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Abstract: This paper describes the implementation and optimization of a dual-confocal autofocusing
system that can easily describe a real-time position by measuring the response signal (i.e., intensity)
of the front and the rear focal points of the system. This is a new and systematic design strategy that
would make it possible to use this system for other applications while retrieving their characteristic
curves experimentally; there is even a good chance of this technique becoming the gold standard
for optimizing these dual-confocal configurations. We adopt two indexes to predict our system
performance and discover that the rear focal position and its physical design are major factors.
A laboratory-built prototype was constructed and demonstrated to ensure that its optimization was
valid. The experimental results showed that a total optical difference from 150 to 400 mm significantly
affected the effective volume of our designed autofocusing system. The results also showed that the
sensitivity of the dual-confocal autofocusing system is affected more by the position of the rear focal
point than the position of the front focal point. The final optimizing setup indicated that the rear
focal length and the front focal length should be set at 200 and 100 mm, respectively. In addition, the
characteristic curve between the focus error signal and its position could successfully define the exact
position by a polynomial equation of the sixth order, meaning that the system can be straightforwardly
applied to an accurate micro-optical auto-focusing system.
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1. Introduction

Due to its good reliability, high throughput, and relatively low cost, machine vision systems are
an attractive solution for the inspection process in automated mass production lines. In practice, such
systems always need a highly precise autofocusing capability to obtain sufficiently sharp images of the
object of interest [1–4]. Autofocusing systems have been widely applied in recent decades in a variety of
industrial manufacturing and measurement fields, such as in cellphone camera modules, automatically
available optical inspection, and dynamic tracking systems [4]. In brief, many autofocusing systems
have been developed, and these autofocusing systems can be broadly classified as image-based
methods [5–16] and optics-based methods [17–30]. Both need to be driven by moving motors to
achieve the function of autofocusing, which limits the possibility of their direct implementation for
in-line inspection.

In an image-based autofocusing system, the position of the focusing objective lens is
determined by capturing real images through a Charge-coupled Device (CCD) or Complementary
Metal-Oxide-Semiconductor (CMOS) device with the use of complex image processing.

Sensors 2020, 20, 3479; doi:10.3390/s20123479 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-7690-5434
https://orcid.org/0000-0002-3537-5828
http://dx.doi.org/10.3390/s20123479
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/12/3479?type=check_update&version=2


Sensors 2020, 20, 3479 2 of 12

The performance of the image-based autofocusing system depends on the sharpness of the captured
images or the image spatial frequency function, which is used to calculate the focus value (FV) in the
system. By hill-climbing searching, determining the peak value can help to determine the required
focus based on a simple configuration, which is easy to handle and stable but rather time-consuming
and has a very limited effective depth of focus. We have found that many research articles [31–37]
have investigated the improvement of the algorithm using software and tried to make the application
of the technique to the product line possible.

In the optics-based autofocusing method, the triangle geometric and dual-confocal configurations
are widely used in the system. The triangle geometric technologies are well-known optical methods
which are applied in many inspection instruments [38–40]. Our research group has published many
methods to improve the focusing accuracy and response of the optics-based autofocusing systems
with triangle geometric technologies [27–30].

Accordingly, we claim to have developed a novel and easily constructed autofocusing system
by adopting a dual-confocal configuration. By utilizing a differential mode, we deal with the spatial
optical intensity distribution from the rear and the front focal planes, retrieving two focus error signals.
Furthermore, our system can directly retrieve the location of the specific focal plane. Meanwhile,
we focus on an implementation in this paper in combination with an optimization method based
on the optical autofocusing system. The commercially available software (ZEMAX) was used to
verify our experimental setup. The system has the significant benefit of high accuracy, a fast response
time, and the retrieval of the exact moving direction while tracking the front and rear focal planes,
and there is tremendous potential for applying our system in mini-optomechanics with the required
rapid autofocusing technique. Overall, we not only demonstrate the laboratory-built prototype in our
study, but also show numerical analyses employed to determine the optimal design parameters of our
proposed dual-confocal autofocusing system.

