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Abstract 

Unified Granger causality analysis (uGCA) alters conventional two-stage Granger causality analysis into a unified code-
length guided framework. We have presented several forms of uGCA methods to investigate causal connectivities, 
and different forms of uGCA have their own characteristics, which capable of approaching the ground truth networks 
well in their suitable contexts. In this paper, we considered comparing these several forms of uGCA in detail, then 
recommend a relatively more robust uGCA method among them, uGCA-NML, to reply to more general scenarios. 
Then, we clarified the distinguished advantages of uGCA-NML in a synthetic 6-node network. Moreover, uGCA-NML 
presented its good robustness in mental arithmetic experiments, which identified a stable similarity among causal 
networks under visual/auditory stimulus. Whereas, due to its commendable stability and accuracy, uGCA-NML will be 
a prior choice in this unified causal investigation paradigm.
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1 Introduction
Granger causality analysis (GCA) [1, 2], as a statistical 
predicting tool, provided causal descriptive relation-
ships of candidate events in a sense of extra residual of 
regression comparing. Original GCA only describes 
the information flows between variables mathemati-
cally, which is predictive and may not truly describe the 
underlying causal relationships between events in a strict 
philosophic sense. However, due to its simple form of 
data-driven causal discovery paradigm, GCA has been 
widely applied and developed after it was introduced into 
brain science. Considering the limitation of conventional 
GCA research paradigm, we proposed a unified para-
digm of uGCA to investigate causal networks in the brain 
[3, 4]. This unified causal investigation paradigm is based 
on the category of code length to guide causal discov-
ery, and then with the help of the principle of the mini-
mum description length (MDL) principle to guide the 

generalized model selection of the whole process. Unified 
mathematical theory, no subjective choice of confidence 
level, and free comparison of candidate models make 
uGCA more advantageous.

Till now, we have extended several forms of uGCA 
behind introducing the crude two-part form, which 
actually is formalized upon different mathematical theo-
ries. The uGCA-TP form deriving by a two-part coding 
scheme, which to describe the fitting error term and 
model complexity term, behaved such as a Lagrange 
duality solving procedure. On the other hand, specify-
ing some priors to its parameter space, the uGCA-MIX 
form adapts to behave such as a Bayes estimator, a simple 
approximation to this model selection issue is applied to 
derive the stochastic information criteria (SIC). In ear-
lier two-part codes, it still remains some inherent redun-
dancy. Thus the normalized maximum likelihood (NML) 
form of MDL, taking into account Fisher information, 
was developed based on the coding scheme of Shtarkov 
[5, 6]. In general, NML form restricted the early sec-
ond part description of two-part MDL into a data space 
identified by parameter estimation [7]. This scheme for 
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the generic model selection was formally introduced 
by Rissanen in 1996 and discussed its association with 
minimax theory. A sharper description length as the 
stochastic complexity and the associated universal pro-
cess is derived for a class of parametric processes [8]. In 
addition, this description form is motivated by the max-
imum-likelihood estimate (MLE) which requires satisfy-
ing the Central Limit Theorem (CLT) [6, 9]. In this light, 
the associated uGCA-NML seems to be a more sensible 
choice, which not only eliminates the inherent redun-
dancy in the coding process but also releases the priors to 
describe parameter space.

In previous studies, we focused on demonstrating the 
advantages of the uGCA paradigm over the conventional 
GCA paradigm. Although the characteristics of several 
different forms of uGCA had been described [4], we did 
not make a choice between them. In this study, we con-
clude that uGCA-NML will be a better selection for the 
most causal investigations. Not only for the advantages 
mentioned above, but for most of the current scientific 
researches which all tend to follow the research conven-
tion of larger samples and bigger data, these will yield 
to the requirements of uGCA-NML regarding the CLT 
to the more extent. At the same time, we consider that 
uGCA-NML is more consistent with our original inten-
tion of investigating causality based on a unified math-
ematical principle, and this form can more precisely 
incorporate the generalized model selection issues into 
the code length guided framework.

