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ABSTRACT: The photofunctionality of the cobalt−hexacarbene complex [Co(III)(PhB(MeIm)3)2]
+ (PhB(MeIm)3 = tris(3-

methylimidazolin-2-ylidene)(phenyl)borate) has been investigated by time-resolved optical spectroscopy. The complex displays a
weak (Φ ∼ 10−4) but remarkably long-lived (τ ∼ 1 μs) orange photoluminescence at 690 nm in solution at room temperature
following excitation with wavelengths shorter than 350 nm. The strongly red-shifted emission is assigned from the spectroscopic
evidence and quantum chemical calculations as a rare case of luminescence from a metal-centered state in a 3d6 complex. Singlet
oxygen quenching supports the assignment of the emitting state as a triplet metal-centered state and underlines its capability of
driving excitation energy transfer processes.

Earth-abundant transition metal complexes have received
increasing attention in recent years as photoactive

components in prospective large-scale approaches for solar
energy conversion and photocatalysis.1−3 Several first-row
transition metals are interesting in this context, but
unfortunately many 3d metal complexes suffer from short
excited-state lifetimes compared to their 4d and 5d
congeners.4,5 This is due to the presence of low-lying metal-
centered (MC) states that facilitate fast, radiationless
deactivation which limits their use in light-driven applica-
tions.6−9 Nevertheless, significant progress has recently been
made to extend the excited-state lifetimes of 3d metal
complexes, for example, by innovative ligand design to
destabilize MC states by imposing a strong ligand field10,11

or by expanding investigations to a range of unconventional
excited-state schemes beyond the common triplet metal-to-
ligand charge transfer (3MLCT) state in d6 complexes.12,13

Though MC states are interesting for spin crossover (SCO)
and light-induced excited-state spin trapping (LIESST)
applications,14,15 in contrast to charge transfer (CT) states
they are typically too low in energy to be interesting for
photochemical applications or to display visible emission.8,16

As a rare case among the d6 complexes, very weak emission was
reported from the 3MC state in [Co(CN)6]

3−,17,18 while such
states have only rarely been possible to observe in Ru(II) and
Fe(II) complexes.19,20 Recently, remarkable photoproperties
for Co(III) complexes were reported by Hannan and Zysman-
Coleman and co-workers.21 Excited states of mixed triplet
ligand-to-metal charge transfer/ligand centered (3LMCT/LC)
character showed up to 8.7 ns blue emission in solution at
room temperature. The photophysical properties of these
complexes were related to the strong σ-donor ligands they
contain.6,22 Tris(carbene)borate-based scorpionate ligands
incorporating a negatively charged boron atom in their
backbone are very strong σ-donors, and among these the
tris(3-methylimidazolin-2-ylidene)(phenyl)borate anion

([PhB(MeIm)3]
-) is one of the strongest.23,24 Hexacarbene

complexes of Mn(IV) and Fe(III) featuring this ligand have
been reported to exhibit extraordinary photophysical proper-
ties including photoluminescence.25,26 These findings spurred
us to investigate the photophysics of [Co(III)(PhB-
(MeIm)3)2]

+ (Figure 1) which was first reported in 2019 by
Nishiura et al.27 Even though the complex showed no apparent
absorption in the visible part of the spectrum, we nevertheless
considered it interesting to obtain a new perspective on the
excited-state properties of 3d6 complexes with strong σ-donor
ligands.28,29
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Figure 1. Crystal structure of [Co(PhB(MeIm)3)2]PF6. Ellipsoids
drawn at 50% probability level. The counterion, solvent molecules,
and hydrogen atoms omitted for clarity. Orange = Co; purple = B;
blue = N; black = C.
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We synthesized [Co(PhB(MeIm)3)2]PF6 following our
procedure for the analogous Fe compound (see the Supporting
Information). The crystal structure of [Co(PhB(MeIm)3)2]-
PF6 is almost identical with the one reported by Nishiura et al.
of the same complex featuring triflate as a counterion.27

Compared to [Fe(PhB(MeIm)3)2]PF6, the C−M−C cis angles
in the Co complex are closer to 90° (87.7° to 88.7° vs 86.4° to
87.5°), and the M−C bond lengths are on average 0.061 Å
shorter (1.935 Å vs 1.996 Å) in the Co complex, which should
lead to a stronger ligand field splitting.26 The same trend for
bond lengths has earlier been found in structurally similar Fe
and Co complexes with the tris(methylimidazolin-2-ylidene)-
hydroborate ligand.30

The absorption spectrum of [Co(PhB(MeIm)3)2]
+ in

acetonitrile is shown in Figure 2A. Very weak absorption
features can be seen between 600 and 400 nm (ε < 3 M−1

cm−1; a more detailed discussion in the Supporting
Information), followed by a slightly stronger absorption band
around 310 nm (ε310 nm = 400 M−1 cm−1). A significantly
stronger band is peaking around 250 nm (ε250 nm = 18000 M−1

cm−1) and further rising toward shorter wavelengths (ε212 nm =
63800 M−1 cm−1). These absorption features are similar to
those of [Co(CN)6]