2. Methods

The image-based autofocusing system, which captures real images through CCD or CMOS devices
with the cooperation of complex image processing, is a classic and well-known technique. Calculating
the sharpness of captured images or the FV independently of the image spatial frequency function
in the system can indicate the position of the focusing objective lens while in-focus. Chen et al. [7]
first discussed an image-based autofocusing system and determined the peak value, which could help
to determine focusing based on a simple configuration by hill-climbing searching, which is easy to
handle and stable; however, it is rather time-consuming and has a very limited effective depth of focus.
They adopted the discrete wavelet transform (DWT) method to perform the sharpness measurement
and for further validation.

The fully digital autofocusing (FDAF) method was shown by Jeon et al. [31] to obtain a fast and
precise autofocusing module by searching the focusing area automatically in cooperation with the
point spread function (PSF). In 2011, Koh et al. claimed a configuration adopting two low-pass filters
and double apertures based on the capture of two monochromic images to be able to denoise and
distinguish its defocus direction and position through the variance of gradient magnitude (VGM) [32].

In 1993, Yamada et al. [33] developed a patent including a new configuration which was able to
resolve the problem of distinguishing the rear focusing beam from the front one under a high-power
zoom lens based on the creation of an optical difference by utilizing a switch device and a prism. They
only needed to capture these two images to obtain sufficient information, while the exact focal plane
was located between the front focusing beam and the rear focusing beam. This represented almost the
first concept of the dual-confocal autofocusing system and easily handled the determination of the
focusing position and its moving direction.

The optical-based configuration includes photodetectors (e.g., CCD, CMOS, photomultiplier tube
(PMT)) as information detection systems to determine the shape of a laser spot and its intensity to
estimate focusing, which is highly precise and quick to perform based on the position error signal (or
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focus error signal). In 2010, Wang et al. developed a femtosecond laser machining system by adopting
the autofocusing module in combination with the dual-confocal system, as shown in Figure 1. The
results of their simulations and experiments demonstrated that the values of positioning accuracy and
repeatability are both less than ±1.5 µm within the measuring range of ±200 µm based on the respective
response intensity of dual near-focusing position [41]. This is also an example of the above-mentioned
dual-confocal system configuration being applied for an autofocusing function.
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Figure 1. The schematic diagram of the dual-confocal system [41].

Using the dual-confocal configuration, we propose an optics-based autofocusing system scheme
in this paper, as shown in Figure 2a. Meanwhile, the response intensity of the focusing or defocusing
position is able to be obtained by two photodetector (PD) signals of the front and rear focal planes,
which could be used to calibrate and determine the exact focusing position and its direction. Moreover,
we provide a characteristic curve of the focus error signal obtained by the two differential PD signals.
Therefore, this optics-based autofocusing system simply utilizes the well-set PDs to retrieve the
real-time intensity signal near the focal plane, which can directly indicate the focusing position by
simultaneously calculating the merit function of the intensity distribution. Our proposed optics-based
autofocusing system has the advantages of being highly precise and having a rapid response time,
enabling the module to be easily imported to the production line. Compared with the conventional
confocal system, our proposed system can obtain the moving direction information only by retrieving
the intensity near the focal plane, i.e., at the exact positions indicated. According to the light intensity
distribution of Gaussian focusing, the two parts of the original signal (i.e., intensity) detected from
the PDs at the different focal positions will indicate two characteristic curves. The location of the
focal plane is indicated by comparing the intersection of the two spatial optical intensity distribution
curves with the rear and front defocus distance, respectively, as shown in Figure 2b. Thus, we can
obtain the position of the focal plane accompanied with its moving direction, and we only need
to calculate the exact optical difference between two light beams for the front focusing and rear
focusing. In brief, we propose a novel dual-confocal configuration for an optics-based autofocusing
microscope, to be used instead of a conventional confocal system or a centroid knife-edge method.
This configuration boasts a simple scheme without redundant moving by trial and error; it has several
significant characteristics enabling fast scanning, precise position tracking, and a low cost. Key points
related to the above-mentioned methods are shown in Table 1.
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Table 1. Comparison of prior autofocusing system studies.

Development Team Key Points Compared with Our
Proposed System Reference

Chen et al.

• Image-based
• Utilizing SOM neural network to calculate

the individual FV of the image spatial
frequency function

• Utilizing the DWT method for
sharpness measuring

Uses a complex algorithm [7]

Jeon et al.

