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Abstract: Microalgae are considered a potential source of valuable compounds for multiple purposes
and are potential agents for bioremediation of aquatic environments contaminated with different
pollutants. This work evaluates the use of agricultural waste, unsterilized and anaerobically di-
gested, to produce biomass from a strain of Chlorella sorokiniana. Furthermore, the presence of
bacteria in these wastes was investigated based on the bacterial 16S rRNA gene sequencing. The
results showed a specific growth rate ranging between 0.82 and 1.45 day−1, while the final biomass
yield in different digestate-containing treatments (bacterial-contaminated cultures) ranged between
0.33 and 0.50 g L−1 day−1. Besides, substantial amounts of ammonium, phosphate, and sulfate
were consumed by C. sorokiniana during the experimental period. The predominant bacteria that
grew in the presence of C. sorokiniana in the effluent-containing treatments belonged to the genera
Chryseobacterium, Flavobacterium, Sphingomonas, Brevundimonas, Hydrogenophaga, Sphingobacterium,
and Pseudomonas. Therefore, this microalga can tolerate and grow in the presence of other microor-
ganisms. Finally, these results show that anaerobically digested agricultural waste materials are a
good substitute for growth media for green microalgae; however, phosphate and sulfate levels must
also be controlled in the media to maintain adequate growth of microalgae.

Keywords: photobioreactor; anaerobic digester effluent; microalgal–bacterial polyculture; Chlorella
sorokiniana; bacterial community structure; nutrient removal

1. Introduction

Microalgae are deservedly considered promising renewable sources of various valu-
able compounds—proteins, lipids, pigments, antioxidants, as well as valuable food and
feed additives. Microalgae are not only a potential source of nutrients and biologically ac-
tive compounds for use in the food and pharmaceutical industries but also attract the atten-
tion of researchers because of their ability to reduce greenhouse gas emissions and remove
inorganic nitrogen, phosphorus, heavy metals, and some toxic organic compounds [1–4].
However, despite the excellent prospects for microalgal biotechnologies, the cost of produc-
tion and processing of microalgal bioproducts is often a limiting factor for their large-scale
implementation. Thus, microalgal biotechnology requires inexpensive water and nutrients
for high and stable algal growth rates and increased target products’ productivity.

Environmental pollution by various compounds is a big problem everywhere [5,6].
Considering the need to address environmental pollution issues and maintain water re-
source availability and quality, biological wastewater treatment using microalgae is rapidly
developing as an economically and ecologically attractive biotechnology. Many studies
to optimize the growth and productivity of microalgae under various regimens have fo-
cused on growing microalgae in different nutrient-rich wastewater streams, including
municipal [7,8], industrial [9–11], and agricultural wastes [12,13]. It seems possible to
use microalgae for the simultaneous achievement of several goals: wastewater treatment,
synthesis of valuable metabolic products, and accumulation of algal biomass as feed
supplements. Various waste streams that are used as a nutrient medium for growing
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promising microalgae, in addition to valuable nutrients, may contain heavy metals, met-
alloids, pathogens, and various organic pollutants. The researchers concluded that a few
resistant strains of algae could grow and efficiently produce valuable bioproducts in such
harsh conditions, given the fact that these substrates can contain large amounts of chemical
contaminants and other microorganisms [12–15].

Agricultural wastewater contains different microorganisms that are usually excreted in
the feces and urine of farm animals. The abundance and diversity of these microorganisms
are the subjects of distinct studies, since their presence in wastewater directly affects the
growth rate and productivity of algal cultures, as well as the quality of products obtained
from algal biomass. Bohutskyi with colleagues [12,13] proved that only a few algae of
the genera Chlorella and Scenedesmus could grow efficiently in the bacterial-contaminated
wastewater media. Chlorella species, such as Chlorella vulgaris and Chlorella sorokiniana, are
admirable for autotrophic, heterotrophic, and mixotrophic growth. They are actively used
for wastewater treatment alone [15–17] or in combination with activated sludge [14,18,19].
Moreover, they belong to the producers of valuable biologically essential compounds
such as pigments, lipids, proteins, and carbohydrates [20,21]. Furthermore, extracts of
microalgae of the genera Chlorella and Scenedesmus positively affect the germination of root
crops [22].

