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The high morbidity and mortality of colorectal cancer (CRC) remain a worldwide

challenge, despite the advances in prevention, diagnosis, and treatment. RAS alterations

have a central role in the pathogenesis of CRC universally recognized both in

the canonical mutation-based classification and in the recent transcriptome-based

classification. About 40% of CRCs are KRAS mutated, 5% NRAS mutated, and only

rare cases are HRAS mutated. Morphological and molecular correlations demonstrated

the involvement of RAS in cellular plasticity, which is related to invasive and migration

properties of neoplastic cells. RAS signaling has been involved in the initiation of epithelial

to mesenchymal transition (EMT) in CRC leading to tumor spreading. Tumor budding

is the morphological surrogate of EMT and features cellular plasticity. Tumor budding

is clinically relevant for CRC patients in three different contexts: (i) in pT1 CRC the

presence of tumor buds is associated with nodal metastasis, (ii) in stage II CRC identifies

the cases with a prognosis similar to metastatic disease, and (iii) intratumoral budding

could be useful in patient selection for neoadjuvant therapy. This review is focused on

the current knowledge on RAS in CRC and its link with cellular plasticity and related

clinicopathological features.
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INTRODUCTION

Colorectal cancer (CRC) is a malignant epithelial tumor originating in the large bowel and in
almost all cases it features as an adenocarcinoma, a neoplasia with glandular characteristics (1).
Despite the big efforts of the last decades resulting in the widespread implementation of screening
programs, that have proved effective in reducing the burden of the disease in the population, and
in the advances of the surgical and systemic treatments, that have improved the outcome of the
patients, CRC is still the third cancer for incidence and the second for mortality in both sexes
worldwide (2–4). This highlights the urgent need to identify novel diagnostic, prognostic, and
predictive markers and to develop new strategies for CRC prevention, early detection, and therapy
to drastically reduce CRCmorbidity andmortality. Indeed, the identification of circulatingmarkers
would allow to anticipate the identification of CRC in the population, to early detect interval
cancers, and to better select patients really needing colonoscopy. The current categorization based
on tumor histology, grade, and stage provides limited understanding of CRC biology and often
fails to recognize the true high-risk population after surgery. Consistent prognostic markers would
allow to tailor the treatment according to the aggressiveness of the tumor. The development of
reliable sentinel lymph node methods would modify the surgical management of the disease. The
discovery of mechanisms impairing the response to current drugs and of novel targetable molecular
alterations would allow a more appropriate therapy in specific subgroups of patients.
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In the past, pioneering morphological, and molecular studies
allowed to disclose the chain of events underlying the “adenoma
to carcinoma cascade” theorized by Fearon and Vogelstein
characterized by chromosomal instability (CIN) and sequential
mutations of Adenomatous Polyposis Coli (APC), Kirsten rat
sarcoma viral oncogene homolog (KRAS), and tumor protein p53
(TP53) genes (5). The importance of this model is such that it is
the foundations on which CRC secondary prevention is based.
However, it was soon clear that this model of carcinogenetic
progression was not applicable to all cases of CRC since it is a
heterogeneous disorder with a great variability in response to the
therapies and presumed to arise from distinct precursor lesions
(6). Subsequent molecular studies led to the identification of
various subtypes of CRC, then grouped into a mutation-centered
classification (6). However, even this approach partially failed
to grasp the biological behavior of CRC and was inadequate
in explaining the diversity in patient outcomes (7). More
recently, research focused on gene expression profiling and
characterization of tumor microenvironment pressures and
stimuli to try to fill the gap in the understanding of the
disease. Such strategies deepened the knowledge about cellular
mechanisms of tumor progression, allowed to discover novel
morphological clues of cancer aggressiveness, and provided a
huge amount of data finally condensed in a new molecular
classification (8).

In this article, we summarize the most meaningful molecular
classifications of CRC highlighting the role of RAS in this tumor
and its link with cellular plasticity, invasion, and migration at
both molecular and morphological levels.

MOLECULAR CLASSIFICATIONS OF
COLORECTAL CANCER

In the “adenoma to carcinoma” model, CRC carcinogenesis is
presented as a stepwise process based on the accumulation
of molecular alteration contributing to the malignant
transformation of the mucosa. In this cascade, APC inactivation
initiates the evolution of the mucosa into the adenoma and
subsequent KRAS and TP53 mutations drive the emergence of
increasingly aggressive subclones (5). However, the evidence that
a consistent number of CRCs lacks APC and KRAS mutations
has slowly eroded the foundations of this linear theory. Thus, a
different categorization was needed because tumor classification
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is not just to give a name to the entities, but to differentiate
them according to the clarification of the clinicopathological
correlations, the determination of the etiologies, and the
understanding of the evolution of the disease to achieve the best
response to treatment.

