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ABSTRACT: The dual-porosity model has been used widely to describe the fracture
network in well test or numerical simulation due to the high computational efficiency.
The shape factor, which can be used to determine the capability of mass transfer
between the matrix and fracture, is the core of the dual-porosity model. However, the
conventional shape factor, which is usually obtained under pseudo-steady state
assumption, has certain limitation in characterization of the mass transfer efficiency in a
shale/tight reservoir. In this study, a new transient interporosity flow model has been
established by considering the influence of nonlinear flow, stress sensitivity, and
fracture pressure depletion. To solve this new model, a finite difference and Newton
iteration method was applied. According to the Duhamel principle, the solution for
time-dependent fracture pressure boundary condition has been obtained. The solution
has been verified by using the fine-grid finite element method. Then, the influence of
nonlinear flow, stress sensitivity, and fracture pressure depletion on shape factor and
interporosity flow rate has been studied. The study results show that constant shape
factors are not suitable for unconventional reservoirs, and the interporosity flow in the shale/tight reservoir is controlled by multiple
factors. The new model can be used in test interpretation and numerical simulation, and also provides a new approach for the
optimization of the perforation cluster number.

1. INTRODUCTION

Shale/tight reservoirs are characterized by low permeability and
low porosity,1 and multicluster fracturing with a horizontal well
is effective for the development of such reservoirs.2,3 Stimulated
reservoir volume (SRV) is formed after fracturing. There are

many methods to characterize the SRV zone, such as the
unstructured perpendicular bisection (PEBI) grid, discrete
fracture networks (DFN), and embedded-discrete-fracture
model (EDFM).4 However, in well test models or numerical
simulationmodels, the dual-porosity model is still widely used to
compromise between accuracy and computational efficiency. To
overcome the high in situ stress and horizontal stress difference
and to improve the complexity of the fracture, multicluster
fracture with tight cutting has been used in recent years.5 The
flow between the perforation tunnel and matrix can also be
characterized by the dual-porosity model, which can provide the
possibility to optimize the number of perforation clusters.
The concept of the dual-porosity model was first proposed by

Barenblatt et al.6 They divided the fractured reservoirs into two
flow systems, namely, the matrix system and the natural fracture
system. The following transfer function connects these two flow
systems:
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Table 1. Constant Shape Factor by Various Researchers

investigator(s)

time method

dimensions

1D 2D 3D

Warren and Root7 1963 geometrical 12 32 60
Kazemi et al.8 1976 numerical 4 8 12
Thomas et al.9 1983 numerical 25
Ueda et al.10 1989 numerical 8 24
Coats11 1989 numerical 8 16 24
de Swaan12 1990 analytical 15 60
Kazemi and Gilman13 1993 analytical 9.87 19.74 29.61
Zimmerman et al.14 1993 analytical 9.87 18.17 29.61
Lim and Aziz21 1995 analytical 9.87 18.17 25.67
Quintard and
Whitaker15

1996 averaging 12 28.45 49.58

Bourbiaux et al.16 1999 numerical 20
Noetinger et al.17 2000 random walk 11.5 27.1
Sarda et al.18 2002 numerical 8 24 48
Rasmussen and Civan19 2003 analytical 9.87 18.17 25.67

Articlehttp://pubs.acs.org/journal/acsodf

© 2022 The Authors. Published by
American Chemical Society

14746
https://doi.org/10.1021/acsomega.2c00027

ACS Omega 2022, 7, 14746−14755

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shan+Huang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xinhua+Ma"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rui+Yong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jianfa+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jian+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tianpeng+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.2c00027&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00027?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00027?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00027?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00027?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/7/17?ref=pdf
https://pubs.acs.org/toc/acsodf/7/17?ref=pdf
https://pubs.acs.org/toc/acsodf/7/17?ref=pdf
https://pubs.acs.org/toc/acsodf/7/17?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.2c00027?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


q
k V

p p( )m
m f

σ
μ

= ̅ −
(1)

where q is the interporosity rate, 10−6 m3/s; σ is the shape factor,
m−2; V is the volume of the matrix block, m3; km is the matrix
permeability, 10−3 μm2; μ is the fluid viscosity, mPa·s; p̅m is the
volumetric average matrix pressure, MPa; pf is the fracture
pressure, MPa.
During early research, the shape factor was commonly

obtained based on the pseudo-steady state assumption, leading
to a constant shape factor. The shape factors obtained by
different researchers are summarized in Table 1.7−19,21