The rest of the article is organized as follows. In Sect. 2, 
we first briefly demonstrate the code length guided causal 
investigation paradigm. Then the uGCA-NML, deriving 
from the NML form, has been stated in detail, its gener-
alized formulas also have been derived within a general 
model class. Immediately, the formula of description 
length guided causal investigation in an ordinary linear 
model is yielded out. In Sect.  3, we illustrate its advan-
tages over other uGCA forms in 6-node network syn-
thetic experiments. More importantly, in a task-related 
fMRI data set, uGCA-NML methods identified the con-
sistent and more stable results of causality investigation 
of mental arithmetic networks under different stimuli. 
Sections  4 and 5  demonstrate comparisons among sev-
eral forms from a mathematical modeling standpoint, 
and discuss its following potential development.

2  Methods
Initially, we attempt to integrate the whole process of 
causal discovery into a unified mathematical theoreti-
cal framework. Inspired by the development of current 
coding theory and general computer theory, we consider 
incorporating the generalized model selection issues of 
GCA into the same benchmark, from which a unified 

code length guided causal investigation paradigm has 
emerged. At the same time, derived from information 
theory and stochastic complexity, the MDL principle 
has presented a systematic solution to the optimization 
problem of generalized model selection, and has different 
forms to cope with the diversity of data sources. Conse-
quently, we developed the uGCA paradigm to explore 
causal relationships based on code length by means of the 
MDL principle.

2.1  Description length guided causal investigation
Considering two variables, XN and YN , the description 
models associating with XN represent as

where ǫt is fitting residual. Distilling the concept of GCA 
paradigm, causal effect from Y to X within uGCA para-
digm is defined by

where LX denotes the shortest coding length of restricted 
model in Eq.  (1), and LX+Y  denotes the shortest cod-
ing length of unrestricted model in Eq.  (1) after adding 
YN . Causal effect from Y to X existed when FY→X > 0 , 
or else no causal effect existed between them. The con-
ditional form of GCA already had been introduced into 
uGCA paradigm, which also was extended to large-scale 
network analysis [3, 4]. Then, the derivation process for 
obtaining the coding length associated its optimal model 
in uGCA-NML form was illustrated below in detail.

2.2  uGCA‑NML—minimax solution for inherent 
redundancy

Recur to the universal coding, suggested by Kolmogo-
rov, it constructs a code for data sequences such that 
asymptotically, as the length of data sequence increases, 
the average code length per symbol would approach the 
entropy generated the data. Different universal coding 
schemes thus can be compared in terms of the average 
code redundancy in its worst-case process, i.e., maximiz-
ing the average code length excess over its entropy in the 
candidate model class. Later on, Clarke and Barron [10, 
11], further provided a very accurate asymptotic formula 
for the code redundancy, defined by a mixture density:

namely

(1)

{

Xt =
∑n1

j=1 a1iXt−j + ǫ1t

Xt =
∑n2

j=1 a2iXt−j +
∑n3

j=1 b2iYt−j + ǫ2t ,

(2)FY→X = LX − LX+Y ,

(3)fw(x
n) =

∫

f (xn|θ)dω(θ),
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Decades ago, universal coding has evolved into the so-
called universal modeling, which is no longer restricted 
to how to encode data but rather to pursue optimal mod-
els, above all an optimal universal model. Distill these 
thinkings, a universal modeling principle, the MDL for 
statistical inference, then, generalizes the older idea of 
parameter estimator in statistics [12–14], and it incor-
porates the model complexity which affects all aspects of 
model performance into its coding scheme [8].

Unfortunately, code length within earlier extended cod-
ing theorems [15, 16] cannot be sharpened to distinguish 
by a constant; however, large the data is, and the second 
term in the right-hand side of Eq. (4) suggests that the con-
stant term can be large indeed when the Fisher informa-
tion of data generating machinery is nearly singular. Hence, 
code lengths such as the stochastic complexity would not 
serve the intended purpose to provide a yardstick, by which 
model classes can be compared in accordance with a finite 
and possibly even small amount of data. For this reason, 
Rissanen pointed that the issues of coding data sequences 
in a non-redundant procedure [8], should be reconsidered 
efficiently while paying attention to any potentially large 
additional terms that may arise.