The first attempt to organize CRC subgroups based on
correlation of clinical, morphological, and molecular features
used two main molecular alterations: genetic instability and
DNA methylation (6, 9–11). Genetic instability can occur in
two mutually exclusive forms, one affecting whole chromosomes
or portions of chromosomes (namely CIN), the other affecting
small repetitive sequences of DNA [namely DNA microsatellite
instability (MSI)] (12). Thus, a CRC with CIN is DNA
microsatellite stable (MSS). MSI was further stratified in MSI-
high (MSI-H), andMSI-low (MSI-L) depending on the frequency
of the mutations in the repetitive DNA sequences throughout
the genome (13). These two conditions are also linked to
different onset mechanisms. While MSI-H is related to the
loss of expression of one or more members of the DNA
mismatch repair machinery (namely MLH1, MSH2, MSH6, and
PMS2), MSI-L is connected to extensive DNA methylation of
the genome due to partial methylation and loss of expression
of MLH1 or loss of expression of 0-6-Methylguanine DNA
Methyltransferase (MGMT) (14–16). Epigenetic instability due
to aberrant promoter CpG island hypermethylation is the second
cornerstone on which CRC classification is based. According
to the frequency of methylation of CpG loci, CRCs are
separated into negative, low, and high CpG island methylator
phenotype (CIMP) groups (17–20). The combination of these
features results in a classification outlining five molecular
subgroups of CRC whose alterations can be found also in
definite precancerous lesions (Figure 1). The first subtype is
the conventional CRC originating from adenoma. The tumor
may be sporadic or associated with inherited conditions such as
familial adenomatous polyposis (FAP) andmutYDNA glycosylase
(MUTYH)-associated polyposis (MAP) (21). It is the most
common type of CRC accounting for ∼57% of cases and is
molecularly characterized by CIN, CIMP negativity, and MSS.
APC, KRAS, and TP53 genes are usually mutated, accordingly
to the “adenoma to carcinoma” sequence (6). Another CRC
subtype following this mutational cascade is represented by
tumors developing from adenomas in the context of Lynch
syndrome (accounting for about 3% of CRCs). Indeed, these
tumors are chromosomal stable and CIMP-negative, but have a
hypermutator phenotype due to MSI-H caused by the inherited
mutation affecting one or more components of the DNA
mismatch repair system (22). BRAF gene is typically wild
type, as opposed to the so-called sporadic MSI-H CRC that
is characterized by chromosomal stability, CIMP-H, MLH1
methylation, MSI-H, and BRAF mutation (23). This sort of
CRC accounts for about 12% of cases and is thought to
derive from sessile serrated adenoma (6, 23, 24). Another
subgroup of CRC (about 8% of cases) originating from sessile
serrated adenoma has chromosomal stability, CIMP-H, only
partial methylation of MLH1, MSS or MSI-L, and harbors more
commonly mutation of BRAF than of KRAS (6). The last subtype
of CRC may develop from both conventional adenoma and
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sessile serrated adenoma, includes about 20% of tumors, and is
characterized by CIN, CIMP-L, MSS, or MSI-L due to MGMT
methylation, and always KRAS mutations (6). In general, CRCs
with CIN are relatively more aggressive than those with MSI
(25–27) and CIMP-H tumors has a less favorable prognosis
than CIMP-L ones, but if CIMP-H is associated with MSI-H
the outcome is slightly better (28, 29). Moreover, MSI CRCs
are known to be not responsive to adjuvant fluorouracil-based
therapy but may benefit of immune checkpoint blockade with
anti-PD1 immunotherapy (30, 31). The major limit of this
categorization is that tumors in each subgroup are considered
to be a homogeneous entity from a therapeutic point of view,
however they show profound differences in drug response
and prognosis.

For this reason, more recent approaches shifted from the
mutation-based toward the transcriptome-based classification
thinking that it can better describe the behavior of the
tumors. Indeed, several of such categorizations found CRC gene
expression profiles more adherent to the outcome of the patients
than the previous system (7, 32–37). These patient stratifications
could be useful for the therapeutic decision-making process
and are attractive for a rapid translation into the clinic, thus
there are many expectations in this regard (7). However, several
inconsistencies have emerged by the comparison of the results
of these new classification systems. Indeed, each study has
attained its own taxonomy including a different number of CRC
subtypes. These substantial discrepancies were mostly due to
the different CRC populations investigated, the various analysis
platforms used, the distinct methods of bioinformatic analysis
applied, and the interpretation of data performed (7, 32–37). To
clear these hurdles, the CRC Subtyping Consortium (CRCSC)
was formed with the purpose of evaluating potential overlaps
among the different transcriptome-based CRC classifications to
identify core subtype patterns (Figure 1) (8). Four consensus
molecular subtypes (CMSs) were delineated using a network-
based meta-analysis method of six different taxonomies followed
by comprehensive multi-omic and clinical characterization (8).
The CMS1 sort of CRCs accounts for about 14% of cases and
corresponds to the “MSI immune subtype” characterized by
MSI, CIMP-H, BRAF mutations, and intense and widespread
immune infiltrate (8). CSM2, the so-called “canonical subtype,”
is the most common subtype of CRC accounting for ∼37%
of tumors. Epithelial characteristics, CIN, activation of WNT
and MYC signaling pathways, and upregulation of the miR-
17-92 cluster feature this CRC (8). About 13% of CRCs
are included in the “metabolic subtype” or CMS3 group,
characterized by loss of regulation of metabolic pathways, CIN,
CIMP-L, heterogeneous MSI-status, KRAS mutations, and let-
7 miR family downregulation (8). Overexpression of epithelial
to mesenchymal transition (EMT) markers, miR-200 family
downregulation, activation of TGF-β pathway, neoangiogenesis,
and stromal infiltration feature the CRC subgroup related to
the worst prognosis: the “mesenchymal subtype,” namely CMS4
(8). This subtype accounts for about 23% of CRC cases. Of
note, ∼13% of CRCs are not classifiable in any of these
categories because of intratumoral heterogeneity or a phenotype
mixing molecular features of several CMS subtypes (8). The
frequency of KRAS mutation varies among the CRC subtypes

(23% in CMS1, 38% in CMS2, 28% in CMS3, and 68% in
CMS4) and this could explain the different behavior of mutated
tumors (7).