Researchers in this area pay great attention to optimizing the nutritional conditions
in order to increase the biomass yield of these photosynthetic microorganisms and the
productivity of individual products of their metabolism. A distinctive feature in this area is
the search and use of cheap media to cultivate algae. These include wastewater and some
products of processing various organic waste materials, particularly wastes generated dur-
ing the anaerobic digestion process [23,24]. Anaerobic digestion of biomass is a standard
process applied to treat a wide range of organic waste materials. Complex microbial com-
munities carry out this process with simultaneous biogas production [25,26]. In addition to
biogas, the gaseous product of the anaerobic process, effluents (digestates) are generated,
which are rich in nitrogen and phosphorus compounds. They can be considered as inex-
pensive and suitable media for growing microalgae [16,23]. Thus, vast new data on the
screening, characterization, and efficient cultivation of green microalgae using affordable
and nutrient-rich substrates could significantly increase microalgae productivity for the
food, pharmaceutical, and biofuel industries. In our recent work [27], we optimized the
nutrients levels and light intensity for the high growth rate of alga C. sorokiniana AM-02 in
photoautotrophic growth regimens. Thus, a wide range of nitrate levels (180–1440 mg·L−1)
and different photosynthetic photon flux density conditions (1000–1400 µmol·m−2·s−1)
were tested on the growth efficiency of C. sorokiniana AM-02. We further suggested that
this local strain is suitable for enhanced biomass productivity and purification of different
wastewater systems.

In this work, we evaluated the growth parameters of C. sorokiniana strain AM-02, as
a strain resistant to high concentrations of nutrients and high light intensity, during its
cultivation in an unsterilized anaerobic digestion effluent. Growth, the concentration of
pigments, pH of the medium, utilization of nutrients by microalgal culture were inves-
tigated throughout the entire experimental period. The optimal cultivation conditions
for the effective removal of nutrients were identified. Besides, bacterial 16S rRNA gene
fragments were examined to analyze the level of bacterial contamination in the media.

2. Results and Discussion
2.1. Growth of C. sorokiniana AM-02 under Different Conditions

The growth of microalgae and biomass productivity when grown in wastewater or
anaerobic digester effluent depend on different factors (such as the features of the culture,
physicochemical properties of the wastes, type of a photobioreactor, and technological
parameters of the process) [28]. The microalgal strain Chlorella sorokiniana AM-02 was
tested in our previous study [27], in which we identified the optimal growth conditions in
a standard Bold’s Basal Medium (BBM). In this research, a synthetic medium for supplying
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algae with all the necessary growth compounds was replaced with a diluted anaerobic
digester effluent (ADE). Unsterilized effluent after mesophilic anaerobic digestion of cattle
manure, distiller grains with solubles, and sugar beet pulp was used for the experiments.
ADE was initially centrifuged at 10,000× g for 10 min to remove sediment and then was
used to culture Chlorella sorokiniana strain AM-02.

We studied the effect of different concentrations of digestate (10, 15, 20, 25, and 40%)
on the growth of the alga (ADE was diluted in deionized water). These wastes are rich in
nitrogen and contain residual organic carbon, which can be used by microalgae. Most of the
nitrogen in the digestate was in the form of ammonium and was readily available for algae.
It is important to note that high ammonium concentrations are toxic for various microalgae,
and ammonium toxicity in water can be due to non-ionized ammonia (NH3) and ionized
ammonium (NH4

+). NH3 is considered the most toxic form for different microalgae,
because it is lipid-soluble and diffuses readily through membranes [29]. Besides, a modified
BBM with an ammonium nitrogen source was also used to compare growth efficiency. To
control the algal growth, the OD750 was measured. Since OD750 also measures bacterial
growth, the number of algal cells was further counted (results are shown in Figure 1). The
algae were cultured until the stationary phase was reached.
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Figure 1. Growth of C. sorokiniana AM-02 (OD750 (a) and cells·mL−1 (b)) cultured under differ-
ent conditions.
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During the growth of alga C. sorokiniana in 10% ADE, we noted that, among various
other factors, a significant factor is the presence of available phosphate and sulfate ions
in diluted ADE. An initial experiment showed that due to a lack of these compounds
in diluted effluent, the growth of C. sorokiniana strain AM-02 was limited. After adding
phosphate (up to 160 mg·L−1) and sulfate (up to 40 mg·L−1) to the diluted effluent, all
critical parameters were significantly improved (Figure 1; Tables 1 and 2). Higher growth
and biomass production were observed when the medium contained 10–40% digestate
with additional phosphate and sulfate ions.

Table 1. C. sorokiniana culture characteristics and nutrient removal from Bold’s Basal Medium (BBM)
and diluted anaerobic digester effluent (ADE).

