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Monotropa hypopitys is a mycoheterotrophic, nonphotosynthetic plant acquiring nutrients from the roots of autotrophic trees
through mycorrhizal symbiosis, and, similar to other extant plants, forming asymmetrical lateral organs during development.
The members of the YABBY family of transcription factors are important players in the establishment of leaf and leaf-like organ
polarity in plants. This is the first report on the identification of YABBY genes in a mycoheterotrophic plant devoid of
aboveground vegetative organs. Seven M. hypopitys YABBY members were identified and classified into four clades. By
structural analysis of putative encoded proteins, we confirmed the presence of YABBY-defining conserved domains and
identified novel clade-specific motifs. Transcriptomic and qRT-PCR analyses of different tissues revealed MhyYABBY
transcriptional patterns, which were similar to those of orthologous YABBY genes from other angiosperms. These data should
contribute to the understanding of the role of the YABBY genes in the regulation of developmental and physiological processes
in achlorophyllous leafless plants.

1. Introduction

Monotropahypopitys (syn.Hypopitysmonotropa) is amember
of the flowering seed plant family Ericaceae, which in turn
belongs to theorderEricales splitting fromthebaseof the clade
Asterids [1]. This mycoheterotrophic, nonphotosynthetic,
achlorophyllous plant acquires carbon from the roots of
autotrophic trees through monotropoid mycorrhizal symbio-
sis [2, 3]. TheM. hypopitys root system consists of fleshy roots,
on which shoot buds develop, and finermycorrhizal roots [2].
This plant has a typical aboveground structure, although the
stem and leaves can be taken for flowering parts—floral axis
and sterile bracts [4, 5]. Similar to extant plants,M. hypopitys
forms asymmetrical lateral organs on the flanks of a shoot or
inflorescence apical meristem, with adaxial and abaxial sur-
faces adjacent to or distant from, respectively, the meristem.

Paleobotanic studies indicate that such structural asymmetry
first appeared in a true leaf (euphyll) transformed from a radi-
ally symmetric stem as a consequence of the need to absorb
more sunlight [6–9]. Studies of asymmetry in plants indicate
that during plant development, cell fate is determined mostly
by positional signals. The correct maintenance of the apical
meristem and abaxial-adaxial differentiation of lateral organs
requires reciprocal signal interaction between the meristem
and derived structures [10–12].

It has been shown that the polarity of leaves and floral
organs is defined by the network of genes encoding the
Class III Homeodomain Leucine Zipper (HD-ZIPIII),
ASYMMETRIC LEAVES (AS1/AS2), KANADI (KAN),
AUXIN RESPONSE FACTOR (ARF3/ARF4), and YABBY
families of transcription factors [8, 13–15]. Among them,
the HD-ZIPIII REVOLUTA (REV) is expressed in the
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adaxial domain of lateral organs, whereas the GARP-family
transcription factors KAN1–4 are involved in abaxial differ-
entiation. Together, REV and KAN1 antagonistically regulate
the expression of a number of genes encoding auxin signaling
and transport components [16, 17].

The YABBY genes originating from the lineage leading to
seed plants are identified in various green spermatophyte
plant species; they are closely associated with the evolutionary
emergence of flat-shaped leaves and are presumably diversi-
fied during evolution, which resulted in the appearance of
family members with specific functions in the leaf, carpel,
and ovule [8, 18–20]. YABBY transcription factors are
characterized by their nuclear localization and the presence
of the C2C2 zinc-finger and DNA-binding YABBY (High
MobilityGroup- (HMG-) box-like) domains [21, 22]. In gym-
nosperms, the YABBY genes are distributed among the A, B,
C, and D clades [23]. In extant angiosperms, five YABBY sub-
families, FILAMENTOUS FLOWER (FIL or YAB1)/YABBY3
(YAB3 or AFO), CRABS CLAW (CRC), INNER NO OUTER
(INO or YAB4), YAB2, and YAB5 [21] are distinguished by
conserved functions in the initiation of lamina outgrowth,
polarity maintenance, and establishment of the leaf margin
[23–25]. Almeida et al. [26] and Morioka et al. [27] have
provided evidence for the involvement of the YAB2 and
YAB5 genes in the evolutionary diversification of style and
filament morphology. The branching of INO and CRC from
other YABBY genes has most likely occurred in parallel with
the evolution of the carpel and outer integument via
modification of reproductive leaf-like sporophylls [20, 28].