Among the earlier coding schemes, one stands out as an 
intuitively appealing candidate for the sought-for code, the 
so-called maximum-likelihood estimator (MLE) , given by

and finite alphabets were also dealt in [17, 18] but with-
out an explicit easy-to-calculate formula. Obviously, for 
infinite alphabets, the integral domain must be finite for 
the code to exist. By presenting an implementable version 
of this coding scheme, in which the maximum-likelihood 
estimates θ̂ (xn) are quantized, it had been shown that 
was equivalent with a two-part code, as discussed in [13], 
with the inherent redundancy removed. In this case, as 
long as θ̂n exists for all xn , we have

The sequence of distributions P
1
nml

 , P
2
nml

,..., consti-
tutes minimax optimal universal model relative to the 

(4)Eθ ln
f (xn|θ)

fw(xn)
=

k

2
ln

n

2πe
+ ln

|I(θ)|1/2

ω(θ)
+ 0(1).

(5)f̂ (xn) =
f (xn|θ̂ (xn))

∫

f (xn|θ̂ (xn))dxn
,

(6)P
(n)
nml(x

n) =
P
θ̂n
(xn)

∑

P
θ̂n
(xn)

.

considered class M , it tries to assign to each xn a prob-
ability according to MLE for xn [19]. In addition, the 
researches were carried further by [6, 8], for sequences xn 
such that θ̂ (xn) ∈ Ŵ:

Then, the non-integrability of MLE procedure is the key 
issue to be solved. However, some of the most important 
model classes, for example, the class of Gaussian distri-
butions and exponential distributions, are such that the 
square root of the Fisher information is not integrable 
nor is the parameter space compact. For these cases, the 
asymptotic formula Eq. (6) for describing its stochas-
tic complexity term requires a modification, it has been 
illustrated how such issues can be handled by calculat-
ing an asymptotic expression for the stochastic complex-
ity in the all-important Gaussian family, as needed in the 
regression analysis [8]. As a consequence, in the family of 
Gaussian distributions, the Fisher information is given by

and the integral of its square root dealt by [6, 9] is

where VkR
k

2 = |S|−
1
2 2(πR)

k

2 /kŴ( k
2
) denotes the volume 

of a k-dimensional ball B = {β
′
Sβ ≤ R} . Lower bound τ0 

is determined by the precision which the data are writ-
ten, then τ̂0 = RSS/n and R̂ = (β̂

′
X

′

t−k
Xt−k β̂)/n obtained 

by MLE. Thus a code length, that is the shortest code 
length ( LX or LX+Y  ), derived from Eq. (7) arrives at

2.3  Synthetic experiment protocol
To reveal the specialty of uGCA-NML among several 
forms, a synthetic network was given by

(7)

Ln = − log f (xn|θ̂ (xn))+
k

2
ln

n

2π
+ ln

∫

Ŵ

√

|I(θ)|dθ + o(1).

(8)|I(β , τ )| = |S|/(2τ k+2),

(9)

∫

β
′
Sβ≤R

∫ ∞

τ0

|I(β , τ )|1/2dτdβ = (2|S|)1/2
(

R

τ0

)k/2Vk

k
,

(10)

LuGCA−NML = n ln
√
2πτ +

RSS

2τ
+

k

2
ln

n

2

− log Ŵ

(

k

2

)

+
k

2
log

R̂

τ0
− 2 log k .
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 Then, several uGCA forms and conventional GCA were 
compared their characteristics in this synthetic 6-node 
network, its structural network is presented in Fig.  1. 
Noise terms ǫi(i = 1, 2, ..., 6) were Gaussian distribution 
with mean 0.

2.4  fMRI data within mental arithmetic experiment 
protocol

In this mental arithmetic experiment, we let ten subjects 
perform simple one-digit (consisting of 1–10) serial addi-
tion (SSA) and complex two-digit (consisting of 1–5) 
serial addition (CSA) by visual stimulus and simultane-
ously measured their brain activities with fMRI. Imme-
diately following, each subject was asked to perform the 
same serial addition arithmetic tasks by an auditory stim-
ulus. Nine right-handed healthy subjects (four female, 
24 ± 1.5 years old) and one left-handed healthy female 
subject (24 years old) participated. One of the subject’s(a 
right-hand male) experimental data was removed due to 
excessive head motion. All subjects volunteered to par-
ticipate in this study with the informal written consent by 
themselves.