• Fully digital autofocusing
• Fast and precise autofocusing
• Cooperation with point spread function

Has a high-cost image
capturing system [31]

Koh et al.

• Adopting two low-pass filters and
double apertures

• Position variance of gradient magnitude
(VGM)

Requires a complex
algorithm to deal with
blurred images

[32]

Yamada et al.

• High-power zoom lens
• Optical difference by utilizing a

switch prism

Requires a high-cost and
precise positioning for
image capturing

[33]

Wang et al.
• Response intensity of dual

near-focusing position

Without retrieving the
information of moving
direction near the focal
plane

[41]

3. System Implementation

Figure 3 illustrates the brief configuration of our proposed system, including a laser diode, a
collimator, the first beam splitter (BS), a microscope module, the second BS, and two pinholes (which
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set at the front focal plane and at the rear focal plane) that cooperate with the photodetectors (PDs).
The light source we adopted was a laser diode (wavelength of 633 nm) made by Thorlabs (HL6501MG).
The microscope module we utilized had an objective of 10× (Olympus Co., f = 18 mm) and can cover
the scanning area of about 2 mm × 2 mm, which is sufficient an for optics-based autofocusing system
with single-point scan application. Table 2 thus shows all key modules adopted in our proposed
dual-confocal microscopic system. For comparison with the simulation results (considering the total
optical difference from 150 to 400 mm while comparing with the objective of the microscope module),
we constructed a prototype of the dual-confocal configuration with a rear focal length of 100 mm and a
front focal length of 200 mm. Furthermore, the characteristic curve between focus error signal (FES) and
its position can successfully define the exact focusing position by a sixth-order polynomial equation.
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Figure 3. Schematic illustration of our proposed dual-confocal system.

Table 2. Devices used in our proposed system.

Key Parts Device

Laser Light Source Laser diode (Thorlabs HL6501MG)

Collimator Thorlabs LT110P-A (f = 6.24 mm)
Thorlabs LT240P-A (f = 8 mm)

Beam Splitter (BS) Thorlabs CM1-BS013 (50:50)
Polarized Beam Splitter (PBS) Thorlabs CM1-PBS251

Objective Olympus Co. (f = 18 mm)

Focusing Lens Thorlabs AC254-100A
Thorlabs AC254-200A

Pinholes
Thorlabs P75S

Thorlabs P300S
Thorlabs P400S

PD Thorlabs PDA100A
Co-axial Vision Navitar 1-6030, 1-60255

Motor Newport ILS-250HA

4. Results

Our proposed configuration was characterized numerically by using the commercially available
software (ZEMAX), and then it was verified experimentally using a laboratory-built prototype, as
shown in Figure 4. Figure 5 shows the simulation data obtained by the two PDs, which means optical
intensity retrieved at the front site and rear site of the focal planes in our proposed system. The
both sites setup were chosen on the basis of the similarly symmetrical curves while obtaining single
optical intensity distribution versus the defocus distance. The optimal parameters included the four



Sensors 2020, 20, 3479 6 of 12

independent parameters, with the primary importance being placed on the rear focal point. The
maximum error of our autofocusing system could be evaluated on the basis of several tests (see Table 3).
The FES, which can be determined by differential modes of two signals, should be directly be directly
dependent on the focusing position, as shown in Figure 6. We constructed an approximation formula
refereed to the results obtained from the FES and focusing position. More specifically, the raw data
obtained from the PDs can be easily used to calculate and indicate the exact position real-time.
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Table 3. Our simulation of the optimal parameters for the rear focal point.