There are current theories related to the history of the
YABBY genes in angiosperms. Bartholmes et al. [29] sug-
gested that “vegetative” YABBYs (FIL/YAB3, YAB2 and
YAB5) do not form a monophyletic clade and that CRC and
FIL evolved from a common ancestor gene, while the INO
genes are sisters to that ancestral gene. On the other hand,
Finet et al. [23] clustered INO together with clades YAB5
and YAB2. In addition, two alternative evolutionary scenar-
ios, that is, monophyly or paraphyly of the gymnosperm
YABBY family towards angiosperm YABBY genes, suggest
that all spermatophyte YABBY genes were derived from
one or two, respectively, YABBY genes of the last common
ancestor of extant seed plants [20, 23, 29]. The reconstruction
of YABBY evolution in spermatophytes based on these theo-
ries suggests that at least one YABBY predecessor has already
functioned as a polarity regulator and that the diversification
of the gene family occurred in both angiosperms and gym-
nosperms [23]. Although the presence of the YABBY genes
is presumably restricted to seed plants [19, 20], genomics
studies conducted on marine picoeukaryotes revealed
YABBY homologs in Chlorophyta [30]. Phylogenetic analy-
sis of identified sequences suggested, with equal probability
that either Chlorophyta YAB genes are evolutionarily related
to seed plant YABBYs or emerged independently from
ancestral HMG-box sequences [23].

The expression data available for the angiosperm YABBY
genes suggested that the FIL-, YAB2-, and YAB5-like genes
retained a more ancestral expression pattern in both vegeta-
tive and reproductive tissues, while the expression of the
CRC and INO-like genes is more variable [29]. In Eudicots,

FIL, YAB3, YAB2, and YAB5 transcripts were detected in the
abaxial side of primordia in all aboveground lateral organs
(except ovules) determining the abaxial cell fate [31, 32]. The
CRC genes are expressed abaxially in the carpel, placenta,
and nectaries promoting the development of the gynoecium
and abaxial part of the carpel wall, and terminating the floral
meristem [33–38]. INOmRNA is detected in the abaxial epi-
dermis of the outer integument [20, 28, 39, 40]. The YABBY
expression pattern differences between cereal monocots and
other angiosperms indicate the modification of genetic path-
ways involving YABBYs during the process of angiosperm
diversification [21, 27, 41–46]. It is assumed that FIL, together
with REVOLUTA (REV), APETALA1 (AP1), and LEAFY
(LFY), corrects the spatial activity of the AGAMOUS (AG),
AP3, PISTILLATA (PI), and SUPERMAN (SUP) genes,
and, thus, is involved in the initiation of floral organ pri-
mordia at the correct position and numbers, defining the
fate of appropriate cells [31, 44, 47].

Thus, the bifunctional YABBY transcription factors have
an important role in driving the evolution of the leaf and
gynoecium, as well as in the initiation, growth, and structural
organization of almost all aboveground lateral organs, and in
the control of shoot apicalmeristem organization and activity.

In the present study, we identified and phylogenetically
classified seven YABBY members from M. hypopitys and
characterized their expression profiles in various tissues
during flowering. The structural features and composition
of conserved motifs belonging to the predicted MhyYABBY
proteins were also analyzed. Our data should further the
understanding of possible links between polarity determina-
tion and the physiology of achlorophyllous mycohetero-
trophic plants.

2. Materials and Methods

2.1. Plants and Transcriptomes. The previous study divided
M. hypopitys specimens into a North American cluster and
two Eurasian (excluding Russia) sister lineages (Swedish
and pan-Eurasian) [48]. Analysis of M. hypopitys from the
European part of Russia revealed two types, A and B, which
showed 99 and 100% homology with specimens from Japan,
Finland, and Great Britain, and with Swedish specimens,
respectively [49–51]. The study of H. monotropa specimens
from Northern Ireland showed that they occur in small,
highly fragmented populations, and exhibit a relatively high
level of within-population genetic diversity and a low level
of clonality [52].