RAS IN COLORECTAL CANCER

The human RAS gene family includes three members, namely
KRAS, neuroblastoma RAS viral oncogene homolog (NRAS),
and Harvey rat sarcoma viral oncogene homolog (HRAS),
encoding four proteins: KRAS4A and KRAS4B (secondary
and prevalent isoforms, respectively, deriving from alternative
splicing of the RNA), NRAS, and HRAS (38). By means of their
GTPase enzymatic site, these small proteins play as molecular
switches transducing extracellular signals, such as growth factors,
differentiation factors, and mitogens, to transcription factors
and cell cycle proteins in the nucleus thus triggering cell
growth, differentiation, proliferation, and survival. This site
cycles between the guanosine diphosphate (GDP)-bound inactive
and the guanosine-5′-triphosphate (GTP)-bound active forms. In
normal conditions, extracellular cues stimulate transmembrane
tyrosine kinase receptors which recruit guanine nucleotide
exchange factors (RASGEFs) promoting activation of the RAS
GTPase through the hydrolysis of GDP to GTP (39). In turn, RAS
recruits and activates several downstream effectors in different
pathways, mainly the phosphoinositide 3-kinase (PI3K)-AKT
pathway and the cascade comprising RAF kinase, which activate
mitogen-activated protein kinase kinases 1 and 2 (MEK1
and MEK2), and subsequent activation of extracellular signal-
regulated kinases 1 and 2 (ERK1 and ERK2), thus promoting cell
survival, proliferation, invasion, andmigration (39, 40). Missense
gain-of-function mutations in members of the RAS family have
been found in about 25% of all human cancers. Usually, these
are single nucleotide point mutations involving few hotspot
regions: the codons 12 and 13 in exon 2, the codons 59–61 in
exon 3, and the codons 117 and 146 in exon 4. Such mutations
result in a conformation of the RAS active site having intrinsic
hydrolytic capability (39). Thus, in mutated cells occurs an
accumulation of constitutively GTB-bound active RAS proteins
able to trigger downstream signaling even in the absence of
extracellular stimuli.

KRAS is the most frequently mutated isoform accounting for
about 20% of all human cancers. NRAS and HRAS mutations,
instead, are found in about 8 and 3% of cancers, respectively
(39). Interestingly, different cancer types are related to mutation
of a precise RAS isoform, suggesting that the carcinogenetic
role of RAS is tissue-specific (39). Indeed, KRAS mutations are
usually detected in colorectal, pancreatic, biliary tract, and lung
carcinomas,NRASmutation inmalignantmelanomas, andHRAS
mutation in head and neck carcinomas (41, 42). This feature
has been investigated in an adenomatous polyposis coli (APC)-
deficient mouse model where mutations of KRAS were able to
promote the development of colorectal cancers, while NRAS
mutations were ineffective (43).

About 40% of colorectal cancers are KRAS mutated, 5%
NRAS mutated, and rarely HRAS mutated. Of note, mutations
in different RAS isoforms seems to be mutually exclusive. For
this reason, from now on we focus mostly on KRAS. KRAS
mutations are considered to play a pivotal role both in the early
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FIGURE 1 | Colorectal cancer molecular classifications recently shifted from the mutation-based toward the transcriptome-based approach because this can better

describe the behavior of the tumors. CIN, chromosomal instability; CSS, chromosomal stability; CIMP-N/L/H, CpG island methylator phenotype-negative/low/high;

MSS, microsatellite stability; MSI-L/H, microsatellite instability-low/high.

phases of malignant transformation of colorectal cells and in
the advanced metastatic disease (44). In colorectal cancer, most
KRAS mutations are in the codons 12 (about 80%) and 13 (about
15%) of exon 2 and in the codon 146 of exon 4 (about 4%); the
remaining are in the codons 59-61 of exon 3 and in the codon
117 of exon 4 (45). Mutation frequency in each hotspot varies
significantly among the diverse cancer types, exactly as it happens
for the RAS-mutated isoforms (38). This could underlie that also
the functional consequences of RASmutation could be divergent
in different cancer settings, up to assume paradoxical effects as
the induction of cellular senescence as reported by Serrano et al.
(46). Moreover, in the same cancer type the effects of a RAS
mutation could vary depending on the codon involved. Indeed,
a proteomic study found that in colorectal cancer cells a KRAS
mutation in codon 12 leads to the overexpression of doublecortin
like kinase 1 (DCLK1) and tyrosine-protein kinase MET, while in
codon 13 brings to the overexpression of tight junction protein
ZO-2 (47).

FORMS OF CELL MIGRATION AND
INVASION

Metastatic dissemination results from tumor cell invasion
and migration through the tissues and represents a major
challenge in cancer management (48). The cornerstones of these
cancer cell characteristics are deregulation of cell-cell adhesion,
acquisition of cytoskeletal deformability, gaining of cellular
motility, turnover of cell-matrix interactions, and extracellular

matrix (ECM) breakdown (49). Cancer invasion and migration
are heterogeneous and adaptive processes based on changes in the
usual morphology of the cells, generation of new cell polarization,
and cell body displacement that finally leads to the translocation
of the entire cells. This may happen in different ways (48,
50). Indeed, tumor cell migration may be either individual,
with loss of cell-cell junctions, or collective, with retention of
intercellular bonds (Figure 2) (49). Two main types of individual
cell motility have been recognized: elongated-mesenchymal and
rounded-amoeboid modes. As for collective cell migration, it can
happen asmulticellular streaming or collective invasion. All these
patterns of migration are closely linked to the ECM features,
resulting from the coordinated actions of actin cytoskeleton,
actomyosin contraction, cell polarity, and cell surface receptors
interacting with the surrounding cells and ECM structures.
Collective and individual invasion may also coexist, enhancing
the efficiency of the metastatic process (51).

Individual migration patterns are featured by the absence of
tumor cell-cell interactions and are strongly linked to the ECM
structure. In the elongated-mesenchymal mode, the high ESM
stiffness stimulates the cell to produce actin-rich protrusion,
thus the cell assumes a spindle morphology with strong
focal adhesion, matrix proteolysis, and actomyosin contractility
localized at the rear (52). If the ECM surrounding the tumor is
loose, the preferential individual invasion mode is the rounded-
amoeboid pattern. The cell in this case forms small, unstable
cellular protrusions (blebs or spikes) throughout its surface (53).
These result from increased intracellular pressure, low degree
of integrin-mediated adhesion, and reduced cell-cell interactions
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FIGURE 2 | Tumor cell migration mode and main associated markers.
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(54). Cyclic expansion and retraction of the cellular protrusion
at the leading front of the cell are responsible for the cell
progression (55).

In multicellular streaming migration mode, the cells move
forming single cell files following the same path and are attracted
by chemokines gradients or constrained by the ECM structure
(56). Streaming cells can display rounded-amoeboid or spindle-
mesenchymal phenotypes and advance by generating traction
force on the surrounding ECMwith weak and short-lived cell-cell
interactions (57).