3  Experiments and results
3.1  Synthetic data
Figure  2 illustrates causal networks obtained by sev-
eral uGCA forms and conventional GCA. For true con-
nectivities, except for uGCA-MIX, several uGCA forms 
and conventional GCA all have an admirable property. 
As shown in the previous research [4], uGCA-MIX had 
more chances of producing false negatives because of 



























x1t = 0.68x1t−1 − 0.24x1t−2 + 0.45x2t−1 − 0.15x2t−2 + ǫ1
x2t = 0.76x2t−1 − 0.34x2t−2 + 0.33x1t−1 − 0.12x1t−2 + ǫ2
x3t = 0.72x3t−1 − 0.36x3t−2 + 0.30x1t−1 − 0.09x1t−2 + ǫ3
x4t = 0.68x4t−1 − 0.22x4t−2 + 0.42x2t−1 − 0.19x2t−2 + 0.33x5t−1 − 0.14x5t−2 + ǫ4
x5t = 0.62x5t−1 − 0.29x5t−2 + 0.32x2t−1 − 0.12x2t−2 + 0.42x4t−1 − 0.18x4t−2 + ǫ5
x6t = 0.75x6t−1 − 0.26x6t−2 + 0.41x3t−1 − 0.22x3t−2 + 0.38x5t−1 − 0.15x5t−2 + ǫ6.

introducing some priors on estimated parameter dis-
tribution. The uGCA-TP and uGCA-NML forms had a 
very stable identification performance for the true posi-
tive rate (TPR). As for false connectivities, the advantages 
of uGCA paradigm have emerged distinctly. Specifically, 
uGCA-MIX and uGCA-NML ensured a higher true nega-
tive rate (TNR), which meant they both would identify a 
sparse connection network. Even for uGCA-TP, its false 
positives also were stifled at a low level. However, poor 
identification was obvious for conventional GCA in elimi-
nating false connectivities, whatever its confidence level is 
0.05 or 0.01. Especially for 1 → 6 , 2 → 6 , quite a few false 
positives existed. Although experimental results illus-
trated that increasing confidence level improved its TNR, 

the subjectivity of confidence level selection would bring 
another problem to be dealt with. That is, the ground 
truth is given in a synthetic data experiment, but in real 
data, its prior knowledge is usually deficient, which leads 
to the lack of a uniform yardstick to choose a confidence 
level. Clearly, the comparisons were presented in Table 1, 
uGCA-NML obtained higher TNR and TPR, which was 
less affected by the varied noise. At the same time, uGCA-
NML identified the most outstanding ground-truth rate, 
which conveyed the method’s ability to recognize the real 
situation more directly and precisely. However, all meth-
ods would produce more false connectivities as the noise 
variance increased, which all were associated with the 
connectivities 1 → 6 , 2 → 6 . We consider these increased 
false connectivities within different noise terms that are 
due to this specific structural network in Fig.  1 [3, 4]. 
Generally speaking, uGCA-TP, uGCA-NML, and con-
ventional GCA all had a good anti-interference ability for 
noise [4]. However, clearly, the uGCA-NML can iden-
tify true connectivities with a higher TPR, while ensures 
higher TNR to eliminate false connections.

To further confirm the priority of uGCA-NML, 
data length was ranged from 150 to 500. For conven-
tional GCA, it identified all true connectivities with 
high accuracy when data length was above 500, shown 
in Fig.  3. However, several false connectivities were 
also increased to a high level when varied data lengths 
from 200 to 1000, such as 1 → 6 , 2 → 6 . For uGCA-TP 
form, it ensured a high TPR when data length was 300. 
Then varying data length to 500, all true positives were 
almost fully identified. The uGCA-TP can eliminate 

Fig. 1 Relationships of simulation data sets in the 6-node networks
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false positives as its data length increased, but the false 
connectivity 1 → 6 had some increase either. As for 
uGCA-MIX, it obtained a higher accuracy in identi-
fying true negatives within a shorter data length than 
uGCA-TP. However, uGCA-MIX can not identify the 

true positives with a high accuracy even data length 
is 1000. Thus, it stifled false positives to a very low 
level, which had the highest accuracy in eliminating 
these spurious connectivities, then identified a very 
sparse connection network. Similarly, uGCA-NML can 