Treatment Dry Weight
(g·L−1)

Volatile Solids
(g·L−1)

PO43− Removal
(%)

SO42− Removal
(%)

modified BBM
(pH 7) 2.80 ± 0.11 b,c 2.59 ± 0.07 b 69.1 ± 4.2 c,d 81.2 ± 8.8 a,b

modified BBM
(pH 8) 2.83 ± 0.14 a,b,c 2.62 ± 0.11 b 71.0 ± 4.9 b,c,d 82.5 ± 10.6 a,b

10% ADE 0.44 ± 0.04 e 0.41 ± 0.04 d 100 a 100 a

10% ADE + P + S 1.88 ± 0.08 d 1.76 ± 0.08 c 49.7 ± 3.6 e 62.5 ± 9.7 b

15% ADE + P + S 2.73 ± 0.12 c 2.56 ± 0.14 b 66.3 ± 4.0 d 75.1 ± 8.5 a,b

20% ADE + P + S 3.35 ± 0.21 a,b 3.12 ± 0.17 a 75.3 ± 3.8 b,c,d 92.5 ± 7.1 a,b

25% ADE + P + S 3.39 ± 0.23 a 3.20 ± 0.20 a 82.2 ± 2.9 b,c 100 a

40% ADE + P + S 2.51 ± 0.09 c 2.36 ± 0.10 b 85.1 ± 2.7 b 77.5 ± 10.6 a,b

Different superscripts indicate differences between the treatments (ANOVA, Tukey method, α = 0.05). Means that
do not share a letter are significantly different.

Table 2. C. sorokiniana culturing characteristics when grown under different conditions.

Treatment
Specific Growth

Rate
(Day−1)

Biomass
Productivity

(g·L−1·Day−1)

Maximum
Pigments
(mg·L−1)

Final Pigments
(% Dry Weight)

modified BBM
(pH 7) 1.50 ± 0.01 a 0.60 ± 0.02 a 80.5 ± 3.0 c 2.73 ± 0.21 c

modified BBM
(pH 8) 1.51 ± 0.01 a 0.60 ± 0.03 a 86.9 ± 4.0 c 2.78 ± 0.28 c

10% ADE 1.15 ± 0.03 c 0.09 ± 0.01 d 4.6 ± 0.7 e 1.02 ± 0.06 d

10% ADE + P + S 1.45 ± 0.01 b 0.40 ± 0.02 c 60.9 ± 5.4 d 2.76 ± 0.11 c

15% ADE + P + S 1.06 ± 0.01 d 0.41 ± 0.02 c 95.8 ± 6.4 c 2.97 ± 0.23 c

20% ADE + P + S 1.08 ± 0.01 d 0.50 ± 0.03 b 124.5 ± 5.6 b 3.58 ± 0.31 b,c

25% ADE + P + S 0.82 ± 0.01 e 0.39 ± 0.03 c 160.4 ± 4.2 a 4.49 ± 0.29 a,b

40% ADE + P + S 0.86 ± 0.02 e 0.33 ± 0.01 c 124.1 ± 6.2 b 4.95 ± 0.10 a

Different superscripts indicate differences between the treatments (ANOVA, Tukey method, α = 0.05). Means that
do not share a letter are significantly different.

Adding phosphate and sulfate and increasing the concentration of ADE in the culture
medium from 10 to 20% led to an increase in OD750 and cell numbers. Overall, OD750
correlated with the calculated cell count. The optical density changes were also due to
bacterial cells’ growth on effluent components. Still, the main reason for OD750 change
was the growth of microalgae, since the abundance of bacteria was low compared with
the abundance of algal cells (data not shown). The cultures in experiments supplied with
10% ADE increased in mean OD750 values and cell number until stationary growth was
achieved at 8.9 and 2.3 × 108 cells·mL−1 (after 112 h), respectively. In comparison, in
treatments supplied with 20% ADE, the cultures increased in mean OD750 values and cell
number to 13.6 and 4.3 × 108 cells·mL−1 (after 160 h), respectively.

Further expanding the ADE concentration in the culture medium from 20 to 40% led to
a decrease in mean OD750 values and cell numbers compared to the previous experiments.
The cultures in treatments supplied with 25% ADE reached mean OD750 values and cell
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number at 12.6 and 3.9× 108 cells·mL−1 (after 208 h), respectively. In contrast, in treatments
supplied with 40% ADE, the cultures achieved mean OD750 values and cell number until
stationary growth was achieved at 7.3 and 1.5 × 108 cells·mL−1 (after 184 h), respectively.
Cultivation in modified BBM (with controlled pH levels of 7.0 and 8.0) was similar but
showed better growth characteristics compared to those observed in diluted effluents.
Cultivation in modified BBM without pH control resulted in a rapid drop in the medium’s
pH and complete growth inhibition (Figure 1).

Key parameters of the different growth conditions, including dry weight, volatile
solids, specific growth rate, biomass productivity, and maximum pigments, were deter-
mined, and these data are displayed in Tables 1 and 2. C. sorokiniana strain AM-02 grown
in 10% ADE without and with the addition of phosphate and sulfate reached maximal
mean biomass concentrations of 0.44 and 1.88 g·L−1, respectively. These data were signifi-
cantly lower than the values obtained in modified BBM (2.8 g·L−1). C. sorokiniana AM-02
maintained in 20 and 25% ADE with the addition of phosphate and sulfate reached a
maximal mean biomass concentration of 3.35–3.39 g·L−1. These values were higher than
the values observed in modified BBM, but statistically insignificant. During the first days,
a high foam generation started in the photobioreactor with 40% effluent loading (despite
the addition of antifoam). Higher levels of dry matter in these treatments can be explained
by the immobilization of algal cells and the formation of biofilms on the reactor’s inner
surfaces in the air phase (after the foam level decreased), which were also collected after
the experiment.