In collective migration pattern, the tumor advances through
the neighboring tissues in compact clusters, strands, or cords
of connected cells (49). These patterns are determined by
a combination of parameters, such as cellular morphology,
cell-cell adhesion, and ECM features. Unlike multicellular
streaming migration, the collective migration mode is featured
by cohesive cells forming solid strands or cords lined up for
two or more cells, even to create broad clusters (58). This
pattern is supported by long-lived cell-cell interactions,
while the morphology varies according to cell nature,
ECM features, and host tissue types (56). Main feature of
an invasive multicellular mass is the specialization of the
leading edge cells that express a mesenchymal phenotype,
generate an integrin-mediated forward traction and ECM
rearrangement by enzyme-mediated proteolysis of the
surrounding structures (59). Interestingly, this invasion
pattern has been described as the slowest migration mode
(60), conferring some advantages to the tumor, such as
secretion of higher amount of pro-invasive factors and immune
escape (61).

MOLECULAR REGULATION OF CELLULAR
PLASTICITY IN COLORECTAL CANCER

The cellular plasticity needed to allow migration of cancer cells
is achieved through complex mechanisms finely governed by
several genes, most of them encoding for transcription factors.
In CRC, the best delineated of these molecular programs driving
cellular migration is EMT, that is characterized by the acquisition
of a mesenchymal phenotype through tight junction dissolution,
disruption of apical-basal polarity, and reorganization of the
cytoskeletal architecture (62). A huge amount of studies has
shown that EMT plays a pivotal role in cancer progression and
metastasis in several tumor types, including CRC (63). EMT
requires a precisely regulated cooperation of a complexmolecular
network, which comprises factors categorized into three groups:
the extracellular cues activating EMT (EMT inducers), the
transcription factors orchestrating the EMT program (EMT
core regulators), and the effector molecules executing the EMT-
related cellular transformation (EMT effectors) (64). The best
characterized external inducers are the transforming growth
factor- β (TGF-β) signaling and the WNT/β-catenin pathway.
Both these pathways may induce the expression of the three main
family of EMT regulators: (i) the SNAIL family of zinc-finger
transcription factors comprising SNAIL and SLUG; (ii) the zinc
finger E-box binding homeobox (ZEB) family of transcription

factors including ZEB1 and ZEB2; (iii) the TWIST family of basic
helix-loop-helix (bHLH) transcription factors encompassing
TWIST1 and TWIST2. The roles of these transcription factors
in EMT have been well-established in a variety of cancers
including CRC, and most of them showed correlation with
the prognosis (65, 66). Final effects of EMT regulators are
the overexpression of genes encoding for proteins linked to
mesenchymal phenotype, such as vimentin, fibronectin, α-
smooth muscle actin, and N-cadherin, and the down-regulation
of epithelial markers, such as E-cadherin, claudins, and occludins
(64). Post-transcriptional regulation of gene expression by EMT-
related miRNAs showed a great impact in promoting epithelial or
mesenchymal phenotype targeting specificmRNA (67).Members
of the miR-200 family (miR-200a, miR-200b, miR-200c, miR-
141, and miR-429) promote epithelial phenotype preventing the
translation of ZEB1 and ZEB2 mRNA (68–70) that, in turn, act
in a negative feedback loop down-regulating the miR-200 family
expression (71). Moreover, ZEB2 is also identified as a direct
target of miR-132, miR-192, and miR-335. Downregulation of
these miRNAs is usually associated with the acquisition of an
aggressive mesenchymal phenotype leading to distant metastasis
and dismal prognosis (72, 73). MiR-34a/b/c is another caretaker
of the epithelial phenotype through the down-regulation of
SNAIL, SLUG, and ZEB1 (74). Suppression of miR-34a/b/c causes
up-regulation of SNAIL resulting in the enhanced expression of
EMTmarkers, mesenchymal features, and improved cell invasion
and motility.

As above mentioned, KRASmutation is common in CRC and
activates several effector pathways involved in cell proliferation,
invasion, and migration. In particular, RAS signaling has been
reported to play a crucial role in EMT initiation (75, 76). It has
been shown that in CRC cell lines mutated KRAS can activate
downstream effectors of the PI3K pathway, such as Ras homolog
gene family member A (RhoA), Ras-related C3 botulinum toxin
substrate 1 (Rac1), and cell division cycle 42 (Cdc42), and in
synergy with TGF-β signaling can promote EMT inducing a
decrease of E-cadherin expression and an increase of vimentin
expression (Figure 3) (40, 77, 78). Thus, it seems that KRAS
mutation alone is not able to modify the epithelial morphology
of CRC cells but requires the cooperation of growth factor cues
to accomplish the cell transformation.

RAS activation is a crucial connector between receptor and
cytoskeleton during chemotaxis in normal conditions (79).
Indeed, PI3K-triggered RAS acts on F-actin forming a coupled
excitable system that leads to short-lived RAS-F-actin patches
that anticipates the extension of cellular protrusions (80).

Moreover, the activation of MEK1 in the RAS-RAF-MEK
cascade allows the enrollment of the downstream effectors Egr-
1 and Fra-1 that can promote the expression of SNAIL and
SLUG, which in turn downregulate E-cadherin expression (81).
In EMT, the pathways that regulate actomyosin and cytoskeleton
dynamics drive plasticity and KRAS mutation can determine the
mode and effectiveness of migration by means RhoA and Rac1
signaling (82, 83).

Several miRNAs were linked to K-RAS-driven tumorigenesis.
In experimental models down-regulation of miR-1, Let-7a, miR-
16, miR-18a, miR-30a, miR-217, miR-622 results in increased
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FIGURE 3 | Normal RAS pathways and plasticity-related aberrant pathways. EMT, epithelial to mesenchymal transition.

K-RAS expression (84). In particular, miR-30a directly targets
KRAS and PI3K inhibiting anchorage-independent growth, cell
migration and invasion, and in vivo tumorigenesis by KRAS-
mutant CRC cells (85, 86). Moreover, low expression of miR-
30a has been found in highly metastatic CRC cell lines and
liver metastases (86). Clinically, down-regulation of Let-7a was
correlated with increased risk of nodal metastasis and with
shortened overall and disease-free survival (87).