Fig. 2 Causal connectivities obtained by several uGCA forms and conventional GCA. Top row represented results in low noise level (var = 0.2), the 
middle was middle noise level (var = 0.4), the bottom denoted high noise level (var = 0.6). The data length was set to 1000

Table. 1 Comparison between uGCA methods and conventional GCA under different noise level

The variance of the low noise level data ranges from 1.5 to 2, and the moderate (high) level data ranges from 3.5 to 3 (5.5–6). The ground-truth rate denoted the total 
numbers of the obtained individual connection network which was same as the ground-truth network, divided by the sample number (1000)

Bold values indicate more indicative of the method’s performance

uGCA‑TP (%) uGCA‑MIX (%) uGCA‑NML (%) GCA ( α = 0.05 ) 
(%)

GCA 
( α = 0.01 ) 
(%)

Low

 TPR 100 98.678 100 100 100

 TNR 99.062 99.662 99.662 94.162 98.010

 Ground‑truth rate 81.9 86.3 93.1 25.6 64.0
Moderate

 TPR 100 98.478 100 100 100

 TNR 98.714 99.662 99.624 93.576 97.729

 Ground‑truth rate 74.5 84.6 91.2 18.9 58.4
High

 TPR 100 98.678 100 100 100

 TNR 98.410 99.433 99.371 93.048 97.148

 Ground‑truth rate 69.7 81.7 87.5 16.0 52.1
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ensure good accuracy in identifying true positives as 
data length was above 300, and almost fully obtained 
these connectivities when data length was 500. And the 
direct comparisons illustrated in Table 2, uGCA-NML 
almost identified a ground truth network in Fig.  1 for 
every synthetic data sample when data length was 500. 
On the contrary, other uGCA forms cannot reach the 
same accuracy when date length was above 300. By the 
way, these results demonstrated that when data length 
is below 200, distorted causal networks are identified 
for both individuals and groups, leading causal inves-
tigations unconvincing. And this specific structural 
network also led to a decline in the accuracy of the 
ground-truth rate, TPR, and TNR, for which the false 
connections almost were from 1 → 6 , 2 → 6 . Therefore, 
due to the increase of data length, the performance 
of causal investigation in uGCA-NML had the most 
obvious improvement. The uGCA-NML seems to rely 
on long data length to ensure admirable identification 

ability and is less affected by noise terms. Of course, the 
uGCA-TP can be regarded as a conservative choice.

3.2  fMRI data within mental arithmetic experiment
During tasking, these working scenarios of the brain were 
mental arithmetic tasks, thus these working scenarios can 
be considered similar regardless of specific stimuli (visual 
or auditory), respectively. Through the Statistical Para-
metric Mapping (SPM) software, we can get their mental 
arithmetic activation regions of the brain, shown in Fig. 4. 
In these mapped regions through statistical inference, 
these methods identified causal connectivities of the men-
tal arithmetic network in their own feature space. Then, 
by comparing their similarities of mental arithmetic net-
works under different stimuli, we can quantitatively com-
pare their characteristics of several uGCA forms in the 
causal network of real fMRI data [3, 20].

To compare the similarities among causal networks of 
different methods, we consider quantifying the mutual 

Fig. 3 Causal connectivities obtained by uGCA and conventional GCA under different data length. From top row to bottom row, the data length is 
150, 200, 300, 500
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information between causal networks under visual and 
auditory stimulus. Let the joint distribution of two ran-
dom variables (X, Y) be p(x,  y) , and the marginal dis-
tribution be p(x) , p(y) , respectively, and the mutual 
information is the relative entropy of the joint distribu-
tion p(x, y) and the marginal distribution p(x), p(y), that is

In our mental arithmetic experiment, variable (X, Y) are 
the causal networks under visual/auditory, respectively. 
Intuitively, these two causal networks should be isomor-
phic mapping, which means their mutual information 
will maintain a high level. Thus, the priority of different 
causal investigation methods can be compared by the 
mutual information between two causal networks, shown 
in Fig. 5. Clearly, the mutual information of uGCA para-
digm revealed that uGCA had a more admirable identi-
fication for causal connectivities than conventional GCA 
whatever the confidence level is. Comparing several form 
uGCA, their mutual information all held on a high level, 
and are in good agreement with the simulation results. 
However, results among these 9 samples illustrated that 
uGCA-NML obtained a more stable identification level, 
which demonstrated its priority. In general, uGCA para-
digm can ensure a clear superiority over the conventional 

(11)I(X;Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
.

