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A B S T R A C T

MicroRNAs (miRNAs) are classified as small, non-coding RNAs that play crucial roles in diverse biological 
processes, including cellular development, differentiation, growth, and metabolism. MiRNAs regulate gene 
expression by recognizing complementary sequences within messenger RNA (mRNA) molecules. Recent studies 
have revealed that miR-145-5p functions as a tumor suppressor in several cancers, including lung, liver, and 
breast cancers. Notably, miR-145-5p plays a vital role in the pathophysiology underlying HIV and chronic 
obstructive pulmonary diseases associated with cigarette smoke. This miRNA is abundant in biofluids and shows 
potential as a biomarker for the diagnosis and prognosis of several infectious diseases, such as hepatitis B, 
tuberculosis, and influenza. Additionally, numerous studies have indicated that other non-coding RNAs, 
including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), can regulate miR-145-5p. Given the 
significance of miR-145-5p, a comprehensive overview focusing on its roles in health and disease is essential. 
This review discusses the dual role of miR-145-5p as a protagonist and antagonist in important human diseases, 
with particular emphasis on disorders of the respiratory, digestive, nervous, reproductive, endocrine, and urinary 
systems.

1. Introduction

MicroRNAs (miRNAs) are small, single-stranded, non-coding RNAs 
that are endogenously produced and comprise 22–25 nucleotides [1,2]. 
These miRNAs play roles in post-transcriptional gene regulation in 
normal physiological and pathological conditions. miRNAs also play 
essential roles in numerous cellular processes, such as cell proliferation, 
differentiation, metabolism, apoptosis, development, and aging [3,4]. 
Additionally, miRNAs are also associated with the pathophysiology 
underlying numerous disorders, including oncogenesis, cardiovascular 
disorders, and neurological conditions [5]. The 3′-untranslated region 
(3′-UTR) of the open reading frame (ORF) serves as the primary binding 
site for most interactions between miRNAs and their target RNAs [6]. 
The specificity of miRNAs for their corresponding target sites is deter-
mined by a short seed sequence of 6–8 nucleotides located in the 

3′-untranslated region (3′-UTR) of the target mRNA, and this interaction 
can lead to either translational repression or degradation of the mRNA 
[7,8]. Notably, miRNAs can function as either tumor suppressors or 
oncogenes, even though they are frequently downregulated in tumors 
compared to normal tissues [9]. Importantly, miRNAs are abundant in 
biological biofluids, highlighting their potential roles as noninvasive 
diagnostic and prognostic biomarkers for several human diseases. 
Moreover, a growing body of research indicates that exosomal miRNAs 
present in these biological fluids are crucial players in tumorigenesis 
[10]. Exosomes have an inherent ability to facilitate cargo delivery be-
tween cells and tissues, which effectively allows for the targeted incor-
poration of specific therapeutic miRNAs into these vesicles to target 
recipient cells [11,12]. Importantly, several studies have shown that 
other non-coding RNAs, such as lncRNAs and circRNAs, can modulate 
miRNA expression through different mechanisms [13–17]. Cytoplasmic 
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long non-coding lncRNAs and circRNAs can serve as binding sites for 
specific miRNAs, functioning as miRNA sponges, and this activity pro-
vides an additional layer of regulation to miRNA-mediated post--
transcriptional gene silencing, particularly in the context of tumor 
development [18,19].

MiR-145–5p is a microRNA that has been shown to play significant 
roles in various disorders. This particular miRNA is encoded by the 
MIR145 gene, which resides on Chromosome 5, specifically within the 
range of 149,430,646 to 149,430,733 on the forward strand [20]. The 
miR-145-5p has been considered a member of the p53 tumor suppressor 
family (Table 1) and is predominantly found in germline and 
mesoderm-derived tissues, including the heart, ovaries, prostate, spleen, 
testes, and uterus. Recent evidence has validated the impact of mRNAs 
in the pathogenesis of distinct cancerous and non-cancerous disorders 
[21,22]. Several studies have shown that miR-145-5p has the potential 
to regulate cell proliferation and migration by influencing diverse 
signaling pathways, including MAPK and PI3K/AKT [23,24]. Other 
findings have demonstrated the role of miR-145-5p in several pathol-
ogies, including respiratory disease, cancer, digestive, circulatory, and 
urinary system disorders (Fig. 1) [20,25,26]. Since miR-145-5p is 
expressed in a wide range of cells and its expression levels can manifest 
as upregulation or downregulation of genes involved in several human 
diseases (Tables 1 and 2), miR-145-5p exerts an important role as a 
disease modifier in multiple physiological and pathological processes. 
This review discusses recent studies focusing on miR-145-5p-target in-
teractions and their downstream effects on pathways and pathophysio-
logical processes in human disorders. Moreover, this review will 
enhance our understanding of the role of miR-145-5p in human diseases 
and assist in identifying new therapeutic avenues to alleviate alleviating 
the development and progression of conditions associated with 
abnormal miR-145-5p expression.

2. Biogenesis of miR-145-5p

MicroRNA (miRNA) expression and processing parallel the mecha-
nism of small interfering RNA (siRNA)-mediated post-transcriptional 
gene silencing in plants, occurring through both canonical and non- 
canonical pathways, as illustrated in Fig. 2. Classical miRNAs are 
generated through the canonical pathway. Typically, miRNAs are tran-
scribed in the nucleus by RNA polymerase II as primary miRNA (pri- 
miRNA) transcripts, which are several hundred nucleotides long and 
possess a hairpin-shaped structure, and these transcripts are initially 
modified with a 5′ cap and a 3′ poly(A) tail to enhance their stability and 

facilitate subsequent processing [27,28]. Primary miRNAs (pri-miRNAs) 
are processed into approximately 70-nucleotide (nt) long precursor 
miRNAs (pre-miRNAs) by the microprocessor complex, which consists 
of the RNAse III enzyme Drosha and its cofactor, DiGeorge syndrome 
critical gene 8 (DGCR8) [29]. In the next step, exportin-5 (Exp 5) exports 
pre-miRNA to the cytoplasm, which undergoes further processing into 
mature miRNA duplexes consisting of 20–25 nucleotides. This cleavage 
is carried out by the RNAse III endonuclease Dicer, along with its 
double-stranded RNA binding cofactor, the TAR RNA binding protein 
(TRBP) [30]. Two mature miRNAs are generated from the 5′, and 3′ arms 
and miR-145-5p and miR-145-3p are generated from the 5′ and 3′ arms 
of miR-145 (Fig. 2) [31]. Within the cytoplasm, the mature miRNA 
duplexes further undergo processing by DICER into two separate RNA 
strands known as the guide RNA strand (miRNA) and the passenger 
RNA. The RNA-induced silencing complex [32], which includes argo-
naute (Ago) proteins, becomes activated in the presence of miRNA and 
facilitates the targeting of the miRNA-induced silencing complex 
(miRISC) to target mRNA molecules [30,33,34]. The miRISC interacts 
with the 3′-UTR on its cognate mRNA targets, mediating gene silencing 
by either cleaving mRNA or inhibiting protein translation [34–37]. A 
seed sequence of 6–8 nucleotides is essential to mediate miRNA-based 
gene silencing. Thus, miRNA-mRNA interactions are promiscuous in 
that a single miRNA may regulate the expression of multiple genes, and a 
single gene can be regulated by multiple miRNAs [38]. Research has 
indicated that miRNAs can bind to the 5′ untranslated region (5′ UTR) 
[39] or directly to the ORF of target mRNAs [40]. However, targeting of 
the endogenous ORF appears to occur less frequently and effectively 
than the 3′ UTR, although it is still more common than targeting the 5′ 
UTR [36]. The inhibition of protein translation can be accomplished 
through several mechanisms, including the deadenylation of the poly(A) 
tail, competition between the Ago-RISC complex and translation initi-
ation factors for the cap structure, interference with translation elon-
gation, induction of premature ribosome dissociation, and degradation 
of the nascent polypeptide chain [41,42].