TUMOR BUDDING AND MECHANISMS OF
CELLULAR PLASTICITY IN COLORECTAL
CANCER

According to the definition of the International Tumor Budding
Consensus Conference (ITBCC) proposed in 2016 (88) and
then validated in 2018 (89, 90), CRC tumor budding (TB)
consists of single neoplastic cells or cell clusters of up to four

neoplastic cells at the invasive front of the tumor (peritumoral
TB) (Figure 4) or within the tumor mass (intratumoral TB) (88).
InWestern countries, these recommendations were incorporated
into the College of American Pathologists (CAP) cancer protocol
for patients with primary CRC (91), in the 8th edition of
the American Joint Committee on Cancer (AJCC) staging
manual (92) and in the European Society for Medical Oncology
consensus guidelines (93). This acknowledgment derives from
the increasing and established evidences of TB as reliable and
independent prognostic factor in CRC, regardless of the scoring
method applied for the evaluation (3, 90, 94–96). However, the
inclusion of TB in the pathologist report is not yet mandatory,
but merely recommended. This is due to its apparent poor
reproducibility along with the lack of a standardized scoring
system before the ITBCC (97–99). Indeed, TB definition and
evaluation method have been controversial throughout its
development and different diagnostic criteria are present in
the literature (3, 100). The recent agreement reached upon the
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FIGURE 4 | Tumor budding in colorectal cancer. In the photomicrograph, the dashed line separates the tumor mass on the top left from the tumor buds on the

bottom right. This phenomenon is depicted in the cartoon where single cells or aggregates of up to four cells detach from the mass of neoplastic cells in the top left

and infiltrate. Hematoxylin & eosin stain. Original magnification 200x.

definition and scoring system method (89) is an essential step to
implement TB in the routine CRC assessment.

The morphological feature now called TB was originally
described in Japan by Imai in 1949 (101) and firstly reported
in the English language literature by Gabbert in 1985 (102).
Histologically, TB cells show a more marked atypia than their
counterparts in the tumor bulk, thus TB was initially termed
“tumor dedifferentiation” (102). Imai, instead, proposed the term
“sprouting” to describe the tumor cells detaching from the tumor
mass along its invasive edge. Moreover, he suggested to use
this feature, peritumoral stromal reaction, and lymphovascular
invasion in a prognostic system for gastric cancer (101). Some
Japanese researches observed the same phenomenon in CRC
(103–105) and it was called TB by Morodomi in 1989 (106).
In the last decades, a growing number of data reinforced the
value of TB as CRC prognostic marker (107–114). Besides
CRC, TB has been found in a variety of other solid tumors,
such as oral squamous cell carcinoma (115, 116), invasive
ductal breast cancer (117), pancreatic (118), and esophageal
cancer (119).

Invasion and metastasis are some of the hallmarks of cancer
(120), which requires the ability of tumor cells to detach from the
primary tumor, move through the ECM, invade lymphovascular
vessels, and finally reach and colonize lymph nodes and distant
organs (121, 122). TB is the histological demonstration of this
ability, which is intrinsically dynamic. Thus, it is conceivable
that tumor buds possess cellular plasticity properties, such as
cytoskeletal deformability, motility, and full or partial EMT
characteristics (122).

Tumor buds often show typical features of EMT (Table 1):
loss of E-cadherin expression, β-catenin translocation
in the nucleus (sign of WNT pathway activation), and
acquisition of vimentin expression (122). The motile and
invasive phenotype of TB cells is depicted by the loss of cell
adhesion molecules (such as E-cadherin), overexpression
of proteins involved in ECM degradation and cell invasion

(such as MMP2, MMP9, and cathepsin B), and cell
migration (such as laminin, fascin, and α-smooth muscle
actin) (121, 138, 142, 143). However, some studies failed
in confirming the expression of the classic EMT-related
transcription factors ZEB1, TWIST, SNAIL, and SLUG in tumor
buds (131).

Tumor buds and their corresponding tumor bulk share
the same driver mutations (125). De Smedt et al. found 296
differentially expressed genes by the comparison of neoplastic
cells in the tumor mass and those microdissected from the
tumor buds (126). TB cells undergo phenotype switching while
detaching from the main tumor, with upregulation of genes
related to cellular motility and downregulation of genes involved
in cell growth and proliferation (126). This is consistent with
the hypothesis that migration and proliferation are spatially and
temporally exclusive (122). Regarding the CRCSC categories,
TB cells showed a gene expression profile consistent with the
“mesenchymal phenotype” (CMS4), while the cells in the main
tumor had a molecular signature similar to the “canonical
subtype” (CMS2) (126). This finding is supported by the results
of another study in a large series of CRCs highlighting the
association of TB with CMS4 phenotype—a greater number of
tumor buds was found in CMS4 than in CMS2 and CMS3
tumors—and KRAS mutations (90). A significant association
between KRAS mutations and the presence of high-grade TB
has been reported in CRC (Table 1) (122, 131, 138, 142, 143).
In vitro, KRAS mutations can induce expression of ZEB1, which
promotes EMT, invasion, and metastasis (71, 132). Moreover,
TB cells in CRC patients show increased expression of ZEB1
and a concomitant reduction of miR-200b and miR-200c,
supporting the association between miR-200 family members
and EMT (133). Resistance to anoikis, the cell death mechanism
that occurs to non-neoplastic cells when detach from ECM,
is a prerequisite for TB cells to survive during invasion.
Neurothropic tyrosine receptor kinase B (TrkB) is a potent
anoikis suppressor, which is overexpressed in tumor buds and in
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TABLE 1 | Studies which investigated the KRAS status and/or TB in relation to cell morphology and/or cellular plasticity, also considered as EMT, or partial-EMT

phenotype.

References Markers Materials Methods Results

Alamo et al. (123) TBa, CXCR4, 5β-

integrin, VEGFA,

Serpine-1, and Akt

FFPE from primary

CRC and

metastasis

induced in mice

H&E/IHC/

ELISA

Higher LN metastasis and TB, CXCR4,

5β-integrin, VEGFA, and Serpine-1

overexpression in KRAS G12V than KRAS

G13D CRC, supporting the higher

aggressiveness of CRC harboring this

specific mutation

Hammond et al.