GCA, and uGCA-NML can be the most recommended 
choice among these several forms.

To further illustrate this superiority, causal networks 
obtained by different methods on individuals shown in 
Fig. 6, respectively. From the mutual information in Fig. 5, 
uGCA-TP obtained causal networks with the highest sim-
ilar level in these samples. Clearly, uGCA paradigm iden-
tified more similar causal networks between two stimuli 
than conventional GCA. In these samples, most connect-
ing edges in the mental arithmetic network (containing 
nodes 1, 2, 3, 4) were identical, only a few edges were 
different. Even in the whole tasking networks, there only 
were several different edges in their 6-node networks. In 
fact, 230 possible sub-causal connection networks can be 
generated in a random 6-node network (only contains 0 
and 1). In subject 1, uGCA-TP and uGCA-NML had 7 
different edges, uGCA-MIX had 10 different edges. How-
ever, as for the driven nodes, uGCA-NML and uGCA-
TP obtained a more identical result, which node 4 was 
the driven node. For subject 5, uGCA-TP had 7 differ-
ent edges and uGCA-NML had 9 different edges when 
uGCA-MIX had 5 different edges. Although these, sev-
eral uGCA forms all obtained an identical driven node, 
node 2. In subject 8, uGCA-TP and uGCA-MIX only had 
3 different edges, uGCA-NML also only had 4 different 
edges. Obviously, their driven nodes were also identical. 
In general, these identical mental arithmetic networks 

Table. 2 Comparison between uGCA methods and conventional GCA under different data length

The data length ranges from 150 to 500, the results ( L = 1000 ) were present in Table 1, and L is the data length

Bold values indicate more indicative of the method’s performance

uGCA‑TP (%) uGCA‑MIX (%) uGCA‑NML (%) GCA ( α = 0.05 ) 
(%)

GCA 
( α = 0.01 ) 
(%)

L = 150

 TPR 89.933 83.433 86.178 93.810 86.200

 TNR 99.048 99.710 99.624 95.743 98.705

 Ground‑truth rate 31 17.5 22 24.4 18.5
L = 200

 TPR 95.378 91.411 92.967 97.200 93.289

 TNR 99.181 99.748 99.705 95.610 98.610

 Ground‑truth rate 56.4 41.1 48.2 29.3 40.8
L = 300

 TPR 99.567 98.022 99.133 99.620 98.878

 TNR 99.433 99.857 99.820 98.878 98.890

 Ground‑truth rate 85.5 83.0 88.9 38.3 72.1
L = 500

 TPR 99.989 99.033 99.989 100 100

 TNR 99.324 99.824 99.786 95.186 98.571

 Ground‑truth rate 86.3 91.3 95.6 34.2 72.9
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obtained through uGCA-MIX showed that the isomor-
phic mapping phenomenon of three subjects was legible, 
which meant that the ability of subjects to perform men-
tal arithmetic tasks may be more prominent. Although 

uGCA-TP had a better performance of similarity meas-
urement in mutual information, uGCA-NML seemed to 
be more identical in their causal network structure. On 
the other hand, these results illustrated that uGCA-MIX 
had a poor anti-interference capability. As mentioned 
above, uGCA-NML can identify true connections well 
when eliminating the influence of false connections, then 
obtain a more sparse connection matrix.

4  Discussion
Combining previous and current synthetic data experi-
ments, in this study, we further provided more evidence 
to demonstrate the priority of uGCA-NML for causal 
investigation. As we discussed in previous studies, due 
to some priors employing on the parameter estimation, 
uGCA-MIX preferred to obtain a sparse causal network, 
but it may sometimes (in some specific noise level or net-
work architecture) lead to very poor causal identification 
results because of this over-fitting model selection proce-
dure. As for uGCA-NML, no matter what its noise level 
was, it can eliminate the influence of false connections 
better when found real connections, so as to get a sparse 
connection matrix more accurately. Turn to uGCA-TP, 

Fig. 4 Mental arithmetic of CSA-control state under the two stimuli (visual and auditory), the activation regions were processed by SPM12. a 
CSA-control state under visual stimulus. b CSA-control state under auditory stimulus ( P < 0.0001 , uncorrected)
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its overall performance may be a compromise between 
uGCA-MIX and uGCA-NML [3, 4].