An alternative route in miRNA biogenesis, known as the non- 
canonical pathway, is associated with short introns referred to as mir-
trons, which are capable of producing certain pre-miRNAs. This 
pathway has been identified in both invertebrates and mammals [43]. 
Initially, mirtron biogenesis uses spliceosomal machinery to initiate 
splicing and debranching into a pre-miRNA hairpin, which is typically 
short. This shorter hairpin structure is conducive to Dicer cleavage and is 
then integrated into RISC complexes [43–45]. These intron-derived 
miRNAs have been observed in cells from different species, including 
mammalian cells, signifying the evolutionary conservation of this 
miRNA-based regulation mechanism in vivo [46,47]. Some small nuclear 
RNAs have also been shown to act as sources of pre-miRNAs. In addition, 
miRNAs can also be derived from endogenous shRNAs and tRNA pre-
cursors [44]. Another pathway for miRNA biogenesis that is 
Dicer-independent has been recently identified in zebrafish and mam-
mals [48]. In this pathway, specific miRNAs, such as miR-451, utilize the 
Argonaute protein-specifically Argonaute 2 (Ago2)-to facilitate their 
maturation. The process begins with Drosha, an enzyme in the micro-
processor complex, which cleaves long pri-miRNAs into pre-miRNAs. 
These pre-miRNAs are then directly loaded into Ago2, which performs 
the critical final cleavage to produce the mature miRNA by removing the 
passenger strand. This unique mechanism highlights the versatility and 
adaptability of miRNA biogenesis. Notably, the Dicer-independent 
pathways allow for the maintenance of essential regulatory functions 
even in conditions where Dicer activity is diminished or absent, 
emphasizing their significance in vertebrate development and cellular 
responses [49,50].

The neighboring long non-coding RNA (lncRNA) CARMN plays a 
crucial role in the biogenesis of miR-145-5p by acting as a host gene that 
regulates its expression and processing [51]. CARMN is located adjacent 
to the miR-143/145 cluster, and its transcription is essential for the 
production of these microRNAs [52]. Specifically, miR-145-5p is 

Table 1 
The expression types of miR-145-5p in different human diseases.

System Types of tumors Expression 
level

Cell lines References

Respiratory Asthma Up 16HBE [80]
NPC Down CNE, HNE-1 [57,145]
NSCLC Down A549, NHBE [94]
LUAD Up/Down HEB, H1395 [146,147]

Digestive HCC Down QSG7701, 
HL7702

[148]

Esophageal 
cancer

Down FLO-1 [149,150]

Colorectal cancer Down HEK293 [151]
Gastric cancer Down AGS [152]

Other cancer Breast cancer Down A459, MCF7 [149]
Reproductive Cervical cancer Down C33A, HT-2, 

HeLa
[139]

Ovarian cancer Up HEY, A2780 [153]
Epithelial 
ovarian cancer

Down SKOV-3 

Prostate cancer Down 22Rv1 [154]
Urinary Bladder cancer Down SV-HUC-1 [155]
Endocrine Pancreatic 

cancer
Down MiaPaCa-2 [156,157]
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embedded in the intronic region of the CARMN gene, which allows for 
co-expression of the lncRNA and the microRNA [52]. This arrangement 
facilitates the processing of miR-145-5p through mechanisms involving 
both transcriptional and post-transcriptional regulation [51]. Further-
more, CARMN influences the stability and availability of miR-145-5p by 
functioning as a competing endogenous RNA (ceRNA), which can 
modulate the levels of miR-145-5p′s target genes [53]. In addition, the 
sequence of miR-145 is highly conserved across species, including 
mammals and other vertebrates, indicating its fundamental role in 
biological processes [54]. This conservation underscores the importance 
of miR-145 in regulating gene expression and its potential as a thera-
peutic target across different biological contexts. MiR-145-5p primarily 
functions as a tumor suppressor across various cancer types, including 
bladder and colorectal cancers (CRC), by inhibiting cell proliferation, 
migration, and invasion [55]. Similarly, miR-145-3p is involved in 
distinct cellular processes such as proliferation, differentiation, and 
apoptosis [56,57]. It suppresses tumor development in multiple cancers 
by targeting oncogenes and inhibiting cancer cell growth [58]. Addi-
tionally, miR-145-3p is crucial in maintaining tissue homeostasis and 
facilitates the differentiation of smooth muscle cells, vascular remodel-
ing, and the epithelial-mesenchymal transition [59,60]. Furthermore, it 
regulates stem cell pluripotency by targeting stem cell markers that are 
implicated in both normal development and tumor progression [61]. 
Fig. 2 illustrates the canonical and non-canonical pathways involved in 
miRNA biogenesis.

3. Structural features and biological characteristics of miR-145- 
5p

miR-145 is located on chromosome 5q32-33, spans 4.08 kilobases in 
length, and its sequence demonstrates a high degree of conservation 
compared to other non-coding small RNAs [62]. Comparative genomic 
analysis reveals that miR-145-5p exhibits significant sequence conser-
vation across mammalian species, including humans, mice, and rats [54,
63]. The high degree of conservation suggests that miR-145-5p plays a 
crucial regulatory role in various biological processes, including devel-
opment, differentiation, and disease [64]. Conservation analysis in-
dicates that the seed region (nucleotides 2–8), critical for target 
recognition, is remarkably well-preserved, highlighting the evolutionary 
importance of miR-145-5p′s gene regulatory functions across species 
[65]. MiR-145 locus generates pre-miR-145 and is processed to produce 
two mature miRNAs such as miR-145-5p and miR-145-3p (Fig. 3). The 
miR-145-3p transcript undergoes processing to generate miRNAs 

approximately 22 nts in length, while miR-145-5p produces fragments 
of 23 nucleotides. MiR-145 is located in a cluster near miR-143, and both 
transcripts are believed to have similar roles and are likely 
co-transcribed [66]. A study has shown that the chromosomal locus of 
miR-145, located near a critical tumor fragile site at 5q31, is involved in 
tumor generation; however, it is often removed in the chromosome 
rearrangements that occur during malignant transformation, contrib-
uting to the reduced expression levels of miR-145 in tumor tissues [67]. 
MiR-145 was initially identified in the heart of the experimental mouse 
models [68] and later observed in human CRC among other tissues [69]. 
Mesodermal tissues, including the uterus, ovary, testis, prostate, and 
heart, exhibit relatively high levels of miR-145. In contrast, this tran-
script (miR-145) shows relatively reduced expression in several tumor 
types, such as colon, breast, prostate, lung, liver, bladder, and ovarian 
cancers, as well as in pituitary adenomas and B-cell lymphomas [70]. 
Moreover, research indicates that miR-145 plays a protective role 
against tumorigenesis and can influence tumor growth, invasion, 
metastasis, and angiogenesis. This regulation occurs through either 
complete or partial binding to the 3′ non-coding region of target mRNAs, 
leading to their degradation and impacting their translation levels [62].

3.1. MiR-145-5p in health and disease

3.1.1. MiR-145-5p in pulmonary diseases

3.1.1.1. Asthma. Asthma is a chronic respiratory disease in which the 
airways become narrow and swollen, leading to difficulty breathing, 
coughing, wheezing, and chest tightness. It is estimated to affect 334 
million individuals worldwide [71,72]. Asthma is prevalent in devel-
oping countries and contributes to poor quality of life and economic 
burdens worldwide. While several treatment regimens are available, the 
prognosis of asthma remains poor [73]. Recent advances demonstrate 
the involvement of numerous small non-coding RNAs, including miR-
NAs, in asthma. Specifically, miR-145-5p is identified as an important 
modifier of disease in asthma and presents itself as a promising target for 
therapeutic interventions to restore normal levels of miR-145-5p 
expression. Clinical studies have demonstrated that patients with 
asthma exhibit elevated plasma levels of miR-145-5p in comparison to 
healthy control subjects [74]. Furthermore, increased miRNA levels are 
associated with a higher eosinophil count in the blood [75]. A 
cross-sectional study involving children with various asthma pheno-
types indicated that the levels of miR-145-5p in exhaled breath 
condensate have a positive correlation with asthma severity [76]. Tiwari 

Fig. 1. Role of miR-145-5p in Diverse Pathologies: Insights into Respiratory, Digestive, Nervous, Reproductive, Endocrine, and Urinary Disorders.
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and colleagues showed that children with asthma (reduced growth and 
early decline) who showed lower FEV1 values (reduced growth and 
early decline) demonstrated a high reduction of miR-145-5p levels in 
plasma compared with children with only reduced growth or children 
with normal growth [77]. Additionally, children with early decline 
demonstrated elevated miR-145-5p levels compared to those with 
reduced growth [77]. The study further showed that the children with 
asthma who ended follow-up were affected by COPD and manifested a 
substantial decrease in plasma miR-145-5p levels compared to those 
who were not affected by COPD [77]. Another subsequent study showed 
the correlation between miR-145-5p dysregulation and the impaired 
patterns of lung function that contribute to the development of COPD in 
children with asthma [77]. The development of asthma has been asso-
ciated with the presence of certain genetic variants in the miR-145 gene 
[25]. These variants may significantly influence the risk of developing 
this chronic respiratory condition [78].