However, the constant shape factor has some defects in
characterization of the transient flow features.
To overcome the shortcomings of the pseudo-steady state

method, an unsteady-state diffusion equation was then used by
several researchers, leading to a time-dependent shape factor.
The research on the time-dependent shape factor was first
started by Chang.20 By solving the three-dimensional pressure
diffusion equations under unsteady-state conditions, a series of
shape factors at constant fracture pressure or constant flow rate
were obtained. He proposed that the value of the shape factor
decreased and tended to be constant when the flow state
gradually reached the pseudo-steady state. The stabilized values
of the shape factors were the same as the values obtained by
Kazemi and Gilman. To obtain an approximate analytical
solution, Lim and Aziz21 used an exponential function to solve
the pressure diffusion equation without using the pseudo-steady
state assumption. By extracting the first term of the infinite
summation series, they obtained the constant shape factors.
Rangel-German and Kovscek22 proposed a piecewise function
for cubic matrix blocks based on the imbibition experiment. A
power function was used to characterize the unsteady state.
Hassanzadeh and Pooladi-Darvish23 solved pressure diffusion
equations under different fracture boundary conditions and
coordinate systems by using Laplace transform and Duhamel’s
principle. Their study results reveal that the value of the shape
factor is influenced by the pressure depletion regime of fractures.
Based on their work, Ranjbar et al.24,25 obtained the shape factor
of compressible fluid under different pressure depletion regimes
for one-dimensional conditions. He et al.26,27 further obtained
the constant and time-dependent shape factors by considering
the influence of tortuosity and threshold pressure based on Lim
and Aziz’s work. By considering the stress sensitivity of the tight
reservoir, Wang et al.28,29 established an unsteady interporosity
model and obtained the time-dependent shape factor. Liu et al.30

designed some experiments to investigate the influence of stress
sensitivity on interporosity flow. Rostami et al.31 have calculated
the shape factors for multidimensional irregular bodies in a
systematic approach by using fine-grid simulation. Abbasi et al.32

obtained the time-dependent shape factor by considering the
influence of the quadratic pressure gradient, the heterogeneous

matrix, and the pressure-dependent rock properties. In addition,
scholars have studied the influence of condensation,33 capillary
imbibition process,34 gravity drainage,35 and nonisothermal
process36 on the interporosity flow, and the corresponding time-
dependent shape factors have been obtained.
Although scholars mentioned above have carried out a

detailed studies about the shape factor, the existing shape factors
ignored the unique seepage mechanisms of shale/tight oil
reservoirs, such as nonlinear flow and stress sensitivity.
Additionally, the fracture pressure was mostly considered as a
constant in previous studies. To overcome these shortcomings, a
new transient interporosity flow model has been established by
considering the influence of nonlinear flow, stress sensitivity,
and time-dependent fracture pressure boundary conditions. The
model was solved by using finite difference andNewton iteration
method. By using the Duhamel principle, the solution of time-
dependent fracture pressure boundary condition was obtained.
Then, sensitivity analysis of the shape factor and the
interporosity flow rate was conducted. Finally, the new model
was used in well test interpretation and perforation cluster
number optimization.

2. METHODOLOGY
The transfer function can also be expressed as a form of Darcy’s
law:

q
k A p p

L

( )m m f

μ
= ̅ −

Δ (2)

where A is the cross-sectional area of the matrix block, m2;ΔL is
the characteristic length which is defined as the distance
between pf and p̅m, m.
We get the following equation by combining eqs 1 and 2:

A
V L

σ =
Δ (3)

As shown in eq 3, the shape factor is the ratio of the cross-
sectional area for fluid transfer to the characteristic flow distance
under unit volume, and it is a parameter related to several
geometric factors. A/V can be used to reflect the geometric
features of the matrix block. 1/ΔL can be used to control the
fluid exchange between the matrix and fracture.
As seen in Figure 1, at the initial moment, the pressure in the

matrix is the initial reservoir pressure. The location of the
average matrix pressure p̅m is at the fracture surface, andΔL = 0.
With the decreasing of p̅m, the location of p̅m moves toward the
center of the matrix block, and the value of ΔL increases, which
leads to a decrease of the shape factor σ. It can be seen from the
symmetry that there is no fluid flow in the center of the matrix.
The pseudo-steady state is reached when the location of p̅m
reaches the center of the matrix block. At this time (te), ΔL is
equal to Lc and the value of σ becomes constant.