(47)

DCLK1, proteome,

and

phosphoproteome

Colon cancer cell

lines

– DCLK1 is amplified and highly

overexpressed (mRNA) in KRAS G12D

cells (transcriptional up-regulation); its

amplification is reversed upon suppression

of KRAS expression: KRAS has a direct

role in regulating DCLK1 expression

Cho et al. (124) E-cadherin, VIM,

RAS, β-catenin

KRAS mutated

CRC cell

lines/mice

IHC

(TMA)/immunoblotting/real

time imaging/flow cytometry

KY1022§ prevent spindle cell morphology,

E-cadherin loss, and VIM over-expression,

inhibiting development of metastatic CRC

Centeno et al.

(125)

Pan-CK, TB, 50

oncogene, and

tumor suppressor

genes

FFPE CRC IHC/NGS No difference in driver mutations between

TB and main tumor (isolated by laser

capture microdissection); KRAS mutation

is not acquired in TBs

De Smedt et al.

(126)

Pan-CK, TB, gene

expression profile

(mRNA), CSM

FFPE CCR IHC/RNA seq/pathway

analysis/clustering

EMT signature (CMS4, mesenchymal

phenotype), upregulation of CSC related

genes and cellular movement/survival

genes, and downregulation of cell

growth/proliferation genes in laser

microdissected TB compared to tumor

bulk, in relation to the CMS taxonomy of

CRC

Trinh et al. (90) TB, CSM Patient cohorts

(AMC-AJCCII-90,

LUMC, CAIRO,

and CAIRO2)

FFPE

H&E/IHC (TMA) TB is related to CMS4 phenotype (vs.

CMS3/2) and with KRAS and BRAF

mutations

Prall et al. (127) CK18 positive TB,

β-catenin, SMAD4,

pSTAT3, pERK1/2,

KRAS, BRAF

[molecular analysis

(128)]

FFPE CRC/fresh

human CRC tissue

for subcutaneous

xenografting in T-

and B- deficient

mice

IHC/ morphometric studies

(image J)

In the xenografts TB is reduced, tumor

cells are pSTAT3 negative (indicating

absence of cytokine/chemokine signaling),

some are partially positive for pERK1/2,

with maintenance of nuclear β-catenin and

SMAD4 immunostainings, and WNT and

BMP pathway activation. KRAS/BRAF

mutational status did not correlate with TB

or podia formation in the xenografts

Smit et al. (129) TrkB, E-cadherin,

TWIST, SNAIL,

MAPK pathway

Cell culture Immunoblotting/IF/qRT-

PCR/…

TrkB induces an EMT- like transformation

in epithelial cells through a Twist-Snail

signaling axis, which is dependent on the

MAPK pathway. Furthermore, Snail plays a

critical and specific role in TrkB-mediated

metastasis

Dawson et al.

(130)

TrkB, Ki-67,

caspase-3, TB

FFPE CRC IHC (TMA) Overexpression of TrkB in TB in

comparison to main tumor, and

association with KRAS mutation. High

expression of membranous TrkB is an

independent adverse prognostic factor.

Inverse correlations between Trkb

expression and Ki-67 as well as

Caspase-3

Yamada et al.

(131)

E-cadherin, ZEB1,

TWIST, SNAIL,

SLUG, TB

FFPE CRC IHC (TMA) Absent expression of these EMT markers

in TB, but great expression in stromal cells

surrounding high grade-TB than in low

grade-TB areas

(Continued)
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TABLE 1 | Continued

References Markers Materials Methods Results

Gibbons et al.

(132)

Mir-200 family,

ZEB1, ZEB2, CDH1,

CDH2, and VIM, (…)

Lung cancer cell

lines (3D- culture)

derived from mice

(KRAS and p53

mutant)

mRNA and miRNA

expression profile/qRT-

PCR/IF/migration and

cytogenetic assay

These tumor cells have a marked plasticity

[transit reversibly between epithelial and

mesenchymal states, forming highly

polarized epithelial spheres in 3D culture

that underwent EMT, which is dependent

on miR-200 family (decrease during EMT)].

Forced expression of miR-200 abrogated

the capacity of these tumor cells to

undergo EMT, invade, and metastasize,

and conferred transcriptional features of

metastasis-incompetent tumor cells.

Tumor cell metastasis is regulated by

miR-200 expression, which changes in

response to contextual extracellular cues

Liu et al. (71) RAS, miR-200, Rb1,

Bmi1, ZEB1, ZEB2,

(…)

Cell culture/KRAS

mice/NCBI

database

(GSE11969)

RT-PCR/WB/ISH/H&

E/immunostaining/human

lung adenocarcinoma

microarray analysis

Rb1 pathway status regulates a

ZEB1-miR-200 loop downstream of RAS

to control expression of Bmi1. Rb1 and

ZEB1-miR-200 link RAS to Bmi1 to

regulate a cellular choice between

oncogene-induced senescence and tumor

progression in RAS mutated cells, also

triggering EMT

Knudsen et al.

(133)

Mir-200b, TB,

E-cadherin,

β-catenin, and

laminin-5γ2

FFPE CRC IHC/CISH/IF MiR-200b is downregulated in the TB, but

not statistically associated with the

expression of the other markers. Loss of

membranous E-cadherin and ↑ nuclear

β-catenin in the TB (majority of the cases),

while laminin-5γ2 expression is

upregulated at the invasive front and in the

TB (half the cases)

Jang et al. (134) KRAS, NRAS, BRAF,

PIK3CA, TP53, and

POLE mutations,

and

clinicopathological

correlations, TB

FFPE CRC H&E/Sequenom

MassARRAY/direct DNA

sequencing of KRAS

21 of 34 tumors with high-grade TB had

KRAS mut; KRAS G12D and PIK3CA exon

9 variants were significantly associated

with high-grade TB; exons 3 and 4 KRAS

mut tumors tend to have lymphovascular

tumor emboli and perineural invasion

Chang et al. (135) Clinicopathological

features, TB, p16,

E-cadherin,

β-catenin,

HPV-status, KRAS,

BRAFV600E

FFPE CRC H&E/IHC/PCR/HPV-ISH Comparing early-onset (≤ 40 years of age)

and control (> 40 years) CRC groups, no

difference emerged in the occurrence of

TB, as well as lymphatic invasion,

mucinous histology, or tumor-infiltrating

lymphocytes, neither in KRAS mutations

occurrence

Graham et al.