Research utilizing experimental asthma models has investigated the 
involvement of miR-145-5p in the development of asthma. In mouse 
models of asthma triggered by exposure to house dust mite (HDM), there 
was a notable increase in the expression of miR-145-5p within the 
airway walls [79]. The same study indicated that inhibiting miR-145-5p 
in asthmatic mice led to a marked decrease in airway hyper-
responsiveness, which was associated with a reduction in both 
mucus-producing cells and eosinophils in the airways. This decrease was 
attributed to lower production of IL-15 and IL-13 from antigen-specific 
Th2 cells [79]. A study conducted by Xiong and colleagues on a mouse 
model of asthma caused by house dust mite (HDM) exposure demon-
strated an up-regulation of miR-145-5p expression, along with a 
down-regulation of kinesin Family Member 3A (KIF3A) levels in airway 
epithelial cells (Fig. 4A) [80]. In contrast, Cheng and colleagues con-
ducted a study to determine how miR-145-5p influences airway 
remodeling and cytokine expression by targeting epidermal growth 
factor receptor (EGFR) to modulate mucin 5AC (MUC5AC) using an 
ovalbumin (OVA)-induced asthmatic mouse model. The research find-
ings indicate that the expression of miR-145-5p promotes reduced 
airway remodeling by controlling EGFR levels, in comparison to asth-
matic mice in which miR-145-5p expression is inhibited [81]. Similarly, 
the negative regulation of EGFR by miR-145-5p resulted in a decrease in 

Table 2 
Potential roles of miR-145-5p in different human diseases.

System Type of 
diseases

Target 
Genes

Functions References

Respiratory Asthma RUNX3 Regulates the 
balance of Th1/Th2



  KIF3A suppressed 
epithelial repair

[80]

 NPC KLF5 Regulate the 
activity FAK, 
downregulate the 
proliferation, 
migration, and 
invasion of NPC

[105]

 NPC NUAK1, 
p-AKT

SNHG1, by the miR- 
145-5p/NUAK1 
axis, could enhance 
cell aggressiveness 
by targeting the 
AKT pathway and 
inducing EMT.

[104]

 NSCLC MAP3K1 inhibits EMT via the 
JNK signaling 
pathway

[158]

 NSCLC FGF5 miR-145–5p/FGF5 
is being regulated 
via circ 0016760, 
promotes cell 
proliferation



 NSCLC Sp1 Regulates cell 
proliferation via 
FKBP3

[159]

 NSCLC TP53 miR-145-5p acts as 
an inducer of SOX2 
expression in 
NSCLC.

[90]

 NSCLC CXCL3 CXCL3/miR-145-5p 
augments the 
proliferation of 
NSCLC cells via 
CircMET

[95]

Digestive HCC GOLM1 miR-145/mTOR 
axis regulate 
GOLM1 that result 
the exacerbation of 
HCC

[109]

 HCC ARF6 Negatively 
regulates cell 
proliferation, 
promote apoptosis

[160]

 HCC NRAS Enhance HCC cells 
proliferation

136]

 HCC CDCA3 Promote 
proliferation and 
invasion the 
affected cells

[161]

Circulatory Atherosclerosis CaMKII Involved in cardiac 
remodeling

[162]

Urinary CGN CXCL16 miR-145-5p inhibits 
the AKT/GSK 
pathway and 
diminished the 
expression of 
inflammation- 
associated miRNAs

[127]

 DKD Srgap2 miR-145-5p 
mediates podocyte 
apoptosis

[129]

 BC TGFBR2 Inhibition of BC 
cells proliferation 
and migration

[163]

Other cancer BC SOX2 Inhibition of BC 
cells proliferation

[164]

 BC Ago2 miR-145-5p 
restoration results 
Ago2 induction and 

[155]

Table 2 (continued )

System Type of 
diseases 

Target 
Genes 

Functions References

cell migration 
inhibition

 BC H2AFX Inhibits Malignant 
Behaviors of BC 
cells

[165]

 BC PD-L1 Initiates apoptosis, 
cell cycle arrest in 
BC cells

[166]

Reproductive PC PLD5 Repressed PC cell 
migration, invasion, 
and metastasis

[136]

 CC KLF5 Inhibits cervical 
cancer cell 
proliferation

[139]

 CC FSCN1 Suppress tumor of 
cervical cancer

[140]

 CC WNT2B Inhibits cancer cell 
progression and 
metastasis

[141]

 EOC SMAD4 Promotes EOC cells 
death

[142]

Nervus PD Nurr1 Reduce infarct 
volume in acute 
cerebral ischemia

[167]

 AD Smad4 inhibits VSMCs 
proliferation and 
migration

[168]
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the levels of both Th2 and Th17 cells in the blood, as well as a reduction 
in inflammatory factors in asthmatic mice. This effect was notable when 
compared to asthmatic mice that had inhibited miR-145-5p expression 
[81].

Molecular-level analysis in cells from asthma models has also pro-
vided promising evidence for the role of miR-145-5p in the development 
of asthma. Human airway smooth muscle (ASM) cells treated with TNF- 
α, IL-1β, and IFN-γ demonstrated significant upregulation of miR-145-5p 
and downregulation of Krüppel-like factor 4 (KLF4) [82]. The same 
study revealed that the overexpression of miR-145-5p, which negatively 
regulates KLF4, led to increased proliferation and migration of ASM cells 
in vitro. This finding suggests that miR-145-5p may play a role in the 
smooth muscle remodeling associated with asthma pathology (Fig. 4A) 
[82]. Furthermore, Qiu Yu-Ying and colleagues observed that CD4+ T 
cells from asthma patients exhibited elevated levels of miR-145-5p and 
reduced expression of Runt-related transcription factor 3 (RUNX3) 
compared to healthy controls [83]. Fan Linxia and colleagues demon-
strated that CD4+ T cells from asthma patients displayed increased 
expression of both miR-145-5p and IL-4 (a Th2 marker) while showing 
decreased levels of IFN-γ (a Th1 marker) and RUNX3 [84]. Inhibiting 
miR-145-5p in CD4+ T cells from asthma patients resulted in an 
increased proportion of IFN-γ+ CD4+ T cells through the regulation of 
RUNX3. This indicates that miR-145-5p plays a role in modulating the 
Th1/Th2 balance in asthma (Fig. 4B). Consequently, the numerous ev-
idence points to miR-145-5p as a significant miRNA involved in the 
progression of asthma by influencing the Th1/Th2 balance and 
contributing to airway remodeling. Surprisingly, no clinical trials to date 
have focused on regulating miR-145-5p for the treatment of asthma.