Figure 1. Schematic diagram of the average matrix pressure.
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The fluid volume of interporosity flow from the matrix to
fracture is equal to the expanded volume of the fluid in thematrix
due to the pressure drop, according to the law of conservation of
mass. Hence, the interporosity flow rate can be expressed as:

q V c
p

tm t
mϕ= −

∂ ̅
∂ (4)

Combining eqs 1 and 4, we get the following equation:

p p

p

t
1

( )m f

mσ
η

= −
̅ −

∂ ̅
∂ (5)

where η = km/(ϕmμct) is the hydraulic diffusivity, m
2/s.

Equation 5 can be used to calculate the value of the time-
dependent shape factor when the relationship between average
matrix pressure and time is obtained.
Nonlinear flow in a shale/tight reservoir is caused by the

boundary layer.37 To characterize the nonlinear flow in shale/
tight formation, Huang et al.38,39 established a new seepage
model based on the capillary bundle model and the fractal
theory. The thickness of the boundary layer δ can be described
by exponential function δ = δ0 + ae−b ∇ p. According to Huang’s
study, the motion equation in the matrix is:

v
k

M aMe p(1 )b p
m

m
0 m

m

μ
δ= − − ∇− ∇

(6)

where vm is the fluid’s velocity in the matrix, m/s; μ is the
viscosity, mPa·s; km is the matrix permeability, mD; ∇pm is the
pressure gradient in the matrix, MPa/m; M = 4(3 − Df + DT)/
[rmax(2 − Df + DT)] is the nonlinear coefficient; δ0 is the
thickness of stable layer; a and b are the boundary layer
coefficients;Df is the pore fractal dimension;DT is the tortuosity
fractal dimension; rmax is the maximum pore radius of the
reservoir, μm. δ0, a, and b can be obtained by the nonlinear flow
experiment. rmax, Df, and DT can be obtained by mercury
intrusion porosimetry.
To account for the influence of effective stress on matrix

permeability, a stress-dependent permeability is used. According
to previous research studies,40 there is an exponential relation-
ship between permeability and pressure, which is given as:

k k e p p
m 0

( )i m= γ− −
(7)

where k0 is the initial permeability of the matrix, 10−3 μm2; γ is
the permeability modulus, MPa−1; pi is the initial pressure of the
reservoir, MPa; pm is the matrix pressure, MPa.
During the development of shale/tight reservoirs, the fracture

pressure is not constant and decreases over time. The research
conducted by Ranjbar et al. shows that the exponential decline of
fracture pressure is more in line with the field conditions. We
assumed that the initial fracture pressure equals the initial
pressure pi and decreases exponentially with time:

p t p p p e( ) ( ) t
f i= + − α

∞ ∞
−

(8)

where p∞ = pf|t → ∞; α is the decline constant, s−1.

3. MATHEMATICAL MODEL

The matrix−fracture system is shown in Figure 2. On both sides
of the matrix, there are two parallel fractures. The matrix
pressure satisfies the following equation:
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(9)

where ct is the total compressibility, MPa−1; ϕm is the porosity of
the matrix.
The abovementioned function can be simplified as:

Figure 2. Illustration of a matrix−fracture system.

Table 2. Definition of Dimensionless Variables

name expression

dimensionless pressure p
p p

p pD
i

i
=

−
−∞

dimensionless time t
t

LD
0

c
2= η

dimensionless distance x x
LD c

=

dimensionless permeability modulus γmD = γ(pi − p∞)
dimensionless decline constant Lc

2

0
κ α=

η

dimensionless interporosity flow rate q qL
k V p pD ( )

c
2

0 i
= − μ

−∞

Figure 3. Computational procedure of the model.
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Initially, the matrix pressure equals the initial pressure:

p ptm 0 i| == (11)