(136)

TB, KRAS, BRAF,

MSI, CIMP,

clinicopathological

features

FFPE CRC H&E/IHC High TB (≥10 tumor buds in a 20×

objective field) is present in 32% (179 of

553) of cases, and is associated with

advanced pathologic stage, MSI, KRAS

mutation and on multivariate analysis with

a >2 times risk of cancer-specific death

Steinestel et al.

(137)

KRAS, BRAF, MMR

status, TB,

clinicopathological

features

FFPE CRC H&E/IHC/DNA

pyrosequencing

TB is associated with infiltrative growth,

absence of peritumoral lymphocytic

reaction, and blood/lymph vessel

infiltration. Neither KRAS nor BRAF

mutations are associated with a certain

growth pattern or TB intensity

Zlobec et al. (138) KRAS, BRAF,

MGMT, CIMP, TB

FFPE CRC H&E/IHC/molecular

analysis*

TB is not associated with KRAS, BRAF,

MGMT, or CIMP, but is correlated inversely

with MSI-H. TB has an independent role of

all these five molecular features and is

predicted by MSI status

(Continued)
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TABLE 1 | Continued

References Markers Materials Methods Results

Pai et al. (139) TB, BRAFV600E,

KRAS, MSI, CIMP

FFPE CRC H&E/MSI PCR and IHC In the adenocarcinomas of the proximal

colon, no relationship between KRAS

mutation and TB is identified

Pai et al. (140) TB, molecular

profiling, MSI,

clinicopathological

features

FFPE surgically

resected pT1 CRC

(western cohort)

H&E/NGS/MSI PCR and

MMR IHC

High grade TB is significantly associated

with lymph node metastasis on univariate

and multivariate analysis [OR 4.3 (p =

0.004)]. No relation with RAS mutation is

identified

Landau et al. (141) KRAS, BRAF, MMR

status, TB,

clinicopathological

features

FFPE CRC H&E/IHC/PCR Adenocarcinomas of the caecum display

the highest frequency of KRAS mutations

and high TB in the colon (compared to

right (non-cecal proximal) and left (distal)

adenocarcinomas). Cecal tumor site and

high TB are also predictive of poor survival,

particularly in stage III/IV of disease

When the definition of tumor budding differs from up to five cells at the invasive front, the definition applied is reported.
aDefined in this study as 10 or fewer cells at the tumor front, counted on IHC (keratin positive cells or clusters) in 3 different tumor fields (400x magnification).
§KY1022 is a destabilizer of RAS protein and β-catenin.
*DNA bisulphite conversion, amplification of modified DNA, and pyrosequencing.

CRCwith high-grade tumor budding andKRASmutations (130).
Indeed, RAS signaling promotes TrkB-induced EMT, anoikis
resistance, and metastasis through TWIST and SNAIL (129).
Morphologically, treatment of KRAS mutated cell lines with a
destabilizer of β-catenin and RAS proteins can prevent spindle
cell morphology as well as E-cadherin loss and vimentin over-
expression (124). A xenograft model of CRC was also studied,
but KRAS mutational status did not correlate with TB or podia
formation (127).

THE PROGNOSTIC RELEVANCE OF
TUMOR BUDDING IN COLORECTAL
CANCER

TB can be considered as a snapshot of the dynamic process of
invasion and a surrogate morphological marker of EMT. The
translation into the clinics of TB, for a long time believed as
a sign of biological aggressiveness, fits with its demonstration
as an adverse and independent prognostic marker in all stages
of CRC (Table 2) (3, 90, 94–96, 122, 136, 141, 146, 148).
Regardless of the assessing method, evidences suggest that
TB has a prognostic effect independent of age, sex, and
stage of disease (3, 90, 94–96, 122, 123, 135, 146, 148).
TB is usually associated with high tumor grade, advanced
stage, lymphovascular invasion, nodal and distant metastasis,
locoregional and distant recurrence, and worse overall, disease
free, and recurrence free survival (122). The clinical implications
are not only prognostic but also therapeutic. In metastatic
patients, the presence of high tumor budding can predict
resistance to anti-EGFR therapies (149). Moreover, KRAS status
assessment seems to be useful to identify possible non-responder
patients in the metastatic setting (149). Recently, it has been
demonstrated that intratumoral TB is related to nodal and distant
metastasis in CRC (90, 150–152). Apparently, intratumoral

TB has a prognostic effect assessed on a continuous scale
(90), and similarly to peritumoral TB has been associated
with higher stages, vascular invasion, infiltrative margin, poor
survival, and to peritumoral TB itself (122, 147). To date, the
prognostic impact of TB has been associated with three major
clinical scenarios.

First, in CRC infiltrating the submucosa (categorized as
pT1 according to the current staging system), TB is an
accurate predictor of nodal metastasis (3, 88, 95, 153–155).
A recent meta-analysis including over a thousand of patients
with endoscopically removed pT1 CRCs has shown that
tumors with TB are strongly associated with lymph node
involvement (3). In a western cohort of 116 surgically resected
pT1 CRCs, high grade TB has been significantly associated
with lymph node metastasis on univariate and multivariate
analysis (140). While the Japanese Society for Cancer of
the Colo-Rectum has already incorporated TB among the
mandatory prognostic variables for pT1 CRC reports, in
Western countries this has not yet happened. However, the
available evidences strongly support its incorporation also in
Western guidelines to improve lymphadenectomy planning
(3, 88, 89, 140).