3.1.1.2. Lung cancer. Lung cancer remains the most frequently diag-
nosed cancer and the foremost cause of cancer-related mortality 
worldwide. As reported by GLOBOCAN in 2020, there were approxi-
mately 2.2 million new cases of lung cancer, accounting for 11.4 % of all 
cancer diagnoses and nearly 1.8 million deaths, making up 18.0 % of all 
cancer-related fatalities during that year [86]. Lung cancer can be 
categorized into two main groups, namely non-small cell lung cancer 
(NSCLC) and small cell lung cancer (SCLC), in which NSCLC is more 
prevalent and constitutes 85 % of cases [87]. Chest discomfort, shortness 
of breath, coughing, and weight loss are typical symptoms of lung cancer 
[88]. A comprehensive study conducted by Gan and colleagues, utilizing 
a total of 125 paired clinical samples from patients with NSCLC, has 
provided a thorough investigation. The study measured the level of 
miR-145-5p and its association with clinicopathological parameters, 
confirming that the expression of miR-145-5p in NSCLC is significantly 
lower compared to normal healthy tissue [89]. In 2016, Erdem and 
coworkers examined the relationship between TP53 mutational status 
and the variation in SOX2 copy number and gene expression in patients 
with early-stage NSCLC. In vitro experiments indicated reduced TP53 
expression corresponded with a decrease in SOX2 expression. Thus, the 
TP53 signaling pathway could play a crucial role in modulating the copy 
number and expression of SOX2 in NSCLC tumors, with the miR-145-5p 
potentially serving as a critical regulator [90]. The protein-protein 
interaction network analysis shows that eight hub genes in NSCLC act 
as potential target genes of miR-145-5p [89]. Lu and colleagues iden-
tified a lncRNA known as small nucleolar RNA host gene 1 (SNHG1), 
which has emerged as a novel lncRNA elevated in various types of 
human cancers. In NSCLC tissue and cells, SNHG1 is significantly 

Fig. 2. The biogenesis of miRNAs can occur through canonical and noncanonical pathways. In the canonical pathway, primary miRNA (pri-miRNA) transcripts are 
produced from miRNA genes by RNA Polymerase II or III (RNA pol II/III). These pri-miRNAs are then processed into precursor miRNAs (pre-miRNAs) by the Drosha- 
DGCR8 complex. In contrast, the noncanonical pathway involves the formation of intronic pre-miRNA hairpins, which are transcribed by RNA Polymerase II. This 
process includes splicing, debranching, and trimming of short introns (lariat), bypassing the Drosha processing step. The pre-miRNAs generated from both pathways 
are exported from the nucleus through exportin-5 (Exp 5). Subsequently, Dicer, along with TRBP, processes them into double-stranded RNAs known as mature 
miRNA duplex. Argonaute (Ago) proteins then unwind these double-stranded RNAs, separating the guide strand (miRNA) from the passenger strand. The mature 
miRNA is incorporated into the RNA-induced silencing complex [32], which interacts with the 3′ untranslated region (3′ UTR) of target mRNAs to regulate gene 
expression, primarily through translation inhibition or mRNA degradation.
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upregulated. Furthermore, the silencing of SNHG1 leads to a reduction 
in tumor volumes. In addition, the investigation of the regulatory 
mechanism demonstrated that SNHG directly interacts with 
miR-145-5p, thereby sequestering miR-145-5p from its target gene, 
MTDH. Suppressing SNHG1 led to reduced proliferation and invasion of 
NSCLC cells in vitro. The inhibition of SNHG1 resulted in a decrease in 
NSCLC cell viability, proliferation, migration, and invasion in vitro; 
however, these effects were reversed by the inhibition of miR-145-5p. 
These findings indicate that SNHG1 plays a role in the progression of 
NSCLC by regulating miR-145-5p/MTDH axis [91]. Li and group 
analyzed the impacts of TNF-α in NSCLC, and it can induce expression of 
several genes such as TNF-α-induced protein 2 (TNFAIP2) in NSCLC and 
evidenced that TNFAIP2 has a crucial role in NSCLC progression, and its 
epigenetic regulation mediated by miR-145-5p. Western blot, immu-
nohistochemistry, and RT-qPCR were used to validate the TNFAIP2 
expression in NSCLC tissue. All in vitro assays were conducted using 
A549 and H23 cells, while chemoresistance assays were performed on 
the A549/Cisplatin and H23/DDP cell types. Silencing of TNFAIP2 was 
achieved by introducing specific siRNA through lipofectamine trans-
fection. In addition, cells were co-transfected with miR-145-5p along 
with either the TNFAIP2-3′ UTR or a mutated TNFAIP2, utilizing the pGL 
luciferase vector. The involvement of the Caspase 3 protein in cell 
viability was determined through Western blot analysis. The tumor tis-
sues and the cisplatin-resistant cell lines A549/DDP and H23/DDP 
exhibited markedly elevated levels of TNFAIP2 mRNA expression. In 
A549/DDP and H23/DDP cell lines, the silencing of TNFAIP2 decreased 
cell viability and enhanced induction of caspase 3. The overexpression of 

miR-145-5p led to the reduction of TNFAIP2 expression, reduced cell 
viability, inhibited cell migration and invasion, and notably decreased 
caspase 3 protein expression [92]. The progression of NSCLC is influ-
enced by the regulatory functions of circular RNA (circRNAs) [93]. The 
expression of hsa_circ_0016760 has been reported to be increased in 
NSCLC. Hsa_circ_0016760 enhanced the expression of FGF5 by sponging 
miR-145-5p. The upregulation of miR-145-5p or downregulation of 
FGF5 reversed the stimulatory effects of hsa_circ_0016760 on the pro-
liferation, migration, and invasion of NSCLC cells in vitro [94]. Pei and 
collaborators uncovered the involvement of a circular RNA (circMET) in 
NSCLC and found that circMET functions as a sponge for miR-145-5p, 
leading to the upregulation of CXCL3 expression [95]. MiR-145-5p can 
influence gene regulation indirectly by modulating the expression of 
other non-coding RNAs, especially lncRNAs. For instance, miR-145-5p 
can regulate gene expression by directly binding to lncRNA [96]. Wei 
and colleagues evaluated the roles of lncRNA plasmacytoma variant 
translocation 1 (PVT1) in regulating NSCLC cell proliferation. RT-qPCR 
confirmed the elevated PVT1 and integrin-β-8 (ITB8) expression in 
NSCLC tissues and cell lines. The knockdown of either PVT1 or ITGB8 
inhibited cell proliferation while promoting apoptosis in NSCLC cells, an 
effect reversed by the overexpression of ITGB8. Furthermore, PVT1 was 
found to regulate ITGB8 expression by directly binding to miR-145-5p 
[97]. Zheng and colleagues demonstrated that circPVT1 acted as a 
competing endogenous RNA to inhibit miR-145-5p in A549 cells that 
exhibit resistance to cisplatin and pemetrexed [98]. Pemetrexed is a folic 
acid inhibitor and a well-used drug in the treatment of NSCLC, and its 
prolonged treatment led to cancer cells gaining resistance. Chang and 

Fig. 3. The structure of pre-miR-145. Two mature miRNAs, miR-145-5p and miR-145-3p, are generated from the 5′ and 3′ arms of the pre-miR-145 structure.
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colleagues investigated the role of miR-145-5p in pemetrexed-resistant 
cells and observed that the expression levels of BMI1 (B Lymphoma 
Mo-MLV insertion region 1 homolog) and Sp1 were elevated in 
pemetrexed-resistant A400 cells compared to A549 cells, while the 
expression of miR-145-5p is notably reduced. Altered expression of 
miR-145-5p in A400 or A549 cells through the transfection of either a 
miR-145-5p mimic or an inhibitor influences the cell’s sensitivity to 
pemetrexed. Furthermore, the overexpression of BMI1 in A549 cells led 
to an increase in Sp1 levels and a reduction in miR-145-5p, which was 
associated with increased cell proliferation and elevated expression of 
EMT. These effects could be diminished through the overexpression of 
miR-145-5p or by treating mithramycin, an inhibitor of Sp1. Conversely, 
increased expression of Sp1 in A549 cells led to reduced sensitivity to 
pemetrexed, enhanced the cells’ migratory abilities, and upregulated 
EMT-related transcription factors, including Snail Family Transcrip-
tional Repressor 1 (Snail 1) and Zinc Finger E-Box Binding Homeobox 1 
(ZEB1). These findings indicate that BMI1 overexpression leads to the 
downregulation of miR-145-5p, which subsequently enhances Sp1 
expression and promotes the EMT process in pemetrexed-resistant 
NSCLC cells (Fig. 5) [99].