Because the unit is symmetrical, there is no fluid flow in the
middle of the matrix:

p

x
0

x

m

0

∂
∂

=
= (12)

The matrix pressure equals to the fracture pressure at the
interface between matrix and fracture:

p px Lm fc
| ==± (13)

To facilitate the model development and solution, the
dimensionless variables are defined in Table 2.
With the substitutions of these dimensionless parameters, the

dimensionless model can be obtained:
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where α and β are the dimensionless nonlinear coefficients,
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Because the outer boundary condition is not constant, the
equivalent model was solved first. Then, based on Duhamel’s
principle, the solution of the model with the time-dependent
boundary condition was obtained.
The equivalent model is:
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The model is differentially discretized and then numerically
solved with the Newton iteration method.
The pressure diffusivity equation can be written in the

following finite difference format:
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The finite difference format of the initial condition is:

p 0i
j

mD,
1 =+

(17)

where i = 1, ..., N − 1, j = 0.
The finite difference format of the inner boundary condition

is:
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The finite difference format of the outer boundary condition
is:

a p b p dN N
j

N N
j

NmD, 1
1

mD,
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(19)

where aN = 0, bN = 1, dN = 1, j = 1,2,3....
Equations 16, 18, and 19 can be described by the following

matrix:
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(20)

The solution steps are as follows:

1) Assume that αj + 1 = 1 and βj + 1 = 1.
2) Solve the matrix to obtain the matrix pressure pmD

j + 1.
3) Calculate the matrix pressure gradient ∂pmD

j + 1/∂tD.
4) Use the matrix pressure gradient to calculate αj + 1.
5) Use the new αj + 1 to solve the matrix again, and then the

new matrix pressure pmD
j + 1 is obtained.

6) Repeat step 2 to step 5 until the difference between the
two calculated pmD

j + 1 meets the accuracy requirements.
7) Calculate the matrix pressure for the next time step and

repeat the abovementioned steps until the time is over.

The computational procedure is shown in Figure 3.
The distribution of thematrix pressure pmD(xD, tD) at different

moments can be obtained after the model is solved. It should be
noted that pmD is the solution under constant fracture pressure
conditions.
The solution under the condition of exponentially declining

fracture pressure can be obtained by using Duhamel’s
principle:41

p e
p x

t
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( , )
d

t
t

mD Depletion
0

( ) mD D

D

D

D∫ τ
= [ − ]

∂
∂

τκ τ
_

− −

(21)

Then the average matrix pressure p̅mD_Depletion can be obtained
by integrating of pmD_Depletion over bulk volume of the matrix
block:
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p t p x( ) dmD Depletion D
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The dimensionless shape factor Hm
2σ and the dimensionless

interporosity flow rate qD can be obtained by nondimensionaliz-
ing eqs 4 and 5:

H
p p
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( )m
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mD fD
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D
σ = −

̅ −
∂ ̅
∂ (23)

q
p

tD
mD

D
=

∂ ̅
∂ (24)

Finally, Hm
2σ and qD can be obtained by substituting

p̅mD_Depletion(tD) to eqs 23 and 24.

4. VALIDATION
To validate this model, a numerical model has been established
by using the fine-grid finite element method (FEM), as shown in

Figure 4. The parameters used for comparison are: Lc = 10 m, pi
= 20MPa, p∞ = 10MPa, k0 = 0.1 mD, ϕm = 0.1, μ = 1 mPa·s, ct =
4× 10−4 MPa−1, δ0 = 0.01 μm, a = 0.2 μm, b = 3MPa−1 ·m, γm =
0.01 MPa−1, and κ = 1. Then we compared the average matrix
pressure calculated by this model with the results obtained by
the fine-grid finite element simulation. As illustrated in Figure 5,
the new model’s solution is consistent with the results of the
finite element simulation. In addition, a relatively simple case

without considering any mechanism was conducted and a
comparison was made with previous research studies. The
stabilized value of the time-dependent shape factor calculated by
the new model is in good accordance with the shape factor
obtained by researchers such as Kazemi and Gilman and Lim
and Aziz (Figure 6). Therefore, the solution in this study is
accurate and reliable.