The mean specific growth rates of C. sorokiniana strain AM-02 were 1.45, 1.06, 1.08,
0.82, and 0.86 day−1 in 10% ADE, 15% ADE, 20% ADE, 25% ADE, and 40% ADE with the
addition of phosphate and sulfate, respectively. However, these values were significantly
lower than those values observed during the growth of C. sorokiniana in modified BBM (1.50–
1.51 day−1). The highest growth rate of 1.45 day−1 was obtained with 10% effluent loading
compared to other ADE-containing treatments. The mean biomass productivities were 0.40,
0.41, 0.50, 0.39, and 0.33 g·L−1·day−1 in 10% ADE, 15% ADE, 20% ADE, 25% ADE, and 40%
ADE with the addition of phosphate and sulfate ions, accordingly. Values observed in ADE-
containing treatments were significantly lower than those observed during C. sorokiniana
cells’ growth in modified BBM (0.60 g·L−1·day−1). The highest biomass productivity
of 0.50 g·L−1·day−1 was obtained with 20% effluent loading compared to other ADE-
containing experiments.

Figure 2 demonstrates the concentrations of chlorophyll a, chlorophyll b, and total
carotenoids in algal cells cultured under various experimental conditions. Thus, the final
pigment concentration in algal cells cultured in 20–40% ADE was significantly higher
than that observed in cells cultured in modified BBM (Table 2). Culturing of alga in
25% ADE resulted in the highest pigment concentration, and the mean chlorophyll a,
chlorophyll b, and total carotenoids reached 99.5, 38.3, and 22.7 mg·L−1 under these
conditions, respectively. The mean chlorophyll a, chlorophyll b, and total carotenoids
reached 51.4, 18.2, and 10.9 mg·L−1 during culturing in modified BBM, accordingly (at
pH 7.0) (Figure 2).

The slower growth of different green microalgae in various agricultural wastewaters
is also due to their dark color. The high level of total solids in different digestates and
the intense black color of non-diluted effluents reduce light penetration into the culture
medium and, thereby, hinder microalgal growth and reduce the rate of nutrient recovery
from wastewaters as was shown previously [30,31]. According to previous studies, the
medium’s dark color lowers the algal cellular productivity compared to a non-colored
culture medium [17,31,32].

This research showed that microalgae’s successful growth in diluted anaerobic digester
effluent was believed to be due to the improved light transmission and reduced ammonia
(and possibly other components) toxicity. In several research works, light limitation and
ammonia toxicity have been avoided by diluting the wastewater with clean water [17,32,33].
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Centrifugation of the digestate contributed to removing particles as well, which gave it a
dark color.
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C. sorokiniana AM-02 cultured under different conditions.
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Previous work results showed that the preferred high levels of photosynthetic photon
flux density for C. sorokiniana strain AM-02 in standard BBM are 1000–1400 µmol of photons
m−2·s−1 [27]. Therefore, we chose 1200 µmol of photons m−2·s−1 in the present study.
Under such conditions, microalgae should receive enough light, since the addition of
digestate increases the medium’s turbidity. Moreover, we continuously sparged cultures
with air supplemented with 2% CO2, since it was found that nutrients are consumed faster
under these conditions [27].

Figure 3 shows the changes in pH under different cultivation conditions. The higher
ADE content resulted in a higher initial pH of the medium. During cultivation in various
diluted anaerobic digester effluents, the pH decreased from initial values of 7.5–8.0 to about
7.3–7.9, depending on the experimental condition. In the experiments with modified BBM,
pH dropped from an initial 6.1 to 3.2 within 40 h during the cultivation of C. sorokiniana
strain AM-02, which completely inhibited the alga growth. Ammonium nutrition leads to a
liberation of H+ and a decrease in the medium’s pH [29]. Under pH-controlled conditions,
growth characteristics in modified BBM were utterly identical, regardless of pH 7.0 or 8.0
(Figure 3).
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Figure 3. pH changes during the growth of C. sorokiniana AM-02 under different conditions.

Various nitrogen sources in nutrient media promote the growth of microalgae [34–37]. At
non-toxic concentrations, ammonium has been reported to induce higher growth rates than
nitrate and urea for many different microalgae species [29]. As previously indicated, the
ammonium removal efficiency varies depending on the media composition and environ-
mental conditions, such as the initial concentration of nutrients, light intensity, light/dark
cycle, as well as algae species [38]. Most of the nitrogen in the digestate in this study
was in the form of an ammonium. Comparison of ammonium removal during the entire
experimental period at different digestate concentrations is shown in Figure 4.