In the present study, two M. hypopitys plants of type B
from one clone of the same genet were used. Flowering plants
were collected in a coniferous forest, Kaluga region, Rus-
sia, in August, 2015. The individual plant was a 15 cm
reproductive axis with bracts and raceme of 10–12 flowers
(each of 4 sepals, 4 petals, 8 stamens, and 4 fused carpels),
and root system comprised mycorrhizal and fleshy roots
with adventitious buds. The annual floral axes arise from
adventitious buds on the perennial roots and carry the
laminar appendages (there are no flowers in their axils,
but they are above the soil level), which are termed sterile
bracts (in our study, bracts, for simplicity) [4].
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Plants were dissected into flowers, bracts, fleshy rootswith
adventitious buds, and predominantly haustoria-enriched
roots, immediately frozen and homogenized in liquid nitro-
gen, and stored at −80°C. Total RNA was isolated from tissue
of each M. hypopitys bracts (two individual plants), flowers
(two individual plants), roots containing buds (individual
plant), and haustoria-enriched roots (individual plant) and
used for mRNA library preparation, which was sequenced
on the Illumina HiSeq2500 platform (Illumina Inc., San
Diego, CA, USA). The M. hypopitys RNA-seq data for each
of six transcriptomeswere assembled into the 98,350 unigenes
with a length of 201–12,993 bp [51, 53]. Individual reads were
mapped on contigs using Bowtie 2 [54], and protein-coding
genes in contigs were identified using TransDecoder
(https://transdecoder.github.io/).

2.2. Identification and Bioinformatics Characterization of M.
hypopitys YABBY-Coding Sequences. To identify the M.
hypopitys genes homologous to the known organ polarity
genes, we searched unique transcripts revealed by the RNA-
seq against the NCBI database (http://blast.ncbi.nlm.nih.
gov/). To predict YABBY transcripts inM. hypopitys, we addi-
tionally searched the assembled transcriptomes with the
known YABBY-related sequences coding for conserved zinc-
finger andHMG-like domains extracted from the NCBI data-
base. Selected YABBY candidates were examined for open
reading frames (ORFs), translated using Clone Manager
v.7.11 (http://clone-manager-professional.software.informer
.com/), and the conserved domains of putative MhyYABBY
proteins were identified using the NCBI-CDD analyzer
(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) and
specified according to [21].

To evaluate the overlap between transcriptomes, Venn
diagrams were generated using the online program Venny
[55]. To illustrate the transcriptome-based gene expression
pattern, the data were clustered with the Average linkage
method and Spearman rank correlation (distance measure-
ment method), and visualized as a heat map (http://www2.
heatmapper.ca/) [56].

ConservedMhyYABBY amino acidmotifs were identified
using the MEME (Multiple Expectation Maximization for
Motif Elicitation) 4.11.2 online analysis (http://meme-suite.
org/tools/meme) [57] and used to construct a schematic dia-
gram. To search for motifs, the “Normal” motif discovery
mode, the default width range of 6–50 amino acids (aa), and
the motif site distribution “zero or one per sequence” were
used. The identifiedmotifsweremanually comparedwith pre-
viously suggested specificmotifs. Initial searchwas performed
on a set of 34 complete sequences, including identified
MhyYABBYs, independently of YABBY clade affiliation. In
addition, variable regions between conserved domains within
the same group of proteins were searched. Since most of the
identifiedmotifs were clade-specific, we further analyzed indi-
vidual YABBY clades.

To investigate the evolutionary relationship of the
MhyYABBY genes, the MhyYABBY proteins and YABBY
homologs from other species available in NCBI were aligned
using ClustalX [58]. For analysis, full-size amino acid
sequences, as well as conserved regions consisting of the

zinc-finger and HMG-like domains were used. Evolutionary
divergence between the genes and proteins was estimated
using the maximum composite likelihood and equal input
models, respectively, in MEGA7 [59–62]. The phylogenetic
tree topology was estimated using the maximal likelihood
methodbasedon the JTTmatrix-basedmodel inMEGA7[62].

2.3. Analysis of Tissue-Specific Gene Expression. The
MhyYABBY gene expression was calculated in each tran-
scriptome. Transcript quantification based on RNA-seq data
was performed without a reference genome using the RSEM
[63] and Bowtie 2 [54] programs, including normalization of
transcripts per kilobase of exon per million fragments
mapped (FPKM) values and between samples.