3.1.1.3. Nasopharyngeal carcinoma. Nasopharyngeal carcinoma (NPC) 
is one of the predominant malignancies of the head and neck region in 
humans [100]. It is considered a major health concern in low-income 

countries and has an uneven geographic distribution, with South-
eastern Asia being one of the most affected regions. In 2020, it was 
estimated that around 133,354 cases of NPC occurred worldwide, 
leading to approximately 80,008 [101] deaths, with 129,000 new cases 
of NPC in 2018 [102]. Chen and colleagues demonstrated an important 
association of NPC pathogenesis with Epstein-Barr virus (EBV) infection 
[102]. Plasma Epstein-Barr virus (EBV) DNA has been utilized for 
various purposes, including population screening, prognostic assess-
ment, predicting responses to treatment for therapeutic adjustment, and 
monitoring disease progression [102]. Thirteen nasopharyngeal carci-
noma (NPC) tissue samples were analyzed to evaluate miRNAs’ 
expression using stem-loop real-time PCR, revealing that thirty-five 
miRNAs were dysregulated, including a significant suppression of 
miR-145-5p [103]. In another study, Lan and colleagues investigated 
how lncRNA SNHG1 enhances the aggressiveness of NPC cells by uti-
lizing a dual luciferase reporter assay to explore the potential relation-
ship between SNHG1, miR-145-5p, and NUAK1. LncRNA SNHG1 
enhanced the expression of NUAK1 by inhibiting miR-145-5p, thereby 
increasing the aggressiveness of NPC cells through the AKT signaling 
pathway and facilitating EMT [104]. A more recent study in 2022 re-
ported that miR-145-5p is capable of reducing both the mRNA and 
protein levels of KLF5 in NPC cell lines. Moreover, miR-145-5p and KLF5 
were found to regulate focal adhesion kinase activity, which serves as a 
marker for cell migration in NPC cells [105].

Fig. 4. Potential roles of miR-145-5p in the development of asthma. This figure has been redrawn from Ref. [85]. A) The expression of miR-145-5p in asthma is 
associated with the disruption of Wnt/β-catenin and cytokine signaling pathways. This disruption contributes to inflammation, bronchial epithelial dysfunction, and 
the proliferation of airway smooth muscle. B) miR-145-5p promotes the differentiation of Th2 cells and contributes to the manifestation of the Th2 phenotype. 
Variations in miR-145-5p levels, whether up-regulated or down-regulated, lead to alterations in RUNX3 expression in CD4+ T cells, which in turn affects cytokine 
levels. Inhibiting miR-145 may restore the Th1/Th2 balance that is often disrupted in asthma.
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4. Disease of the digestive system

4.1. Hepatic disorders

Recent research has highlighted the importance of miR-145-5p in 
hepatic disorders, particularly in hepatocellular carcinoma (HCC). A 
growing body of research indicates that miR-145-5p functions as a 
tumor suppressor in HCC and is notably suppressed in various molecular 
subtypes of the disease [106,107]. A reduced expression level of 
miR-145-5p was significantly linked to poor prognosis in patients with 
HCC [108]. In vitro studies demonstrated that miR-145-5p inhibited cell 
proliferation, migration, and invasion while promoting apoptosis in 
HCCLM3 cells [108]. Recent research has shown that miR-145 sup-
presses cell migration and invasion, potentially by targeting Golgi 
membrane protein 1 (GOLM1), although the impacts of miRNAs in HCC 
remain fully elucidated [109]. ADP-ribosylation factor 6 (ARF6), a 
member of the ARF family that is involved in various cellular processes, 
plays a crucial role in hepatocellular HCC, and it has been reported that 
miR-145-5p suppresses ARF6, thereby inhibiting HCC cell migration and 
invasion, while restoring ARF6 expression abolishes the inhibitory ef-
fects of miR-145-5p, highlighting the importance of their interaction 
[109–111]. Recent research has underscored the significance of 
numerous protein-coding and non-coding genes, such as microRNAs, 
including miR-145, in initiating and advancing liver cancer. The 
expression level of miR-145 was significantly reduced in hepatic cancer 
cell lines and cancerous liver tissues. Restoring miR-145 levels was 
shown to decrease migration and invasion capabilities, as well as inhibit 
the proliferation in various cell lines, including HepG2 and Hep3B 
[112].

4.2. Gastrointestinal diseases

According to the study conducted by He and colleagues on gastric 
cancer, lncRNA MACC1-AS1 plays a critical role in promoting fatty acid 
oxidation (FAO), which is associated with stemness and 

chemoresistance. This process occurs through the targeting of miR- 
145–5p. Conversely, miR-145–5p has been shown to mitigate the sup-
pressive effect of MACC1-AS1 on cellular sensitivity to chemotherapy 
agents such as 5-FU and oxaliplatin. Furthermore, miR-145–5p enhances 
reactive oxygen species (ROS) production and leads to increased cell 
death [113]. Another study has demonstrated that when liver cancer 
cells were cultured in low glucose conditions, miR-145-5p was found to 
decrease the expression of miR-483-3p, which promoted apoptosis. In 
contrast, under high glucose conditions, the levels of miR-483-3p rose, 
leading to a reduced rate of apoptosis. This observation suggests that the 
effect of miR-145-5p on miR-483-3p varies with glucose availability, 
exhibiting both inhibitory and stimulatory characteristics [114]. Kad-
hoda and colleagues have demonstrated that miR-145-5p potentially 
plays a role in combating various cancers, including bladder, breast, 
cervical, renal, and gastrointestinal cancers, as well as in non-cancerous 
conditions such as aplastic anemia, asthma, reperfusion injury, and 
diabetic neuropathy. Future studies should focus on the development of 
innovative delivery methods for targeted therapies, aiming to enhance 
both their effectiveness and safety [20]. MiR-145 is frequently down-
regulated in CRC tissues and cell lines. This downregulation is correlated 
with aggressive tumor phenotypes and worse clinical outcomes, indi-
cating its role in suppressing tumor progression [115]. Researchers have 
noted that reduced levels of miR-145 may lead to enhanced invasive and 
metastatic capabilities of CRC cells, contributing to the disease’s severity 
[116]. MiR-145-5p targets various oncogenes and signaling pathways, 
including the c-MYC and p70S6K1, to suppress tumor cell growth and 
induce apoptosis [117]. Additionally, it directly influences 
epithelial-mesenchymal transition (EMT) through the regulation of 
genes such as Fascin-1 and N-cadherin, which are crucial for maintain-
ing the invasive characteristics of cancer cells [116].

