge is observed in the central zone, uniting the upper 
and lower halves of the fusion. The cartilaginous tissue undergoes calcification but remains 
immature and in a woven bone form, signifying the early stages of fusion. After 6 weeks, 
the remodeling process begins, where immature woven bone transforms into mature 
lamellar bone, incorporating both cortical and cancellous components. While this process 
predominantly occurs around 12 weeks after surgery, the overall remodeling process is 
typically completed within 1 year.22,23) Bone maturation is more pronounced and faster in 
the outer zone but also takes place in the central zone, albeit at a slower pace. This temporal 
delay in maturation in the central zone is known as the central “lag effect,” which can help 
explain why nonunion is more likely to develop in the central zone of the fusion mass. The 
above stages are summarized in FIGURE 1.
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BONE GRAFT SUBSTITUTES

Bone graft substitutes assist in successful fusion through the following mechanisms: 
osteogenesis, osteoinduction, and osteoconduction. Osteogenesis is process of providing active 
cells (such as osteoblasts and osteoprogenitor cells) that can differentiate into cells capable 
of creating bone, depending on osteoprogenitor stem cells. Osteogenic grafts that include 
autografts can provide such cells. Osteoinduction involves providing factors that stimulate the 
growth of new bone and can includes BMP, demineralized bone matrix (DBM), autografts, or 
allografts. Osteoconduction entails providing a scaffold or structure that allows new bone to 
grow and includes materials such as autografts, allografts, ceramics, and DBM (TABLE 1).12,15,19,32)
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1. Inflammation process (week 1–2) 2. Vascularization process (week 3)

3. Osteoinduction process (week 4) 4. Osteoconduction process (week 5) 5. Remodeling process (week 6–)

FIGURE 1. Process of spine fusion. 
VB: no description, TNF: tumor necrosis factor, FGF: fibroblast growth factor, PDGF: platelet-derived growth factor, TGF-β: transforming growth factor beta, BMP: 
bone morphogenetic protein.

TABLE 1. Bone graft substitutes properties
Graft material Osteogenesis Osteoinduction Osteoconduction
Autograft 2 2 2
Allograft 0 2 2
BMA 3 2 0
BMP 0 3 0
DBM 0 2 1
Ceramic

β-TCP 0 0 2
Hydroxyapatite 0 0 1
Injectable CP cement 0 0 1

Data from reference 12,15,19,32); sore range 0 (none) to 3 (excellent).
BMA: bone marrow aspirate, BMP: bone morphogenetic protein, DBM: demineralized bone matrix, β-TCP: 
β-tricalcium phosphate, CP: calcium phosphate.



Autografts
An autograft, which is local bone or harvested bone, is commonly used because it has all 
three properties of osteogenesis, osteoinduction, and osteoconduction, and thus includes 
osteoblasts, bone matrix, BMPs, and bone graft factors.6,22) Additionally, autografts are cost-
effective and do not carry any risk of disease transmission when compared with other bone 
graft substitutes. Many studies have reported relatively high fusion rates ranging from 40 to 
100% with autografts.14,29,36,39) However, these fusion rates can vary significantly depending 
on the surgeon's technique, use of instrument, amount of graft volume, and endplate 
preparation. Unlike BMP, autograft transplanted into soft tissue does not form bone because 
the level of transforming growth factor-beta is relatively low in the autograft. Therefore, 
several studies have questioned the osteoinduction ability of autografts.22) If a large amount 
of autograft cannot be obtained, harvesting is performed. The representative harvest location 
is the iliac crest. However, the harvesting procedure is associated with well-documented 
complications and morbidity, including infection, lateral femoral cutaneous nerve injury, 
fractures, hematomas, and donor site pain.1,45) Donor site pain is a particularly common 
issue, with several studies reporting rates as high as 60%, although the general consensus is 
that this is typically around 25%.13,14,26,42)

Allografts
An allograft is a bone extender commonly used in spine fusion surgery.22,45) Allografts are 
produced by two different manufacturing processes that yield fresh-frozen or freeze-dried 
material. Fresh-frozen allografts contain BMPs and consequently have a better fusion rate 
than freeze-dried grafts, although the risk of disease transmission is greater. Freeze-dried 
allografts lose immune cells during the processing process, and the fusion rate subsequently 
decreases because of destruction of BMP, an osteogenic factor, and damage to mechanical 
integrity; however, the risk of disease transmission is minimized.15,37) Currently, freeze-dried 
allografts are predominantly used. In a recent meta-analysis study, the fusion rate of allograft 
in spine surgery was reported to be approximately 87.8%.43) However, allograft bone quality 
varies depending on donor age, sex, and harvesting site. In particular, even within a single 
donor, bone strength varies by up to 20% depending on the harvesting site.34) Allografts 
can also cause low-level inflammatory reactions, which are initially strong inflammatory 
reactions that delay the vascularization and osteoinduction processes, and this immune 
response may induce nonunion.15,18)