To perform quantitative real-time PCR (qRT-PCR), the
first strand cDNA was synthesized from 1μg of each mixture
of two-root, two-bract, and two-flower RNA preparations
using the Reverse Transcription System (Promega, Madison,
WI, USA) and an oligo-dT primer, and quantified using the
Qubit® Fluorometer.

Based on the identified YABBY-like transcripts and cor-
responding draft genomic sequences (our unpublished data),
gene-specific primers separated by at least one big intron
were designed to amplify parts of gene-coding sequences
(Supplementary Table 1). The qRT-PCR was performed in
three technical replicates using 2.5 ng of cDNA and an SYBR
Green and ROX RT-PCR mixture (Syntol, Moscow, Russia)
at the following cycling conditions: initial denaturation at
95°C for 5min, 40 cycles of denaturation at 95°C for 15 sec,
and annealing/synthesis at 60°C for 40 sec. Obtained PCR-
fragments were additionally purified and sequenced to con-
firm certain gene specificities. Gene expression levels were
normalized to those of the reference pinesap Actin5, Actin3,
and SAND genes (primers are provided in Supplementary
Table 1), which transcripts were evenly represented in six
transcriptomes [51]. Normalized expression data were
statistically evaluated using GraphPad Prism version 7.02
(San Diego, CA, USA; https://www.graphpad.com/scientific-
software/prism/). Three values (3 technical replicates) were
used for SD calculation. The error bars were generated based
on mean with SD calculation. Significance of the qRT-PCR
data within the same tissue between species was estimated
by unequal variance Welch’s t-test and additionally treated
with Bonferroni’s correction: if any of the t-tests in the list
had p ≤ 0 05/number of t-tests in the list, then the null
hypothesis was rejected; that is, the difference between
samples was recognized as significant.

3. Results

3.1. M. hypopitys Organ-Polarity Genes. The obtained six
transcriptomes [53] showed significant overlap between the
whole set of reads of paired libraries (74–77%), and in three
libraries for each of the two plants (>80%) (Figure 1), and
reflected a number of the known plant organ polarity genes
that are being expressed in different tissues of flowering pine-
sap (Supplementary Table 2). Among them, the genes of the
KAN and REV transcription factors, responsible for the
abaxial and adaxial cell identity in lateral organs, respectively,
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and their common targets (ARF, SAUR, Aux/IAA, PID, PIN,
NPY, GH3, etc.) involved in auxin biology [17] were identi-
fied. The genes encoding SEUSS (SEU) and LEUNIG (LUG)
involved in petal polarity determination along the adaxial/
abaxial axis [64], AP2-like transcription factor AINTEGU-
MENTA (ANT) which contributes to organ polarity [65],
the ADP ribosylation factor guanine nucleotide exchange
factor GNOM essential for basal polarity establishment in A.
thaliana [66], ULTRAPETALA1 (ULT1) which acts antago-
nistically with KAN1 to pattern the adaxial-abaxial polarity
axis but jointly to pattern the apical-basal axis restricting the
expression domain of the SPATULA gene [67], and HD-
ZIPIII transcription factors HAT and ATHB positively regu-
lated by REV [68] were also found (Supplementary Table 2).
Heat map-based clustering of transcriptomic reads associ-
ated with organ polarity genes revealed similarities between
pair libraries (according to the column dendrogram in
Figure 2(a)). For most genes, the expression levels in flowers
were higher than those in bracts (Figure 2(b)).

All six transcriptomes of bracts, flowers and roots con-
tained seven unique YABBY-like transcripts, which were con-
sidered as putativeMhyYABBYs (MhyYAB1–MhyYAB7). The
size of putativeMhyYABBY ORFs varied from 502 to 673 bp,
and the length of predicted proteins was from 166 to 224 aa.
One transcript, MhyYAB4, had a partial 3′-truncated coding
sequence (CDS), while the remaining six mRNAs contained
complete CDSs. Putative MhyYABBY proteins included both
a conserved N-terminal 37-aa C2C2 zinc finger-like domain
and a C-terminal 48-aa helix-loop-helix domain resembling
a part of an HMG box (Figure 3) [21, 33]. A cluster of amino
acids at the beginning of the HMG-like domain could poten-
tially serve as a nuclear localization signal [33, 69].