3− incorporating strongly σ-donating
cyanide ligands, which suggests MC character for the weak
features >300 nm and transitions with more CT character for
the more intense bands at lower wavelengths.31 Upon
excitation of the complex an orange-red emission peaking
∼690 nm is observed (Figure 2A, green spectrum). The
excitation spectrum corresponding to this emission (Figure 2A,
orange spectrum) qualitatively follows the absorption spec-

trum, indicating the coupling of absorptive and emissive states.
For excitation at 266 nm, we estimate a lower limit for the
quantum yield of 0.01% (see the Supporting Information). The
absorption at the 250 nm band is 45 times higher than at the
310 nm band. The excitation spectrum, however, yields only a
factor of 17 ± 5 between those two bands, indicating that the
quantum yield is about 2.5 times higher when exciting into the
longer-wavelength absorption band.
Experiments were also performed to check for sensitivity of

the emissive state toward oxygen quenching. A comparison of
the emission from aerated and deaerated samples (Figure 2B)
showed additional quenching (∼30%) of the excited Co
complex in the presence of oxygen with the concomitant
appearance of a new emission peak at ∼1275 nm (Figure 2C).
Although limited in yield, this observation is indicative of the
excited state of the Co complex undergoing intersystem
crossing (ISC) to a triplet excited state capable of excitation
energy transfer (EET) forming singlet oxygen, which would
not be possible from a quintet state.32

Time-resolved photoluminescence (TRPL) in several
solvents was measured at room temperature by using 266
and 310 nm excitation. All combinations of solvent and
excitation wavelength yield a single-exponential decay (see the
Supporting Information). Figure 3A shows the observed PL
kinetics in MeCN and MeOH for 266 nm excitation, yielding
remarkable emission lifetimes of 0.82 and 1.25 μs, respectively.
The excited-state dynamics in MeCN was further inves-

tigated by using transient absorption (TA) optical spectrosco-
py (experimental details in the Supporting Information).
Figure 3B shows the differential absorption spectrum recorded

Figure 2. (A) Steady-state absorption (black) and excitation (orange, detected at 700 nm) spectrum of [Co(PhB(MeIm)3)2]
+ in MeCN on a

logarithmic scale. Normalized emission (green) after excitation at 266 nm. (B) Emission of [Co(PhB(MeIm)3)2]
+ in deaerated MeCN (red) and

after bubbling with oxygen (blue). (C) Emission of 1O2 from the same sample as in (B).

Figure 3. (A) Normalized kinetics of transient absorption probed at 532 nm (black) and time-resolved photoluminescence (orange and blue) after
266 nm excitation in MeCN (squares and circles) and MeOH (triangles). Single-exponential fits (lines) as a guide to the eye. (B) Transient
absorption spectrum of [Co(PhB(MeIm)3)2]

+ in MeCN following 266 nm excitation at time delay of 7.2 ns.
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7 ns after excitation at 266 nm. A peak at 515 nm is formed on
the picoseconds time scale and does not change within the 10
ns accessible in this experiment. To explore the full decay
process, single-wavelength nanosecond TA was measured.
Probing the excited-state absorption (ESA) dynamics at 532
nm (Figure 3A) yields a very similar τESA ∼ 0.8 μs lifetime as
observed in TRPL. As both the emission and ESA signals have
the same lifetime they can be associated with the population of
the same state. The radiative lifetime of the emissive transition,
its oscillator strength f, and molar absorption coefficient can
furthermore be evaluated from the experimental lifetime and
quantum yield as summarized in Table 1 (calculations in the

Supporting Information). The molar absorption coefficient at
the maximum of the excited-state absorption (ESA) feature at
515 nm is calculated to have a lower limit of 600 M−1 cm−1,
which indicates that the strength of ESA transition is much
larger than that of the emissive transition (estimated in
equivalent units to molar absorption coefficient: 17 M−1

cm−1). This explains the appearance of the differential
spectrum with minor (if any) contribution of stimulated
emission.
Quantum chemical calculations were performed by using

density functional theory (DFT) and time-dependent DFT
(TD-DFT) to characterize key states and processes involved in
the photophysical processes (methods detailed in the
Supporting Information). Calculations of singlet and triplet
excited states by means of DFT for the lowest state of each
singlet/triplet/quintet spin type as well as TD-DFT for vertical
excitations indicate that the lowest excited singlet and triplet
states display predominant MC character (details in the
Supporting Information). This is also reflected in the spin
density plot for the lowest relaxed triplet state (Figure 4A)
showing significant spin density on the metal center and some
metal−ligand mixing. The TD-DFT calculations thus support
an interpretation of the experimental electronic absorption
spectrum in which the weak absorption band at 310 nm is
dominated by excitations to states with large MC contribu-
tions, while the stronger band at 250 nm corresponds to
excitations with more significant CT character. This is in good
agreement with general expectations on the relative intensities
of weak MC and stronger CT bands.33 The calculated excited-
state energy landscape (Figure 4B) visualizes an explanation of
the main spectroscopic observations. The initially excited high-
energy states (>3.5 eV) relax rapidly and with a remarkably
large drop in excited-state energy into a long-lived lower-
energy emissive state with 3MC character. From an electronic
structure perspective, the population of an antibonding eg
orbital in the 3MC excited state leads to a significant structural
rearrangement of the molecule, mainly characterized by
increased metal−ligand bond lengths. This results in a drop