5. RESULTS AND DISCUSSION
5.1. Sensitivity Analysis. To better understand the

influence of nonlinear flow, stress sensitivity, and fracture

pressure depletion on the dimensionless shape factor (σHm
2 ), five

factors have been selected for sensitivity analysis, which are γm,
δ0, a, b, and κ.
As shown in Figure 7, the larger the boundary layer coefficient

a is, the smaller the dimensionless shape factor is. The influence
of coefficient a is not obvious at first, but increases with time.
This is due to the fact that the pressure gradient in the matrix is
the largest at the beginning, which weakens the influence of the
coefficient a to the greatest extent. As the interporosity flow
proceeds, the average matrix pressure p̅m and the pressure
gradient dp̅m/dx decreases, resulting in a more significant
influence of the coefficient a.
It can be seen from Figure 8 that the dimensionless shape

factor increases with the increase of coefficient b. b is the

Figure 4. Schematic of the numerical model developed by the fine-grid
element method.

Figure 5. Comparison of the average matrix pressure calculated by the
new model and the result obtained from the FEM.

Figure 6.Comparison of the time-dependent shape factor calculated by
the new model and the result obtained by researchers.13,14,19,21

Figure 7. Comparison of the dimensionless shape factor for different a.
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coefficient directly acting on the pressure gradient. The larger
the value of coefficient b is, the greater the influence of the
pressure gradient on the thickness of the boundary layer and the
weaker the influence of nonlinear flow.
The influence of the thickness of stable layer δ0 is the most

significant and continuous through the entire flow stage, as
shown in Figure 9. The larger the δ0 is, the smaller the
dimensionless shape factor is.

Figure 10 indicates that the stress sensitivity affects the early
stage (tD≤ 0.2) of the interporosity flow, which is different from
the influence of nonlinear flow. This is consistent with the
variation of matrix permeability with stress.
The dimensionless shape factor calculated under different

dimensionless decline constant κ is shown in Figure 11. The
larger the decline coefficient, the faster the decline speed of the
fracture pressure and the smaller the value of σHm

2 .What is more,
with increasing of κ, the decline speed of σHm

2 becomes faster
and the transient stage becomes shorter.

5.2. ControlMechanisms ofMultiple Factors.To further
evaluate the comprehensive influence of nonlinear flow, stress

Figure 8. Comparison of the dimensionless shape factor for different b.

Figure 9.Comparison of the dimensionless shape factor for different δ0.

Figure 10. Comparison of the dimensionless shape factor for different
γm.

Figure 11. Comparison of the dimensionless shape factor for different
κ.

Table 3. Experimental Design

level factors

δ0 (μm) a (μm) b (MPa−1·m) γm (MPa−1) κ

1 0.01 0.1 2 0.01 1
2 0.01 0.1 2 0.03 10
3 0.01 0.2 4 0.01 1
4 0.01 0.2 4 0.03 10
5 0.03 0.1 4 0.01 10
6 0.03 0.1 4 0.03 1
7 0.03 0.2 2 0.01 10
8 0.03 0.2 2 0.03 1

Figure 12. Comparison of the dimensionless shape factor under
different conditions.
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sensitivity, and fracture pressure depletion on the dimensionless
shape factor (σHm

2 ) and the dimensionless interporosity flow
rate (qD), two different levels are taken for each factor. The
following eight schemes have been designed according to the
orthogonal table L8(4

1 × 24), which is shown in Table 3.
The dimensionless shape factors of Schemes 1−8 are shown

in Figure 12. Due to the least influence of nonlinear flow and
stress sensitivity, and the slowest rate of fracture pressure
depletion, Scheme 3 has the highest shape factor. On the
contrary, Scheme 7 has the smallest shape factor. The value of
the shape factor is found to be less when the influence of
nonlinear flow and stress sensitivity is higher. The value of the
shape factor is larger because the fracture pressure depletion rate
is smaller. In addition, the unsteady stage becomes longer after
considering the influence of nonlinear flow, stress sensitivity,
and fracture pressure depletion. Constant shape factors (refs 7,
8, 13) will greatly underestimate the rate of the interporosity
flow at the initial stage. The stabilized value of Schemes 1−8 is
between Kazemi and Warren and Root’s constant shape factors.
The shape factor of Warren and Root will be larger at the later
stage. The shape factor of Kazemi is only 1/3 of the shape factor
of Warren and Root, which is always small. The shape factor of
Kazemi and Gilman is basically the same as the shape factor
when γm = δ0 = a = b = 0 and pfD = 1. The greater the influence of
nonlinear flow and stress sensitivity, the greater the deviation
from Kazemi and Gilman’s shape factor.