DBM
DBM is a bone substitute derived from human cadaver bone through acid extraction. 
DBM comprises a matrix that includes noncollagenous proteins, collagen fibers, and 
BMP, as well as a carrier material. The effectiveness of DBM can vary based on the carrier 
material and matrix composition.22) Additionally, because of the proprietary nature of the 
demineralization process, the technology behind DBM has not been publicly disclosed, 
and the process has no regulatory governance. Consequently, different DBM products can 
exhibit significant differences in the actual BMP concentration within them22); furthermore, 
the BMP concentration in DBM products can be up to 106% lower than that in commercial 
BMP products.25) When comparing fusion rates, for instance, in lumbar interbody fusion, 
between DBM with hydroxyapatite and autograft, these demonstrated comparable fusion 
rates at 76.5% and 77.8%, respectively, 1 year after surgery.20) In single level instrumented 
posterolateral lumbar fusion, the 2-year fusion rates of Grafton (local bone) DBM and iliac 
crest bone graft (ICBG) confirmed by computed tomography were statistically similar at 
86% and 92%, respectively.29) DBM is rarely used alone because it does not produce a strong 
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enough response to provide reliable bone fusion when compared with cell-containing graft 
material. Therefore, DBM is used as a graft extender.44,45)

Ceramics
Marine coral has a similar microporous structure to bone and was proposed as a bone graft 
substitute; the word ceramic itself originated from the word coral.8,23) Ceramic ingredients 
include calcium sulfate, calcium phosphate, hydroxyapatite, and mixtures of these, which 
are similar to those of coral.16,27,45) Ceramics have several advantages over existing bone 
graft substitutes as these are easily obtained in large quantities with low production costs 
and no risk of disease transmission. Additionally, the porosity or pore size of the graft 
can be designed as desired.22) However, the disadvantages of ceramic components include 
limitations in shear and compression strength.23) Ceramics are mainly known to play a role 
in osteoconduction,45) but recent studies have reported a role in osteoinduction. Although 
the mechanism is unclear, ceramics have been suggested to help mesenchymal stem cells 
differentiate into osteoblasts by promoting macrophage chemokine release and suppressing 
proinflammatory cytokines release.7,16) Ceramics can be broadly divided into noninjectable 
and injectable ceramics. Noninjectable ceramics include calcium sulfate, a-tricalcium 
phosphate, b-tricalcium phosphate, and hydroxyapatite, and injectable ceramics include 
calcium phosphate cement. Noninjectable ceramics can be further divided according to the 
resorption rate, which is determined by the porosity of the ceramic.10) The ceramic creates 
a microenvironment rich in calcium phosphate, stimulating the resorption of osteoclasts 
and subsequently stimulating osteoblasts to grow new bone within the absorbed implant. 
Less porous ceramic is absorbed before complete bone ingrowth is achieved.18) b-tricalcium 
phosphate and hydroxyapatite have good porosity and are generally absorbed slowly, but 
calcium sulfate and a-tricalcium phosphate have poor porosity and are absorbed quickly 
(1–3 months). Calcium sulfate or a-tricalcium phosphate are considered as ceramic bone 
substitutes but are not recommended because of their low osteoconduction ability that is 
caused by their rapid resorption rate.6) Calcium phosphate cement is a mix of inorganic 
calcium and phosphate that hardens at low temperatures through a crystallization reaction 
and slowly transforms into bone over 3–4 years. A study using calcium phosphate cement as 
a substitute for polymethyl methacrylate during vertebroplasty showed increased washout 
tendency and low flexural and shear resistance due to resorption and fragmentation of the 
cement, so the routine use of this during vertebroplasty was not recommended.2) The overall 
fusion rate of ceramic products in lumbar fusion is approximately 86.4%, and mixing ceramic 
products with local autograft shows a higher fusion rate.33) In a randomized controlled trial of 
62 patients who underwent one-level instrumented posterolateral lumbar spine fusion with 
ICBG or b-tricalcium phosphate and local autograft, both groups achieved 100% fusion on 
x-ray 3 years after surgery.11) Additionally, in a prospective, randomized trial of 62 patients 
who received fusion with ICBG or hydroxyapatite for lumbar stenosis, 100% fusion was 
achieved in all groups 1 year after surgery.30)

CONCLUSION

As the population ages, the number of patients with osteoporosis is increasing among both 
men and women, producing a rise in the incidence of spine fractures ranging from low to 
high energy trauma. Consequently, a growing number of patients also require fusion surgery. 
However, once the decision for fusion surgery is made, achieving successful fusion becomes 
the paramount objective. To address this, numerous bone graft substitutes have been 
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introduced for surgical use. The advantages and disadvantages of each bone graft substitute 
must be considered to select an appropriate one tailored to the circumstances of both the 
patient and the medical team.
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