Second, in stage II CRC (namely a tumor without nodal

and distant metastasis) the presence of high-grade TB confers

a more aggressive behavior similarly to stage III CRC (namely
a tumor with nodal metastasis but without distant metastasis)
(96, 109, 111, 113, 126, 144, 145, 156). A metanalysis including
over a thousand and a half stage II CRC patients highlighted
that tumors with high grade TB are associated with worse

overall survival, with a difference of survival of about 25%,
mostly in pT3N0M0 patients (96). The survival rate of stage
II CRC patients stratified as low or high grade TB vs. stage
III CRC ones has been directly studied showing significantly
differences depending on TB level (111). In particular, the
survival rates of stage II CRC patients with high grade TB resulted
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TABLE 2 | Selected studies and reviews (∧) which investigated tumor budding as a prognostic marker in colorectal cancer.

References Stage ITB

and/or

PTB

Prognostic parameters associated with TB

Beaton et al.

(95)∧
Early CRC n.a. A total of 4510 patients from 23 cohort: TB is significantly associated with LN metastasis

Pai et al. (140) pT1 PTB High TB is significantly associated with LN metastasis on univariate and multivariate analysis

Cappellesso

et al. (3)∧
pT1 n.a. A total of 10,137 patients from 41 studies (heterogeneous TB definition): strong association

between the presence of TB and risk of nodal metastasis in pT1 CRC

Okuyama

et al.

(109, 144)*

II vs. III PTB TB-positive CRC have worse outcome and more frequently LVI and LN metastasis than

TB-negative CRC. TB-positive stage II CRC have similar outcome as TB-negative stage III. TB

is an independent prognostic factor in stage II and III CRC (multivariate analysis)

Nakamura

et al. (111)

II vs. III PTB Significant correlation of TB and LN and distant metastasis, and survival. Similar survival rates

between high TB stage II tumors and stage III disease

Wang et al.

(145)

T3N0M0 PTB# High-TB is associated with infiltrative growth pattern and LVI. 5-year cancer-specific survival is

poorer in high vs. low TB. TB is an independently prognostic (multivariate analysis)

Petrelli et al.

(96)∧
II n.a. A total of 1,652 patients from 12 studies (heterogeneous TB definition): TB is associated with

worse 5-y OS in stage II CRC, in particular in pT3N0M0 patients. High-grade TB is associated

with an increased risk of death

Zlobec et al.

(138)

I–IV PTB High grade TB is an independent prognostic factor even in presence of genetic and epigenetic

aberrations (those investigated in this study). TB is predicted by MSI status

Steinestel

et al. (137)

I–IV PTB TB is significantly associated with infiltrative growth, absence of peritumoral lymphocytic

reaction, and blood and lymph vessel infiltration

Graham et al.

(136)

I–IV PTB TB is associated with LVI, metastasis, MSI, KRAS mutation, 5-y survival. High TB is associated

with 2.5 times increased risk for cancer-related death compared to no TB. More than 10

budding cells/×200 field is a good cut-off for high TB

Rogers et al.

(94)∧
I-IV n.a. A total of 7,821 patients from 34 papers (heterogeneous TB definition): TB in CRC is strongly

predictive of lymph node metastases, recurrence, and cancer-related death at 5 years

Jang et al.

(134)

I–IV PTB High-grade TB is significantly associated with conventional histological G, T, N, and M stages,

LVI, infiltrative growth pattern, and KRAS mutations; patients with low-grade TB had high

4-years DFS and DSS rates, compared to those with high-grade TB

Landau et al.

(141)

I–IV PTB Adenocarcinomas of the caecum display the highest frequency of KRAS mutations and high

TB in the colon (compared to right [non-cecal] and left [distal] adenocarcinomas). High TB and

cecal tumor site are predictive of poor survival, particularly in stage III/IV of disease

Oh et al. (146) I-III PTB High TB is associated with adverse histologic features such as elevated levels of preoperative

carcinoembryonic antigen, advanced stage, poor histology, and the presence of LVI/perineural

invasion. High budding is an independent poor prognostic factor in DFS and OS, whereas

tumor-budding positivity itself was not an independent prognostic factor (multivariate analysis)

Lugli et al.

(147)

I–IV ITB and

PTB

ITB correlates with PTB and is independently associated with a shorter survival time. In

MMR-proficient tumors: high-grade ITB is associated with right-sided location, advanced T and

N stage, LVI, infiltrating tumor margin, and shorter survival time; MMR–deficient cancers: high

ITB is linked to higher tumor G, vascular invasion, infiltrating tumor margin, and more

unfavorable survival time

Trinh et al.

(90)

I–IV ITB and

PTB

Adverse prognostic factor independent of age, stage, and sex. Independent in metastatic

setting and in mixed stage cohort

When the definition of tumor budding differs from up to five cells, the paper is highlighted (*).
#Usually but not always at the invasive front.

CMS, consensusmolecular subtype; CRC, colorectal cancer; ITB, intratumoral budding; LN, lymph node; LVI, lymphovascular invasion; MMR,mismatch repair protein; MSI, microsatellite

instability; n.a., non-applicable, PTB, peritumoral budding; TB, tumor budding.

comparable to those of patients with metastatic disease. These
findings raise the opportunity of offering adjuvant chemotherapy
to these patients, since they are expected to have a more
aggressive disease.

Third, pre-operative biopsies could benefit of intratumoral

TB assessment. Indeed, in CRC surgical samples intratumoral

and peritumoral TB are strongly related and associated with a
shorter survival (147). Moreover, high-grade intratumoral TB

correlates with higher tumor grade, more advanced primary
tumor, lymphatic and vascular invasion, and nodal metastasis

(147). Intratumoral TB could be used as predictive parameter in
the selection of candidates for neo-adjuvant therapy (88, 90).

CONCLUSION REMARKS

The deepening of the knowledge on the molecular mechanisms
linking common gene mutations, such as those affecting RAS,
to specific gene-expression profiles, tumor cell characteristics,
and biological behavior will disclose novel opportunities for the
prevention, detection, and tailored treatment of CRC.
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