In this study, the initial values of the ammonium content in the medium varied
depending on the treatment. When cultivating algal cells in a medium loading with
10% digestate, only 17% of ammonium was removed after 112 h. Still, when additional
nutrients were added to the growth medium, 99% of ammonium was removed after
112 h. All subsequent experiments were carried out with the addition of phosphate and
sulfate at the same concentration. A similar trend was observed using 15, 20, and 25%
diluted ADE (99% removal after 136–184 h). With an increase in ADE loading to 40%,
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ammonium removal reached 80% after 208 h. The rapid NH4
+ removal efficiency was

achieved after 88–112 h in modified BBM (pH-controlled conditions) and 10–20% ADE
(with added phosphate and sulfate ions). Our results also show that a high phosphate and
sulfate removal level is possible (Table 1). However, the partial removal of phosphate in
ADE-containing treatments could also be due to some phosphate minerals’ precipitation.
These findings indicate that C. sorokiniana AM-02 is incredibly tolerant to high ammonium
levels. Hence, it has a potential role in removing high amounts of ammonium, phosphate,
and sulfate from wastewater. However, an additional contribution to the removal of
nutrients in ADE-containing treatments was made by bacteria that grew in the presence of
C. sorokiniana.
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Figure 4. Ammonium concentrations in modified BBM and diluted ADE during the growth of C.
sorokiniana AM-02.

Even though the abundance of various essential compounds in different wastewaters
and anaerobic digesters effluent makes it suitable for microalgae cultivation, it contains
other microorganisms, which can compete with microalgae cells. Therefore, most studies
cultivated microalgae in sterilized wastewater [11,36,38]. However, various sterilization
methods can increase the cost of culturing of microalgae and are economically impracti-
cal for large-scale cultivation. In this research, ADE was pretreated by centrifugation to
remove sediment and improve light transmission (however, for large-scale cultivation,
other methods should also be considered). This method also removed most of the mi-
croorganisms; however, a minor part was still present in pretreated ADE. The influence
of various microorganisms on the growth of C. sorokiniana AM-02 was studied in such
an environment to develop effective methods for large-scale cultivation of microalgae in
multiple wastewaters. It is imperative to screen for resistant microalgae species that can
tolerate and grow effectively in such environments, removing nutrients and producing
biomass, and in the presence of other competing microorganisms.

Among the studies describing microalgae cultivation in such wastewater systems, the
following examples should be mentioned. Bohutskyi et al. [13] found that C. sorokiniana and
Scenedesmus acutus are characterized by higher growth rates, productivity, and resistance
than other microalgal species when grown in diluted wastewaters samples. Chen et al. [15]
demonstrated that the highest biomass concentration (5.45 g·L−1) by C. sorokiniana AK-
1 could be obtained after 15 days when maintained in 50% strength swine wastewater,
preliminary pretreated by filtration to remove sediments. Kobayashi et al. [16] investigated
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the growth of three Chlorella sorokiniana strains in 10% anaerobic digester effluent obtained
from cattle manure digestion. ADE was pretreated by centrifugation in their research.
Biomass was produced at a concentration of about 270 mg·L−1 by the strains UTEX 1230
and CS-01 (after 21 days) but inhibited the growth of the strain UTEX 2714 by more than
50% in the ADE. Lizzul et al. [36] found that the final biomass yield of C. sorokiniana
UTEX1230 cultured in different wastewater samples that were autoclaved and diluted to
10% ranged between 220 and 320 mg·L−1. However, the bacterial community structure in
these experiments was not investigated. In our work, we show higher biomass productivity
compared to the results mentioned above. Our results indicate that C. sorokiniana AM-02 is
a good candidate for simultaneous wastewater treatment and biomass production.

2.2. Bacterial Community Structure

Algal systems consume nutrients more efficiently and provide oxygen to the aerobic
bacteria [39]. Some studies demonstrate the possibility of different symbiotic relationships
between microalgae and bacteria. These relationships’ nature is still mostly unknown,
but there is evidence that most of such relationships allow algae and bacteria to exchange
essential metabolites. Although the possibility of developing close relationships in different
growth systems has been previously shown, there is little research regarding the impact of
these relationships on biomass productivity or the ability to occupy a specific ecological
niche [40].

Five samples were taken from several of our ADE-containing systems to analyze
bacterial communities’ structure developed during the experimental period (at last days).
More than 400,000 high-quality bacterial sequences were obtained, and the average number
of reads per sample was 80,368 (from 65,191 to 94,835). In general, sequencing of amplicons
covered most bacterial phylotypes, which were observed in five samples. The alpha diver-
sity indices (operational taxonomic units (OTUs), Chao1 index, Shannon index, Simpson
index) calculated on the OTU level for each sample are demonstrated in Table 3. The
number of bacterial OTUs in five samples ranged from 55 to 61 (abundance > 0.1%), and
their number was comparable in all ADE-containing treatments. However, their abundance
was low in comparison with algal cells (data not shown).