5. Cardiovascular diseases

Cardiovascular diseases (CVDs) are an umbrella term that includes a 
group of disorders of the heart and blood vessels. CVDs can be classified 

Fig. 5. Regulatory roles of miR-145-5p in pemetrexed-resistant in NSCLC. This figure has been redrawn from Ref. [99]. Prolonged treatment with chemotherapeutic 
agents such as pemetrexed can lead to the development of resistance in cancer cells. In this context, Sp1 is overexpressed, resulting in reduced sensitivity to 
pemetrexed, increased cell migration, and the upregulation of epithelial-mesenchymal transition (EMT)-related factors such as Snail and ZEB in A549 cells. 
Furthermore, the overexpression of BMI1 contributes to the upregulation of Sp1, which in turn suppresses the expression of miR-145-5p. This suppression promotes 
enhanced cell proliferation and elevates the levels of EMT-related transcription factors. However, these detrimental effects can be mitigated either by increasing the 
expression of miR-145-5p or by employing treatments that inhibit Sp1 activity.
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into four major groups, namely coronary artery disease [70], cardio-
vascular disease, peripheral artery disease, and aortic atherosclerosis 
[118]. World Health Organization reports that cardiovascular disease 
was the leading cause of global mortality in 2021, and an estimated 17.9 
million individuals are affected by CVDs [119]. Numerous studies 
highlight the importance of miR-145 as a crucial modulator in cardio-
vascular diseases (CVDs). Boettger and colleagues have shown that 
miR-145-5p is an essential regulator of the contractile phenotype in 
vascular smooth muscle cells (VSMCs), which plays a significant role in 
various CVDs, including arteriosclerosis. This finding suggests that 
miR-145-5p has the potential to be utilized as a diagnostic biomarker for 
this condition [120]. Recently, Kontaraki and colleagues observed that 
the expression levels of miR-143/-145 in human peripheral blood 
mononuclear cells (PBMCs) were reduced in patients with hypertension 
compared to healthy control individuals [121]. Angiotensin-converting 
enzyme (ACE) is regulated by miR-145, where the downregulation of 
miR-145 leads to increased ACE expression, thereby enhancing the 
renin-angiotensin system’s activity and contributing to the maintenance 
of hypertension [122,123]. Furthermore, Liu and coworkers have shown 
that miR-145 plays a crucial role in alleviating heart failure-related 
cardiac remodeling by enhancing cardiac dilation, reducing fibrosis, 
addressing intracellular Ca2+ mishandling, and stabilizing electrophys-
iological function [124]. MiR-145-5p plays a significant role in the 
pathogenesis of Chagas disease by modulating the immune response and 
influencing parasite load in infected cardiomyoblasts. The microRNA 
miR-145-5p plays a pivotal role in Chagas disease, particularly in the 
context of Trypanosoma cruzi infection within H9C2 rat cardiomyoblast 
cells. Farani and colleagues have demonstrated that higher levels of 
miR-145-5p correlate with reduced parasite load in H9C2 cardiomyo-
blasts infected with Trypanosoma cruzi, suggesting that miR-145-5p may 
serve as a potential therapeutic target or biomarker for monitoring 
disease progression and treatment in patients with chronic Chagas dis-
ease [32]. These collective findings emphasize the diverse roles of 
miR-145 on cardiovascular health and posit its therapeutic potential in 
mitigating CVDs and related complications.

6. Diseases of the renal system

Alterations in miRNA expression can interfere with the early stages 
of kidney development and have been associated with the onset of 
kidney disease [125]. The increased level of urinary exosomal 
miR-145-5p has been associated with the progression of chronic kidney 
diseases. Furthermore, research indicates that the inhibition of 
miR-145-5p is associated with necrosis in HK-2 cells in vitro [126]. Wu 
and coworkers explored the role of miR-145-5p in regulating the pro-
liferation and inflammatory responses of renal mesangial cells and 
showed that miR-145-5p reduced the expression of CXCL16 protein by 
binding to its 3′-UTR, which in turn inhibited the AKT/GSK signaling 
pathway and led to a decrease in the levels of mRNAs related to 
inflammation [127]. A subsequent study revealed that urinary exosomal 
miR-145-5p levels were significantly elevated in patients with diabetic 
kidney disease (DKD) and were associated with the advancement of 
kidney injury in individuals with type 2 diabetes mellitus (T2DM) [128]. 
Han and colleagues investigated the mechanism of podocyte apoptosis 
employing urinary exosomes obtained from T2DM and DKD patients and 
summarized that urinary exosomal miR-145-5p plays crucial roles in 
mediating podocyte apoptosis by inhibiting Srgap2 and activating the 
RhoA/ROCK pathway [129]. Chen and colleagues explored the thera-
peutic effects of Salvianolic acid B (SalB) on mesangial cell abnormal-
ities caused by membranous nephropathy (MN) to understand the 
underlying mechanisms. They created experimental models of MN by 
administering bovine serum albumin to Dawley rats and treating human 
mesangial cells (HMCs) with lipopolysaccharide. After 24 h of treatment 
with SalB and a miR-145-5p inhibitor, they evaluated kidney function by 
measuring urine protein, serum creatinine, and blood urea nitrogen 
levels. The results demonstrated that SalB improved kidney function, 

reduced cell proliferation, and promoted autophagy in mesangial cells. 
Conversely, the use of the miR-145-5p inhibitor led to increased pro-
liferation and inflammation in HMCs through the activation of the 
PI3K/AKT signaling pathway. Overall, the study illustrated that SalB 
facilitates renal autophagy, thereby reducing cell proliferation and 
inflammation related to MN, a process mediated by miR-145-5p, which 
inhibits the PI3K/AKT pathway and contributes to the attenuation of MN 
[130].

7. Diseases of the reproductive system

Prostate cancer is a major health concern due to its high morbidity 
and mortality [86,131]. Each year, 1.3 million cases are reported 
worldwide, resulting in 400,000 deaths from metastatic prostate cancer. 
The skeletal system, particularly the bones, is the primary site for 
prostate cancer metastasis, leading to severe skeletal manifestations 
such as bone pain [132]. MiR-145-5p dysregulation is also prevalent in 
cervical, ovarian, and prostate malignancies [133]. The overexpression 
of miR-145-5p suppresses the proliferation of prostate cancer cells and 
leads to a decrease in SOX2 expression [134].

WIP1, or wild-type p53-induced phosphatase 1, is a proto-oncogene 
that is frequently overexpressed in prostate cancer [135]. Bioinformatics 
analysis has shown that miR-145-5p can target WIP1, which is also 
validated by a dual-luciferase experiment. Downregulation of WIP1 is 
associated with the inhibition of prostate cancer cell proliferation, while 
overexpression of WIP1 reverses the anticancer effect of miR-145-5p 
[135]. The anticancer effects of miR-145 were achieved through the 
inhibition of the PI3K/AKT signaling pathway and the upregulation of 
ChK2 and p-p38MAPK. Collectively, these findings demonstrate that 
miR-145-5p suppresses the growth and metastasis of PC cells by 
downregulating the proto-oncogene WIP1, thus exerting 
tumor-suppressive functions in prostate cancer [135]. Another study 
exhibited that miR-145-5p downregulates Phospholipase D5 (PLD5), 
leading to a reduction in cell proliferation and metastasis, which helps 
alleviate prostate cancer progression [136]. Luo and colleagues explored 
the effect of miR-145-5p on the development and progression of prostate 
cancer. MiR-145-5p plays a significant role in inhibiting bone metastasis 
in PC cells by negatively regulating epithelial-mesenchymal transition 
(EMT) processes, which are crucial for cancer invasion and migration 
[137]. Specifically, it influences the expression of several key proteins, 
including E-cadherin, which is vital for maintaining cell adhesion [137]. 
MiR-145-5p enhanced the expression of the epithelial marker E-cad-
herin while decreasing matrix metalloproteinase 2 and 9 (MMP-2 and 
MMP-9) [138]. Moreover, miR-145-5p promotes apoptosis in PC cells by 
enhancing the expression of caspase 9, which is a critical mediator in the 
apoptotic pathway. Therefore, the modulation of these factors by 
miR-145-5p contributes to its tumor-suppressive functions in bone 
metastasis (Fig. 6B) [137].