The dimensionless interporosity flow rate of Schemes 1−8 is
shown in Figure 13. The smaller the influence of nonlinear flow
and stress sensitivity is, the higher the interporosity flow rate is at
the initial stage. However, the interporosity flow rate decreases
faster. When the decline constant is larger, the interporosity flow
rate is larger at the early stage but smaller at the later stage. The
initial interporosity flow rate will be significantly smaller after
considering the influence of nonlinear flow, stress sensitivity,
and fracture pressure depletion. It has been found that the
constant shape factor will greatly underestimate the inter-
porosity flow rate between matrix and fractures at the initial
stage compared with the conventional time-dependent shape
factor (γm = δ0 = a = b = 0 and pfD = 1). However, the value of the
interporosity flow rate at the initial stage may be less than that
calculated by the constant shape factor after considering the
influence of multiple factors. Therefore, mass transfer between
the matrix and fractures is controlled by multiple mechanisms
for shale/tight reservoirs. Neither constant shape factor nor
conventional time-dependent shape factor can be used to
characterize accurately the mass transfer efficiency between the
matrix and fracture in a shale/tight reservoir.

6. APPLICATION
6.1. Well Test Interpretation. We have established a

trilinear flowmodel in previous research studies.42,43 Figure 14 is

the schematic diagram of the trilinear flow model. It is assumed
that all fractures are equally spaced along the horizontal well,

Figure 13. Comparison of the dimensionless interporosity flow rate
under different conditions.

Figure 14. Schematic diagram of the trilinear flow model for a multifractured horizontal well.42 Reprinted with permission from ref 42. Copyright of
2018/Saudi Society for Geosciences, Springer Nature/ Saudi Society for Geosciences.

Figure 15. Matching result of production from Well CARD-1.
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with the same properties. According to symmetry, the basic unit
can be obtained, and regions 1−3 represent the hydraulic
fractures, the stimulated reservoirs, and the outer reservoirs.
The time-dependent shape factor was used in the trilinear flow

model and production data of CARD-1 in Pembina Cardium44

was selected for matching and interpreting. The result of the well
test interpretation is shown in Figure 15 and Table 4. The first
eight parameters with an asterisk in the table are known
parameters, and the others are interpretation parameters.
The result shows that the permeability in the y direction of the

SRV is greater than the permeability in the x direction. In
addition, the artificial fractures have the highest stress sensitivity,
and the stress sensitivity of the SRV in the x direction is the
weakest. This indicates that the y direction is the main seepage
direction in the SRV zone. To illustrate the influence of transient
interporosity flow, the constant shape factor was also used to
perform the matching while other parameters remain
unchanged. The pseudo-steady state flow model will under-
estimate the production at the initial stage. The matching
accuracy can be improved by changing other parameters, while
the results will become unreasonable to some extent.
6.2. Optimization of the Number of the Perforation

Cluster. Assuming that the fracture spacing is 60 m, the
distribution of 2−7 perforation clusters in a fracturing unit is
shown in Figure 16. The black line represents a horizontal
wellbore, and the black dotted line is the artificial fracture. The
red line is the position of the perforation cluster, and the blue

dotted line is the no-flow boundary. The fracturing unit can be
divided into two parts, namely, the matrix between perforation
clusters and the matrix outside perforation clusters. The matrix
length of different cluster numbers is listed in Table 5.
The pressure and interporosity rate of the matrix with a length

of 3.75−20 m were calculated based on the new model. The

Table 4. Basic Parameters and Interpretation Results of Well
CARD-1

parameters values parameters values

lateral length × LH
(m)

1180 fracture permeability of region 2 in
x direction k2fxref (mD)

4.5

number of fractures
× NF

10 fracture permeability of region 2 in y
directionk2fyref (mD)

5

fracture spacing ×
2ye (mD)

130 fracture permeability of region1k1ref
(mD)

5800

bottom hole
pressure × pwf
(MPa)