Among MhyYABBYs, we distinguished two groups
(comprising MhyYAB2, MhyYAB5, and MhyYAB6; and

MhyYAB3 and MhyYAB4) based on high identity outside
the conserved domains (Supplementary Figures 1a, 1b).
The estimated low evolutionary pairwise divergence in the
nucleotide and amino acid sequences between the members
of each group compared to that between the members of dif-
ferent groups suggested the presence of two sets of paralogs
(Supplementary Tables 4 and 5). MhyYAB1 showed high
pairwise divergence with otherMhyYABBYs, which indicates
the affiliation of MhyYAB1 to the separate clade.

3.2. Phylogeny of the M. hypopitys YABBY Family. Previous
phylogenetic studies considered only conserved YABBY
domains; however, it has also been shown that variable pro-
tein regions contain clade-specific conserved motifs of poten-
tial functional importance [29]. In transcription factors,
variable regions are often essential for their activity and/or
formation of multimeric protein complexes, as it has been
shown for MADS-box transcription factors [70]. We aligned
complete amino acid sequences and only conserved domains
of MhyYABBYs. For the group comprising MhyYAB2,
MhyYAB5, and MhyYAB6 paralogs, two different results
within the same clade were obtained. The full-size proteins
were orthologous to FIL, while the conserved domains were
orthologous to YAB3, another member of the FIL/YAB3
clade. We decided to use complete sequences to increase
the sensitivity of phylogenetic analysis.

The generated tree, rooted with the Micromonas
commode (Chlorophyta) YABBY-like protein, classified
MhyYABBY1–7 by comparing them with YABBY-like
proteins of A. thaliana and other angiosperm species belong-
ing to Asterids and Rosids. As a result, MhyYABBY tran-
scripts were distributed into the FIL, INO, CRC, and YAB5
clades and renamed accordingly as MhyCRC (MhyYAB1),
MhyINO1 and MhyINO2 (MhyYAB3 and MhyYAB4, resp.),
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MhyYAB5 (MhyYAB7), and MhyFIL1, MhyFIL2, and Mhy-
FIL3 (MhyYAB5,MhyYAB6, andMhyYAB2, resp.). It should
be noted that no YABBY2-like transcripts were found in
all six transcriptomes. The sequences have been deposited
in GenBank (KX12839–KX12841, KX12843–KX12846;
Supplementary Table 3). The maximum likelihood recon-
struction of the MhyYABBY family with bootstrap values at
tree nodes is shown in Figure 4. Within the individual clades,
MhyYABBY sequences are sisters to other YABBY-like
sequences from Asterids, and the closest homologs are
YABBYs from Ericales.

3.3. MhyYABBY-Specific Motifs Identified outside of the
YABBY Domains. To further investigate the structural
divergence of pinesap YABBY proteins, we searched for
the motifs conserved within individual clades or the whole
MhyYABBY group. Comparison of complete sequences of
YABBY orthologs (Supplementary Table 6) revealed two
major domains, zinc-finger and YABBY, specific to all
YABBY proteins. The number of motifs in variable regions
was 4 to 9 with the length from 5 to 26 residues. The obtained
data were compared with previously defined motifs specific
to individual YABBY clades [29].

In MhyINO1/2, the known INO-A motif was found
immediately after the zinc-finger domain. Comparison of
MhyINO1/2 with other INO-like sequences in the NCBI
database revealed novel putative INO-specific motifs. At the
N-terminus and between the zinc-finger and YABBY
domains, a highly conserved 11-aa INO-B motif and an
Eudicot-specific 15-aa INO-C motif were identified. In addi-
tion, we found a C-terminal 26-aa INO-D motif specific to
MhyINO1/2 and INO-like proteins in Solanaceae. All previ-
ously predicted CRC-specific motifs, CRC-A, CRC-B, CRC-
C, and CRC-D, were found in MhyCRC. In addition, we
identified a putative conserved Eudicot-specific C-terminal
15-aa CRC-E motif. In MhyYAB5, the presence of the known
YAB5-specific motifs YAB5-A, GY/YAB2/5-A, YAB5-B, and
GY/YAB2/5-B was confirmed. The YAB5-D motif was not
detected, while a modified YAB5-C sequence was identified
before the YABBY domain as a 12-aa YAB5-Cm motif. In
MhyFIL1/2/3, we found all previously predicted motifs,
FIL-A, FIL-B, FIL-C, FIL-D, FIL-E, FIL-F, and FIL-G. In
addition, we suggested two motifs, 12-aa FIL-I (monocot-