In cervical cancer (CC), the expression of miR-145-5p was down-
regulated, and KLF5 was upregulated in both CC tissue and cells. Cao 
and colleagues analyzed the role of miR-145-5p on KLF5 using C33A, 
HT-2, and HeLa cell lines. The KLF5 3′-UTR contains a seed sequence for 
miR-145-5p, and miR-145-5p downregulates KLF5, subsequently 
inhibiting proliferation, migration, and invasion of CC cells [139]. 
Another study was conducted by He and the group to explore the role of 
miR-145-5p in CC using HeLa cell lines and demonstrated its relation-
ship with fascin (FSCN1). HeLa and ECT1/E6E7 cells were transfected 
with FSCN1 or with mimics and inhibitors to figure out the cancer cell’s 
viability, migration, and invasion by employing the cell counting kit-8 
and Transwell assays. FSCN1 mRNA and protein expression were eval-
uated by reverse transcription PCR and Western blot analysis. There was 
a significant reduction in the expression levels of miR-145-5p in cervical 
cancer (CC) tissues and cell lines, while FSCN1 levels were notably 
elevated in these same tissues and cells. Nonetheless, the overexpression 
of miR-145-5p led to decreased invasion, migration, and viability of 
HeLa and ECT1/E6E7 cells. Similarly, reducing FSCN1 expression 
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through siRNA resulted in comparable declines in the invasion, migra-
tion, and viability of cervical cancer cells [140]. Another subsequent 
study revealed that miR-145 can potentially inhibit cervical cancer 
progression by targeting the WNT2B gene and disrupting the 
Wnt/β-catenin pathway. The experiments were conducted using HeLa 
and SiHa cell lines, along with 58 pairs of human CC tissue samples. The 
overexpression of WNT2B has been shown to reverse the inhibitory ef-
fects of miR-145 on cell proliferation and metastasis within cervical 
cancer (CC) cells [141].

Ovarian cancer is one of the most prevalent cancers in females, and 
miR-145-5p is considered a crucial regulator of epithelial ovarian cancer 
(EOC). Zhou and colleagues conducted a study to investigate the role of 
miR-145-5p in the etiology of EOC proliferation and metastasis by 
transfecting the SKOV-3 cell line with miR-145-5p mimics while also 
obtaining 18 EOC tissue samples and 18 samples from non-malignant- 
tissue-at-Xi’an-Gaoxin-Hospital. The results revealed that the expression 
of miR-145-5p was significantly reduced in EOC tissues, alongside an 
increase in SMAD4 levels. In addition, miR-145-5p acts as a tumor 
suppressor by playing a crucial role in preventing the development of 
malignancy and promoting the death of EOC cells through its targeting 
of SMAD4 [142]. Another subsequent study has shown that the over-
expression of nerve growth factor (NGF) and tropomyosin receptor ki-
nase A (TRKA) is associated with the upregulation of oncogenes like 
cMYC and VEGF, which are involved in the proliferation and angio-
genesis of EOC. The overexpression of miR-145 reduced cell prolifera-
tion, migration, and invasion in EOC cells, which was associated with 
decreased levels of c-MYC and VEGF proteins. These findings indicate 
that the tumor-promoting effects of NGF/TRKA are influenced by the 
modulation of miR-145-5p levels in EOC cells, suggesting that upregu-
lating miR-145-5p may serve as a potential therapeutic approach for 
EOC [143].

8. Diseases of the nervous system

MiR-145-5p dysregulation has been implicated in various nervous 
system disorders, including Alzheimer’s disease (AD) and Parkinson’s 
disease (PD) [169,170]. Microglia are the principal immune cells in the 

brain that are activated in response to injury or diseases [171]. Micro-
glial activation plays a significant role in the neuroinflammation asso-
ciated with Parkinson’s Disease (PD), highlighting its critical 
contribution to its etiology [172]. By modulating specific genes in 
microglia, miR-145-5p has the ability to reduce the excessive inflam-
matory response, potentially alleviating neurodegeneration in PD [173]. 
Nurr1 is indeed a member of the nuclear superfamily of orphan re-
ceptors, and it plays a critical role in modulating the dopamine pheno-
type 1. Its suppression has been associated with exacerbating the 
inflammatory response, subsequently contributing to PD neuronal cell 
death [174]. Xie et al. demonstrated that miR-145-5p is responsible for 
the suppression of Nurr1, and they further concluded that the use of an 
antagomir to miR-145-5p restored Nurr1 expression and improved 
neurological outcomes in MCAO/R rats, which serve as an in vivo model 
for PD [167]. Numerous studies have also tried to determine the causal 
link between miR-145-5p and AD. Some studies have demonstrated that 
AD patients exhibit reduced levels of miR-145-5p in the cerebrospinal 
fluid when compared to healthy controls [175]. It is well documented 
that Beta-amyloid, total tau, and phosphorylated tau 181 in the CSF are 
important biomarkers for the early diagnosis of AD [176].

miR-145 is abundantly expressed in vascular smooth muscle cells 
(VSMCs) and plays a vital role in their differentiation, implying that it 
may also have an effect on endothelial cells and influence overall 
vascular health. MiR-145 significantly promotes the contractile pheno-
type of VSMCs by inhibiting multiple factors that promote proliferation 
[177]. This regulatory mechanism facilitates a supportive environment 
for factors stabilizing the contractile phenotype [178]. Another research 
has shown that miR-145 is sufficient to trigger the differentiation of 
multipotent neural crest stem cells into VSMCs [179]. MiR-145 upre-
gulation has been shown to induce the expression of various VSMC 
differentiation marker genes, thereby promoting the differentiation of 
VSMCs into a contractile phenotype [180]. Specifically, genes such as 
SM α-actin, calponin, and SM-MHC are upregulated due to the influence 
of miR-145 [180]. This differentiation is essential for maintaining 
vascular function and health, further highlighting the role of miR-145 in 
VSMC biology [181]. Recent studies have also shown that miR-145-5p 
can inhibit angiogenesis by regulating vascular endothelial growth 

Fig. 6. Impacts of miR-145-5p in regulating breast and prostate cancer. A) miR-145-5p targets SOX2 mRNA, resulting in degradation that inhibits BC cell prolif-
eration. B) E-cadherin is the epithelial marker upregulated by miR-145-5p and reduced expression of the MMP-2 and MMP-9, which results in EMT induction and 
apoptosis in PC3 cells. In addition, miR-145-5p-activated caspase-9 that mediates apoptosis of the bone metastasis of PC3 cells. These figures have been redrawn from 
Refs. [137,144].
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factor A (VEGF-A) and ANGPT2 in human brain microvascular endo-
thelial cell injury models induced by oxygen and glucose deprivation 
[182]. Recently, Wenfeng and colleagues summarized that miR-145-5p 
may play a protective role in brain injury by suppressing the 
MMP-2-mediated Wnt/β-catenin pathway, which could enhance neural 
function, resolve blood-brain barrier disruption, alleviate brain edema, 
and reduce apoptosis [183].

9. Diseases of the endocrine system

MiR-145-5p is known to regulate the expression of genes crucial for 
insulin production and secretion in beta cells, thereby affecting glucose 
homeostasis. This microRNA’s involvement in these processes highlights 
its significance in maintaining proper insulin function and overall 
glucose regulation [184]. Additionally, studies indicate that alterations 
in miR-145-5p levels can lead to impaired glucose-stimulated insulin 
secretion, further emphasizing its role in diabetes pathophysiology 
[185]. A recent study by Lucena and colleagues demonstrated that pa-
tients with low baseline plasma miR-145 levels had an increased risk of 
T2DM more frequently following the consumption of the low-fat diet 
[186]. ATP binding cassette A1 (ABCA1) is anticipated to be crucial for 
maintaining islet cholesterol homeostasis, supporting β-cell function, 
and influencing insulin resistance as well as T2DM [187]. In hepatic 
HepG2 cells, miR-145 regulates the expression levels of ABCA1 protein 
and influences cholesterol efflux, while in murine islets, increased 
miR-145 expression results in reduced ABCA1 protein levels, elevated 
total islet cholesterol and decreased glucose-stimulated insulin secre-
tion. Conversely, inhibiting miR-145 resulted in increased ABCA1 pro-
tein expression and enhanced glucose-stimulated insulin secretion. 
Additionally, higher glucose concentrations in the culture media 
significantly reduced miR-145 levels in pancreatic beta cells [188].