1.8 porosity of region 2 ϕ2fref 0.2

initial pressure ×
pi(MPa)

13.9 porosity of region 1 ϕ1 0.25

reservoir thickness ×
h (m)

5 fractal dimension of fractures of
region 2 Df2f

1.91

matrix permeability
× km (mD)

0.28 conductivity index of fractures of
region 2 θ2f

0.25

matrix porosity× ϕm 0.12 permeability modulus of region 1 γ1
(MPa−1)

0.030

length of fractures xf
(m)

130 permeability modulus of region 2 in
x direction γ2fx (MPa−1)

0.015

fracture aperture wf
(m)

0.01 permeability modulus of region 2 in
y direction γ2fy(MPa−1)

0.025

Figure 16. Schematic diagram of distribution of multicluster perforation.

Table 5. Matrix Length of the Fracturing Unit with Different
Cluster Numbers

perforation
cluster number

matrix length in
the cluster (m)

matrix length out of
the cluster (m)

composition of the
fracturing unit

2 20 10 20 × 2 + 10 × 2
3 15 7.5 15 × 2 + 7.5 × 4
4 12 6 12 × 2 + 6 × 6
5 10 5 10 × 2 + 5 × 8
6 8.5 4.25 8.5× 2 + 4.25 × 10
7 7.5 3.75 7.5× 2 + 3.75 × 12

Table 6. Parameters for Calculation

parameters values

matrix permeability (mD) 0.001
matrix porosity (%) 5
viscosity (mPa·s) 5
total compressibility (MPa−1) 5 × 10−4

final fracture pressure (MPa) 10
initial matrix pressure (MPa) 30
reservoir thickness (m) 20
perforation cluster length (m) 2

Figure 17. Type curve for optimization of the perforation cluster
number.
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relevant parameters are listed in Table 6. The cumulative
production of each matrix was obtained by integrating the
interporosity rate. Then, the cumulative production of the unit
with different perforation cluster numbers was obtained. The
time for pressure diffusion to the no-flow boundary was obtained
by analyzing the pressure feature of the grid where the nonflow
boundary is located. Finally, the type curve for optimization of
the perforation cluster number was drawn, as shown in Figure
17.
The cumulative production increased with the increasing in

the perforation cluster number, but the growth rate slowed down
gradually. The shorter the production time, the greater the
difference in cumulative production under different perforation
cluster numbers. However, the difference gradually decreased
with the increase in the production time. In addition, the time
for matrix pressure diffusion to the no-flow boundary between
perforation clusters (tei) was different from the time for that
outside perforation clusters (teo). When the number of
perforation clusters is small, the difference between tei and teo
is great, leading to an unbalanced utilization of the fracturing
unit. On the contrary, there will be mutual interference between
perforation clusters in a very short time when the number of
perforation clusters is large. Therefore, there is an optimal value
for the perforation cluster number. For example, in Figure 17,
the optimal perforation cluster number is 4 or 5, which can
balance production and interference. It is important to note that
this only provides a new idea for optimization of the perforation
cluster number. It is necessary to consider comprehensively the
influence of multiple factors during the optimization process,
such as in situ stress and fracturing parameters.

7. CONCLUSIONS

In this study, a transient interporosity flow model has been
established. In this model, the nonlinear flow and stress
sensitivity of the shale/tight oil reservoirs have been taken
into account. Moreover, the influence of fracture pressure
depletion has also been taken into account. Finite difference,
Newton iteration method, and Duhamel principle have been
used to solve the new model. The study results show that the
fluid flow between matrix and fracture in a shale/tight reservoir
is controlled by multiple factors. The interporosity flow rate at
the initial stage might be underestimated when constant shape
factors are used. The nonlinear flow and stress sensitivity have an
obvious influence on the interporosity flow. When the influence
of nonlinear flow and stress sensitivity increases, the value of the
shape factor and interporosity flow rate decrease. The shape
factor becomes larger and the nonsteady state becomes longer
after considering the influence of fracture pressure depletion. In
addition, the interporosity rate will rise first to reach equilibrium
and then decrease when the decline constant is very small. The
new model can accurately characterize the interporosity flow in
shale/tight reservoirs, which has important implications for well
test interpretation, numerical simulation, and even optimization
of the perforation cluster number.
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