In the fMRI experiment, we have demonstrated in 
previous studies that the mental arithmetic networks 
obtained by uGCA were more similar, and the isomor-
phic phenomenon seemed more obvious. Compared with 
conventional GCA, in which only a few subjects seemed 
to show clear isomorphism, uGCA integrates the conven-
tional two-stage GCA scheme into a unified framework. 
And we considered that this isomorphic mapping involv-
ing mental arithmetic is a continuous closed process, 
which requires to keep a consistency of mathematical 
principles in that quantification process of isomorphism, 
otherwise, a breakpoint may be brought in. In mathemat-
ics, it named a singular point, whose related operations 
should be closed, otherwise, the processed results may 

be may deviate from the original space and become very 
distorted. A widely accepted view states that the original 
model space of generating the data set can not be found 
at all. Thus, toward the length of coding model complex-
ity, several uGCA forms provided different solutions, 
which mapping the descriptive model into different fea-
ture spaces to approach the original model space in dif-
ferent aspects. With the help of mutual information, we 
further compared several uGCA forms and conventional 
GCA. The uGCA paradigm had a clear priority over con-
ventional GCA. Then, among these forms, uGCA-NML 
obtained a more stable result, while it ensured accurate 
causal networks, which identified high-level similari-
ties of causal connectivities. By the way, uGCA-TP also 
obtained nearly identical connection networks under 
visual/auditory stimuli, and uGCA identified some 

Fig. 6 Causal network in the mental arithmetic tasks obtained by uGCA methods and conventional GCA, respectively. With the conventional 
GCA approach, connected edges of causal networks in two different stimuli were to a large extent distinct. In contrast, for uGCA methods, their 
connection networks commonly showed high similarities. Node 1, 2, 3, 4 was involving the inside network of mental arithmetic tasks. As for 
different stimuli input nodes, they were CAL.L, CAL.R, ITG.L, and ITG.R, respectively. The solid lines represent causal connectivities within the mental 
arithmetic network, and the dashed lines represent causal connectivities involving the input stimulus nodes
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acceptable results either. Adopting a crude two-part 
coding version, uGCA-TP benefits from this parsimony 
coding scheme, it will also have some advantages in real 
fMRI data.

To sum up, uGCA-NML has certain preferential selec-
tivity among these forms. Compared with uGCA-TP, it 
eliminates the inherent redundancy of model parameter 
estimation, while compared with uGAC-MIX, it does 
not require a prior and has a more stable causal identi-
fication. Moreover, these results indicated that causal 
isomorphism does exist during mental arithmetic tasks. 
Actually, the postulation that the isomorphic mapping 
of the brain under similar tasks is not fabricated from 
the single experimental phenomena. Gradually over the 
years, some researchers have tried to demonstrate this 
capability that the brain perceives our world by the ana-
logical reasoning [21–27]. And some other researchers 
also suggested using category theory to mathematically 
demonstrate how analogical reasoning in the human 
brain get rid of the spurious inferences that puzzle tradi-
tional artificial intelligence modeling (called systematic-
ness) [28–30]. As a consequence, a more unified causal 
investigation method, uGCA-NML, will more appropri-
ate for the brain with such logical rigor.

5  Conclusion
The uGCA paradigm first maps the original space into 
a unified code length guided space, and then to identify 
the causal connectivities. Therefore, this allows data sets 
to hold their original correlations as much as possible, 
thus obtaining an optimal approximate description for 
their correlations in the original space. Actually, differ-
ent uGCA forms provided different aspects to approach 
the ground truth, and obtained the optimal descriptive 
model in their own characteristic spaces. In this paper, 
we conclude a standpoint that uGCA-NML owns a prior-
ity among these several uGCA forms. Although several 
uGCA forms have their own different advantages, espe-
cially for this kind of exploratory study of causal inves-
tigation, the comparison of different methods is still 
controversial. However, for causal investigation in our 
unified code length guided framework, uGCA-NML will 
be the most recommended choice.
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