of the 3MC state energy and a concomitant increase of the
singlet ground-state (1GS) energy. Thus, the observed vertical
deexcitation energy from the relaxed 3MC state is only about
1.8 eV (690 nm), yet the calculated energy difference to the
relaxed GS corresponds to more than 2.1 eV.
Key to achieving the experimentally observed, rare 3MC

emission is that this state retains significantly higher energy
than the 1GS also at its fully relaxed geometry. This is enabled
by the very strong ligand field splitting (10 Dq = 38600 cm−1;
more details in the Supporting Information) induced by the
scorpionate carbene ligands. At the same time these ligands
form a tight and rather rigid coordination environment around
the metal center. This could be beneficial to slow down
nonradiative decay pathways as recently found for other
transition metal complexes.34,35 In our photophysical model,
the ESA feature at 515 nm could correspond either to MC
transitions in analogy to the suggestions by Viaene et al. for
[Co(CN)6]

3− or to CT transitions that are weakened due to
the distorted geometry as suggested by Sun et al.36,37 The weak
emission from the lowest excited state can be explained by the
spin- and Laporte-forbidden nature of the transition to the
1GS, and its sensitivity to oxygen is indicative for triplet
multiplicity. The photophysical properties of [Co(PhB-
(MeIm)3)2]

+ with UV absorption and orange/red emission
most closely parallel similar behavior previously established for
[Co(CN)6]

3− (at low temperatures) with the lowest energy
excitation located at 396 nm and emission located at 714 nm.36

The excited-state lifetime of the 3T1 state of [Co(CN)6]
3− was,

however, found to be limited to <5 ns in aqueous solution at
22 °C.18 Furthermore, the excited-state lifetime of neither CT
nor MC states in related Fe(II) complexes usually exceed a few

Table 1. Summary of Key Photophysical Properties of
[Co(PhB(MeIm)3)2]

+ in MeCNa

λ [nm] E [eV] ε [M−1 cm−1] f τ [μs] Φ [%]

abs 250 4.96 18000 1.7 × 10−1

310 4.00 400 6.5 × 10−3

ESA 515 2.41 600 0.80
em 690 1.80 17 1 × 10−10 0.82 >0.01

aλ = wavelength of band, E = energy of band, ε = molar absorption
coefficient, f = oscillator strength, τ = lifetime, Φ = quantum yield, abs
= absorption, ESA = excited-state absorption, and em = emission.

Figure 4. (A) Spin density plot for the lowest relaxed triplet state.
Positive (excess α) and negative (excess β) spin density contributions
are shown as purple and red isosurfaces, respectively, Contour of the
plot 0.03. (B) Excited-state potential energy landscape, including
calculated vertically excited singlet and triplet state energies from TD-
DFT with sketched energy surfaces (dashed lines) for visual guidance,
as well as singlet, triplet, and quintet unrestricted DFT energies at the
lowest computational relaxed singlet, triplet, and quintet geometries
with sketched energy surfaces (bold lines). Excitation and decay
processes discussed in the text are marked by vertical arrows. IC =
internal conversion, and ISC = intersystem crossing.
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nanoseconds under ambient conditions.38 It is worth noting
that the photophysical behavior of [Co(PhB(MeIm)3)2]

+ is
fundamentally different from the blue-emitting Co complexes
recently presented by Zysman-Colman, Hanan, and co-workers
as well as from structurally related Fe carbene com-
plexes.21,26,39 Instead of extending CT excited-state lifetimes
by destabilizing the MC states, here the 3MC state itself is
sufficiently high in energy above the 1GS energy surface to
become a long-lived emissive state. This atypical behavior for
d6 emitters more closely resembles the photophysics of
transition metal complexes with MC states nested above the
ground-state potential, such as some Cr(III) complexes, with
long-lived emissive states.40

In summary, [Co(PhB(MeIm)3)2]
+ shows microsecond

emission from a 3MC state which is unique for 3d6 metal
complexes. The capability of this complex to drive energy
transfer reactions furthermore highlights the photofunction-
ality of this unconventional excited state. It will be important in
further work to improve the light-harvesting capabilities
through ligand design modifications while retaining the
favorable 3MC excited-state properties. Fortunately, carbene
ligands can be tuned in regards to their σ- and π-properties, in
contrast to earlier used CN− ligands. It will also be interesting
to explore other avenues to utilize the long-lived excited MC
state for a broader range of photochemical applications, for
example, similar to the MC states that were recently suggested
to play a key role in photoredox catalysis.41,42
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