SET EFL (mm) Pinhole Position D
(mm)

Pinhole Size ψ
(µm) ∆X1 (mm) Slope 1 ∆X2 (mm) Slope 2

1

100
113.5

60 1.436 4.178 9.618 0.624

2 70 1.465 4.095 9.361 0.641

3 75 1.493 4.019 10.342 0.58

4 80 1.518 3.952 11.314 0.53

5 90 1.581 3.795 13.583 0.442

7 113.5
75

1.465 4.095 9.361 0.641

8 114 1.527 3.929 8.903 0.674

SET EFL (mm) Pinhole Position D
(mm)

Pinhole Size ψ
(µm) ∆X1 (mm) Slope 1 ∆X2 (mm) Slope 2

10

200

273.5

140 1.431 4.192 7.323 0.819

11 150 1.453 4.129 8.181 0.733

12 160 1.48 4.055 9.49 0.632

13 170 1.497 4.007 9.356 0.641

14 180 1.517 3.956 10.061 0.596

15 190 1.539 3.9 10.977 0.547

16 200 1.557 3.855 10.74 0.559

17 210 1.578 3.803 11.116 0.54

18 220 1.609 3.728 13.002 0.461

20 270.5

160

1.429 4.197 11.135 0.539

21 271 1.43 4.195 9.959 0.602

22 271.5 1.44 4.168 9.77 0.614

23 272 1.442 4.161 8.8 0.682

24 272.5 1.451 4.134 8.665 0.692

25 273 1.465 4.096 8.896 0.674

26 273.5 1.48 4.055 9.49 0.632

27 274 1.487 4.035 9.142 0.656

28 274.5 1.493 4.019 8.307 0.722

29 275 1.504 3.988 8.401 0.714

30 275.5 1.512 3.969 8.13 0.738

31 276 1.517 3.955 7.904 0.759

We demonstrated that the FES calculation can indicate the position through measuring the
intensity by two PDs because of the theoretically predictive intensity distribution. Considering the
signal variability near the focal position and far away from the focal plane, the minimum FES would
be 1.6 µm under the available signal limitation (as shown in Figure 7). Furthermore, the data retrieval
performance at the rear focal point is better than at the front one, so we discuss how the relationships
between the signal variability (µm) and several parameters (e.g., pinhole position, pinhole size, and
effective focal length (EFL)) can be determined by the characteristic curves of the front and rear focal
points (as shown in Figure 8). Here, we define the slope and error position as the two set indexes of the
characteristic curve, as shown in Figure 9, which represent the signal transfer error and its available
linear sensitivity. A low ∆X index when considering the minimum electric signal error is indicative of
the potential of our focusing system for highly precise positioning. The slope index values (Slope1 & 2)
can be determined from the characteristic curve near the focal plane and away from the focal position,
which indicated the linear transformation from the FES calculation well.
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Figure 9. The key index of the characteristic curve in our focusing system.

Table 3 shows our simulation data, including thirty-one sets of the above-mentioned indexes,
and the optimal parameters of the rear focal point that we chose in our system. Finally, the optimal
pinhole size is 75 µm, the optimal pinhole distance from the objective is 113.5 mm, and the optimal
rear focal length is about 100 mm (as shown in Figure 10). Accordingly, the results shown in Figure 10
demonstrate that the measuring sensitivity of the rear focal point is better than that of the front focal
point. We determined the optimal setup of the rear focal point first in order to retrieve the ∆X1 and
∆X2 indexes. Furthermore, we also adopted the following optimal parameters for the front focal point:
pinhole size of 400 µm, pinhole distance from the objective of 35.6 mm, and rear focal length of about
200 mm. According to Figure 6, a mirror-like curve is constructed with opposite the x-axis and the
y-axis, which is similar to the curve of the rear focal point; this allows the FES to be calculated and its
position to be indicated directly.
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Our proposed optical configuration was suitably designed and constructed to retrieve an FES
from the rear focal plane and another FES from the front focal plane. To indicate the location of the
specific focal plane, the relationship between the FES and the defocus distance is adopted and its spatial
optical intensity distribution is calculated. In this manuscript, we have proposed and developed a
novel and easily constructed autofocusing system.

5. Conclusions

This paper successfully describes a new design rule for choosing the optimal system parameters
for obtaining the lowest signal variability. For the front and rear focal points, we defined the values of
the focal length, pinhole position, and pinhole size in a step-by-step process. Our results also showed
how the total optical difference from 150 to 400 mm significantly affected the effective volume of our
designed autofocusing system. This finding should be considered carefully when integrating this
module into the whole system. We adopted two indexes to predict our system performance and
discovered that the rear focal position and its physical design are major factors that directly affect the
accuracy of an autofocusing system based on dual-confocal configuration accompanied with sufficient
dynamic range.
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