Boufraqech and coworkers assessed the expression and function of 
miR-145 in thyroid cancer, exploring its potential clinical application as 
a biomarker. The findings revealed that miR-145 expression is signifi-
cantly downregulated in thyroid cancer compared to normal tissues. 
When miR-145 was overexpressed in thyroid cancer cell lines, there was 
a decrease in cell proliferation, migration, invasion, VEGF secretion, and 
E-cadherin expression. Additionally, overexpression of miR-145 inhibi-
ted the PI3K/Akt pathway and directly targeted AKT3. In vivo studies 
using a xenograft mouse model increased miR-145 levels led to reduced 
tumor growth and metastasis and reduced VEGF secretion [189]. 
Numerous studies have explored the role of miR-145-5p in reproductive 
endocrinology, particularly with ovarian function, folliculogenesis, and 
steroid hormone production in the gonads [190]. Additionally, miR-145 
has been associated with essential genes such as Activin A receptor type 
II (ACVRIB) and SMAD2, which are involved in the regulation of folli-
culogenesis [191]. During this process, the increase in oocyte size fa-
cilitates maturity, while the surrounding granulosa cells mediate 
proliferation and differentiation. Follicle-stimulating hormone (FSH) 
and luteinizing hormone (LH) are also crucial in regulating folliculo-
genesis, alongside various intra- and extra-ovarian factors such as acti-
vins, inhibins, BMPs, and GDF-96 [192]. Research has increasingly 
demonstrated the involvement of activins in reproductive dysfunctions 
and cancers, highlighting their role in regulating folliculogenesis and the 
functions of follicles, notably in the maturation of oocytes and the 
modulation of granulosa cell proliferation [190,192]. Moreover, the 
ectopic expression of miR-145 has been shown to directly suppress both 
mRNA and protein levels of ACVRIB by targeting its 3′-UTR and dis-
rupting activin-induced Smad2 phosphorylation, indicating its potential 
to inhibit granulosa cell proliferation [193].

10. Other cancers

Breast cancer (BC) is one of the most prevalent malignancies in 
women, with 2.3 million new cases reported worldwide in 2020, 
resulting in approximately 685,000 deaths, which accounts for 16 % of 

all cancer-related deaths [194]. MiR-145-5p functions as a cancer sup-
pressor and regulates several genes involved in cancer development and 
metastasis [133,195]. It has been shown to directly or indirectly sup-
press metastatic signaling pathways, thereby downregulating the 
expression of different genes that play significant roles in the invasion 
and migration of cancer cells [133]. It is evidenced that miR-145-5p is 
significantly downregulated in breast cancer, as evidenced by numerous 
studies that indicate lower expression levels in breast cancer tissues 
compared to normal samples [196]. Additionally, a noteworthy corre-
lation has been established between low levels of miR-145-5p and 
adverse clinical outcomes in breast cancer patients [144]. The 
sex-determining region Y box 2 (SOX2), a member of the SOXB1 family, 
is commonly upregulated in several types of cancer and has been iden-
tified as a target of miR-145-5p [144]. Through dual luciferase reporter 
assays, quantitative RT-PCR, and Western blot analyses validated that 
miR-145-5p mediates the suppression of SOX2, indicating that both 
miR-145-5p and SOX2 could serve as promising therapeutic targets for 
breast cancer treatment Fig. 6A) [164]. Other target genes associated 
with miR-145-5p in breast cancer include histone protein family mem-
ber X (H2AFX) [164] and PD-L1, which is a crucial immune checkpoint 
molecule in breast cancer [197]. The downregulation of miR-145-5p is 
inversely correlated with PD-L1 overexpression, suggesting that 
restoring miR-145-5p expression in breast cancer may initiate apoptosis, 
leading to cell cycle arrest, and diminish cellular proliferation [197].

11. Therapeutic/targeting strategies for miR-145-5p

Therapeutic strategies targeting miR-145-5p hold promise for 
various clinical applications in different human diseases, including lung 
diseases and distinct cancer treatments [59,198,199]. Given its identi-
fied role as a tumor suppressor, one of the main approaches involves 
restoring its expression in cancer cells where it is downregulated. 
Therapeutic strategies involving miR-145-5p in lung diseases, particu-
larly NSCLC, include improving the sensitivity of gefitinib-resistant cells 
via inhibition of NRAS and MEST expression [200]. Additionally, the 
LncRNA ROR/miR-145/FSCN1 axis can reverse epithelial-mesenchymal 
transition (EMT) in docetaxel-resistant lung adenocarcinoma cells, 
thereby sensitizing them to chemotherapy [201]. Targeting strategies 
for miR-145-5p include suppressing tumor cell proliferation by targeting 
OCT4, thereby impairing lung cancer development [202]. Furthermore, 
miR-145-5p can inhibit NSCLC cell migration and invasion by targeting 
PDK1 via the mTOR signaling pathway [55].

Another strategy focuses on the use of miR-145-5p mimics, which are 
synthetic molecules designed to mimic the natural function of the 
miRNA [198]. Once inside the cell, the mimic binds to 3′-UTR of the 
targeted mRNAs, leading to their degradation or translation repression 
[203]. In the context of COPD, miR-145-5p is often downregulated in 
lung tissues, which may contribute to airway remodeling and inflam-
mation [77]. The employing of miR-145-5p mimics has shown potential 
in restoring its level, thereby reducing inflammation and improving lung 
functions [201]. Therapeutic strategies that involve intravesical 
administration of miR-145-5p mimics can target cancerous cells directly 
and potentially reverse malignant characteristics [201]. In some path-
ological conditions such as fibrosis or vascular smooth muscle cell 
dysfunction, the excessive expression of miR-145-5p can be blocked by 
antagomirs/miRNA inhibitors, preventing fibrosis progression or 
abnormal vascular remodeling in cardiovascular disease [204–206]. 
Additionally, nanoparticle-based delivery systems are being developed 
to improve the targeting and efficacy of miR-145-5p therapies. These 
systems can provide stable protection of the miRNA mimics from 
degradation and facilitate targeted delivery to tumor sites, thus maxi-
mizing therapeutic impact while minimizing off-target effects [207].

Gene therapy using viral vectors such as lentivirus or adeno- 
associated virus is another strategy to deliver miR-145-5p [208]. 
These vectors can be engineered to carry miR-145-5p expression, 
enabling sustained production of miR-145-5p inside the target cells 
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[208]. Therapeutic strategies targeting miR-145-5p in atherosclerosis 
include lentiviral vector-mediated delivery, which has been shown to 
enhance miR-145-5p expression and reduce plaque burdens in preclin-
ical models [201,209]. In addition, CRISPR/Cas9-based miRNA editing 
is still in the early stages but offers a potential strategy to directly 
modulate the miR-145-5p level by editing genomic regions responsible 
for its expression [201,210,211]. Moreover, combining miR-145-5p 
mimics with existing chemotherapy regimens is being explored. This 
synergistic approach may enhance the sensitivity of cancer cells to 
chemotherapeutics by not only downregulating pro-survival signaling 
pathways but also by identifying cells to apoptotic stimuli [59].

12. Conclusion

MiR-145-5p plays a crucial role in regulating several important genes 
implicated in the progression of human diseases and is involved in 
various physiological processes, including cellular proliferation, differ-
entiation, and apoptosis. While some diseases are worsened by increased 
expression of miR-145-5p, certain cancers are characterized by reduced 
levels of this microRNA. Therefore, miR-145-5p has a multifaceted role, 
with its expression capable of either worsening or improving outcomes 
across different diseases. A growing body of research has solidified the 
importance of miR-145-5p as a significant disease modifier, utilizing 
diverse models such as animal models, cell lines, and primary cells, 
which have offered valuable insights into its distinct roles. These in-
vestigations promise to enhance our understanding of miR-145-5p and 
the regulation of its target genes in various human diseases. Moreover, 
the dysregulation of miR-145-5p expression is associated with numerous 
respiratory, cardiovascular, and metabolic diseases, underscoring its 
potential as a therapeutic target or a biomarker candidate for disease 
diagnosis and prognosis.
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JNK Jun N-terminal kinase
MAP3K1 Mitogen-activated protein kinase 1
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GOLM1 Golgi membrane protein 1
CAD Coronary artery disease
PAD Peripheral artery disease
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NSCL Non-small cell lung cancer
HCC Hepatocellular carcinoma
DKD Diabetic kidney disease
BC Breast cancer
PC Prostate cancer
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PD Parkinson’s disease
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FSH Follicle stimulating hormone
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