Table 3. Alpha diversity of bacterial communities.

Treatment Observed OTUs Chao1 Shannon Simpson

15% ADE + P + S 60 62 3.99 0.86
20% ADE + P + S 59 59 3.64 0.85

25% ADE_1 + P + S 55 55 3.59 0.86
25% ADE_2 + P + S 61 61 3.74 0.85

40% ADE + P + S 61 62 3.69 0.84

The relative abundance of different bacteria that grew in the presence of C. sorokiniana
AM-02 has been investigated on different taxonomic levels, such as phylum, class, order,
family, and genus. Thus, two phyla, three classes, eleven orders, sixteen families, and
twenty-six genera were detected in five samples. The structure of bacterial communities
(on the phylum, order, and genus levels) in different treatments is presented in Figure 5.
The predominant bacterial phyla in the treatments containing ADE were Bacteroidetes and
Proteobacteria, which accounted for 51 and 49% of the total bacterial 16S rRNA gene se-
quences, respectively (Figure 5a). The predominant bacterial orders in the ADE-containing
treatments were Flavobacteriales, Betaproteobacteriales, Sphingomonadales, Sphingobacteriales,
Pseudomonadales, and Cauobacterales, which accounted for 37, 12, 11, 10, 10, and 9% of the
total bacterial 16S rRNA gene sequences, accordingly (Figure 5b). The relative abundance of
members belonging to the phylum Proteobacteria decreased, while the relative abundance of
representatives affiliated with the phylum Bacteroidetes increased with ADE concentration
(Figure 5a).
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Figure 5. Taxonomic composition of bacterial communities in the bioreactor during C. sorokiniana
AM-02 cultivation in ADE-containing media (15% ADE (184 h), 20% ADE (184 h), 25% ADE_1 (160 h),
25% ADE_2 (208 h), and 40% ADE (208 h)). Bacterial community composition according to amplicon
sequencing of the bacterial 16S rRNA gene is shown on the phylum (a), order (b), and genus (c)
levels. Only genera with a relative abundance of at least 1% in at least one sample are shown.
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The predominant bacterial genera in the treatments loaded with 15% ADE were Sph-
ingomonas, Chryseobacterium, Brevundimonas, Pseudomonas, and Sphingobacterium (sampled
on 184 h). The prevailed bacterial genera in 20% ADE-containing treatments were Sphin-
gobacterium, Chryseobacterium, Sphingomonas, Hydrogenophaga, and Pseudomonas (sampled
on 184 h). The predominant genera in 25% ADE treatments were Chryseobacterium, Bre-
vundimonas, Hydrogenophaga, Flavobacterium, and Pseudomonas (sampled on 160 h (ADE_1)
and 208 h (ADE_2)). The predominant genera in 40% ADE-containing experiments were
Flavobacterium, Sediminibacterium, Dysgonomonas, Brevundimonas, Sphingomonas, and Pseu-
domonas (sampled on 208 h) (Figure 5c).

Members of the genus Sphingomonas are aerobic bacteria that are ubiquitous in the
environment, including water, soil, and activated sludge. Sphingomonads are used for a
wide range of biotechnological applications, from the bioremediation of environmental
pollutants to the production of extracellular polymers for food and other industries [41].
Species of the aerobic genus Sphingobacterium have mainly been isolated from soil, com-
post, sludge, plants, raw milk, and water [42]. They are also involved in biodegradation
processes [43]. Brevundimonas species are aerobic and are widespread in the environment,
including soils, activated sludge, aquatic habitats, and clinical specimens [44]. Some of
them are considered potential candidates for remediation of sites contaminated with diesel,
n-alkanes, and polycyclic aromatic hydrocarbons [45,46]. Species of the Chryseobacterium
are aerobic and producing flexirubin pigments, which give the colonies a light yellow
or yellowish-orange color. They can be isolated from various habitats and involved in
remediation processes [47]. Pseudomonas spp. are aerobic and excellent bacteria for use
in bioremediation processes due to the flexibility and plasticity of their metabolic path-
ways [48]. Hydrogenophaga species possess oxidative metabolism and can be isolated from
activated sludge and wastewater systems [49]. Members of the genus Flavobacterium are
aerobic and distributed widely in nature [50]. Besides, bacteria that are used for bioremedia-
tion processes include members of the genera Pseudomonas, Sphingomonas, Chryseobacterium,
as well as Flavobacterium [51]. Most of these bacteria were also detected as main repre-
sentatives of microbial communities in other algae–bacteria systems that grew in other
wastewater systems [52] and freshwater reactors [53]. Interestingly, representatives of
the orders Rhizobiales, Betaproteobacteriales, and Chitinophagales correlated with biomass
productivity of C. sorokiniana strain DOE1412 during outdoor cultivation [53].

Bacteria from biogas reactors are mostly strictly anaerobes and facultative anaerobes,
and the small part of these anaerobic bacteria that remained after the pretreatment of ADE
was quickly replaced by aerobic microflora (still present in effluent and from different
sources during effluent preparation) during algae growth. Some bacteria that grew in
the presence of C. sorokiniana AM-02 were also found in the initial effluent [54,55]. It can
be assumed that these bacteria, better than other microbes, adapted to the constructed
environment, and some of them favorably coexisted with microalgae cells, for example,
during the acquisition and exchange of essential metabolites. The investigation of the
microbial community structure in algal/bacterial systems provides a necessary insight into
various water body systems that can be used to control algal biomass productivity and
algal health in non-sterile environments.

3. Materials and Methods
3.1. Digestate-Based Media Preparation

Effluent from mesophilic batch digesters after anaerobic digestion of cattle manure,
rye distiller’s grains with solubles, and sugar beet pulp was selected to test the growth of
the microalga. Initially, the anaerobic digester effluent (ADE) was centrifuged at 10,000× g
for 10 min to remove sediment, diluted with deionized water to different concentrations
(10–40% v/v), and then used to cultivate Chlorella sorokiniana strain AM-02. In experiments
with the addition of phosphate ion and sulfate ion, K2HPO4 and H2SO4 were added to
the diluted effluent to reach standard concentrations as in Bold’s Basal Medium (BBM)
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(~160 mg·L−1 and ~40 mg·L−1 for phosphate and sulfate ions, respectively). Before the
start of the experiments, ADE was stored at +4 ◦C.

Digestate for all treatments was initially analyzed to determine pH, total solids (TS),
volatile solids (VS), and concentrations of total volatile fatty acids (VFA), as described
in detail previously [54,55]. Phosphate and sulfate concentrations in the digestate were
analyzed as described before [27]. Thus, initial ADE had the TS content of 4.9 ± 0.14%,
VS content of 3.6 ± 0.11%, pH of 8.0 ± 0.05, and VFA concentration of 0.54 ± 0.05 g·L−1.
Pretreated 100% ADE had initial phosphate and sulfate levels of 52.3 ± 1.6 mg·L−1 and
5.7 ± 0.7 mg·L−1, respectively. All these parameters were measured in triplicate, and the
mean values are presented together with the standard deviations.

3.2. Cultivation Conditions in a Photobioreactor

C. sorokiniana AM-02 was isolated from a local freshwater lake, and the characteristics
of its photoautotrophic growth and biomass productivity in BBM were described previ-
ously [27]. Microalga was maintained on the plates with standard BBM [56], supplemented
with kanamycin (50 µg·mL−1) and ampicillin (10 µg·mL−1). All manipulations were per-
formed under sterile conditions to avoid contamination. Soil extract and vitamin mix were
not added to the original BBM.

Before starting experiments in a photobioreactor, the alga was grown in 250 mL glass
Erlenmeyer flasks containing 30 mL of autoclaved standard BBM. The cells were cultivated
for five days on the shaker at 120 rpm at 28 ◦C and under continuous illumination of
200 µmol·m−2·s−1. The collected inoculum was then transferred to a sterilized 3.6 L Labfors
4 Lux photobioreactor (Infors HT, Bottmingen, Switzerland) with a working volume of
2.4 L with controlled luminous flux levels (Figure 6). An initial OD750 (optical density at
750 nm) of 0.01 was achieved.
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In these experiments, to select the optimal concentration of digestate, we cultured
algal cells at 28 ± 0.5 ◦C, under illumination at 1200 µmol photons m−2·s−1, and with
sparging of atmospheric air containing 2.0% carbon dioxide. A modified BBM with an
ammonium nitrogen source (NH4Cl) was additionally used to compare growth efficiency
(final concentrations of ammonium, phosphate, and sulfate ions were ~250, ~160, and
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~40 mg·L−1, respectively). An amount of 1.3 L·min−1 aeration was provided by a com-
pressor. The addition of carbon dioxide was provided by a thermal mass flow controller
(Vögtlin Instruments, Aesch, Switzerland). Air and carbon dioxide were mixed and then
added to the photobioreactor through a 0.45 µm filter. The photobioreactor was contin-
uously stirred at 120 rpm. The light was maintained on a 16:8 light/dark cycle. pH was
measured with an EasyFerm Plus PHI K8 200 electrode (Hamilton, USA) throughout the
whole experimental period. In experiments with controlled pH, sterilized 8% NaOH or 8%
HCl were used. When observing the foam, a sterile 2% solution of antifoam (Antifoam B,
Sigma-Aldrich, St. Louis, MO, USA) was added to the reactor. Specific growth rate (day−1)
and biomass productivity (g·L−1·day−1) were calculated as described previously [57].

Two independent experiments were performed to test reproducibility, and the results
are presented as mean values.

3.3. Analytical Methods

During the growth of microalga, samples were taken from the photobioreactor every
16–24 h to determine the growth, the concentration of pigments in cells, pH changes, and
to evaluate the efficiency of nutrient removal by C. sorokiniana AM-02 under the tested
cultivation conditions.

Optical density (OD) at 750 nm (using cell-free culture medium as reference) and the
number of cells were measured every 16–24 h as previously described [27]. After each
experimental period, the biomass was collected by centrifugation at 5000× g for 10 min.

The final biomass yield (dry weight) and volatile solids were analyzed using a drying
oven (at 105 ◦C for 20 h) and a muffle oven (at 550 ◦C for 2 h), respectively. Chlorophylls a
and b, carotenoids, and total pigments (mg·L−1) were determined using dimethyl sulfoxide
extraction and optical absorption correlation, as previously described by Wellburn [58].

The concentration of ammonium ions in the medium was determined by the photo-
metric method. Briefly, samples were centrifuged at 10,000× g for 5 min. The supernatant
was diluted with distilled water, and 100 µL of Nessler’s reagent (Sigma-Aldrich, St. Louis,
MO, USA) was added to each tube and mixed. The tubes were kept for 10 min in the dark,
and the optical density was measured at 425 nm using a Lambda 35 spectrophotometer
(Perkin Elmer, Singapore).

Ion chromatography was also performed to analyze the bioremediation potential
of C. sorokiniana AM-02 in terms of utilization of phosphate and sulfate ions. Anion
concentration was measured using a Dionex ICS-900 Ion Chromatography System (Thermo
Fisher Scientific), as described previously [27]. Nutrient removal efficiency was calculated,
as described previously [12].

All measurements were performed in triplicate with two replicates of each experi-
ment. Tukey multiple comparison test was used to compare differences (Minitab software
version 20.1.0.0).

3.4. Bacterial Community Structure Analysis

At the end of each ADE-containing experiment, samples were taken to analyze bac-
terial communities’ structure (only one biological replicate was investigated). DNA was
extracted and purified from samples after centrifugation of 10 mL at 14,000× g for 10 min
using a FastDNA spin kit (MP Biomedical, Solon, OH, USA), according to the manu-
facturer’s protocol. Extracted DNA was then quantified with a Qubit 2.0 Fluorometer
(Invitrogen, Carlsbad, CA, USA). Primers Bakt_341F (5′-CCT ACG GGN GGC WGC AG-3′)
and Bakt_805R (5′-GAC TAC HVG GGT ATC TAA TCC-3′) were used to amplify the bacte-
rial 16S rRNA gene. Negative extraction control samples did not give visible amplicons,
and therefore, they were not analyzed further. Each sample was amplified in triplicate
(25 cycles). Sequencing was completed by using an Illumina MiSeq Kit v3 (600 cycles)
according to the manufacturer’s instructions. Sequencing of the 16S rRNA gene was
conducted in duplicate to ensure reproducibility (two technical replicates were obtained).
Additionally, we tried to extract DNA from the pretreated ADE (supernatant), but the DNA
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concentration was low. This did not allow us to amplify the bacterial 16S rRNA gene in the
amounts required for further amplicon sequencing.

The obtained sequence data were then analyzed with the Quantitative Insights into
Microbial Ecology (QIIME) software package [59]. High-quality 16S rRNA gene sequences
were clustered into OTUs (clustering threshold is 97% identity). OTUs representing less
than 0.1% of the total reads were also excluded. Alpha diversity indices were assessed on
an OTU level. For the taxonomic assignment of bacterial OTUs, the Silva database was
used [60].

4. Conclusions

Finally, this work explored whether agricultural wastewater obtained after the anaero-
bic digestion could replace conventional feedstock in biomass production from Chlorella
sorokiniana AM-02. The results show that agrarian waste materials are a suitable replace-
ment for traditional media; however, the level of nutrients in these media, such as phos-
phate and sulfate, must also be controlled to maintain adequate growth of green microalgae.
Results showed that C. sorokiniana AM-02 is capable of active growth, productivity, and
utilization of nutrients in a source of low-quality water. Thus, C. sorokiniana AM-02 grew
well under 10–40% (v/v) anaerobic digestion effluent loading, with the highest growth rate
being 1.45 day−1 obtained at 10% effluent loading (with the addition of phosphate and
sulfate ions). The highest biomass productivity of 0.50 g·L−1·day−1 was obtained with 20%
effluent loading. Besides, microalgae biomass can be considered as animal feed additives
or fertilizers.
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