and eudicot-specific) and 11-aa FIL-H (eudicot-specific)
located between the zinc-finger and YABBY domains, as
candidates for conserved FIL-specific motifs.

Thus, we characterizedMhyYABBY proteins by sequence
conservation on the clade level. The motifs identified in
MhyYABBYs were shown in Figure 5 and sequences of the
predicted novel motifs are presented in Supplementary
Figure 2).

3.4. Expression Pattern of “Vegetative” and Flower-Specific M.
hypopitys YABBY Genes. The transcriptome-based data on
MhyYABBY expression in the roots and buds, haustoria-
enriched roots, bracts, and flowers (Figure 6, Supplementary
Table 3) showed that the MhyYABBY mRNAs (except
MhyFIL2) were present in the flowers. Except for INO- and
CRC-like MhyYABBYs, all other five transcripts were
detected in the bracts. The highest bract-specific expression
was observed for MhyYAB5, while the remaining four genes
were transcribed at similarly low levels. Finally, in roots and
buds, only MhyYAB5 and MhyFIL2 mRNAs were expressed
at very low levels, while in the haustoria-enriched roots none
of genes were expressed. The MhyFIL1 and MhyFIL3 tran-
scripts were increased from the bract to the flower, maintain-
ing the same expression profile. In contrast with this, the
number of MhyYAB5 transcripts was decreased from the
bract to the flower.

Quantitative (q) RT-PCR data on MhyFIL3, MhyYAB5,
MhyINO1, MhyINO2, and MhyCRC expression are repre-
sented at Figure 6(d) and Supplementary Table 7. The rela-
tive expression of MhyYABBY genes was estimated in the
flowers, bracts, and roots and buds. All analyzed genes were
expressed in the flowers with the highest MhyYAB5 level,
and the lowest MhyINO2 and MhyFIL3 levels. In the bracts,
theMhyYAB5 gene was also highly expressed, but only traces
of theMhyINO2 andMhyFIL3mRNAs were observed. In the
roots and buds, the only MhyYAB5 mRNA was detected at
low level. The difference in the MhyYAB5 gene expression
between the pinesap tissues was statistically significant. The
flower-specific expression of MhyCRC and MhyINO1 was
significantly different from that in bracts and roots. The
expression of MhyINO2 and MhyFIL3 was similar between
tissues (Supplementary Table 7). All the analyzed gene
expression modes were the same as it was shown in their

MhyYAB3
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MhyYAB7

MhyYAB2
MhyYAB5
MhyYAB6

MhyYAB1

AthINO

AthYAB5

AthFIL
AthYAB3

AthCRC
PtYAB

Zinc finger domain HMG-like YABBY domain

AthYAB2

Figure 3: Alignment of conserved zinc-finger and HMG-like domains from putativeM. hypopitys YABBY proteins 1–7, known as A. thaliana
YABBYs (AthINO, AF195047; AthCRC, AF132606; AthFIL, AF136538; AthYAB3, AF136540; AthYAB5, NP_850081; AthYAB2, AF136539),
and Pinus taeda PtYAB (DR100835; gymnosperms).
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transcriptome-based patterns, except for MhyINO2. In the
flower, the measured qRT-PCR expression of this gene was
equally low. Given transcriptomic data,MhyINO2was absent
in flower 2, which may be due to the quality of the libraries or
their sequencing. Also, considering the low evolutionary
pairwise divergence in the INO1 and INO2 sequences, a
higher level of INO1 expression compared to the level of
INO2 may indicate that INO1 may be more required than
INO2 during plant development.

4. Discussion

The emergence of photosynthesis has become the most sig-
nificant event in the evolution of plants. The majority of

extant plants are autotrophic, except for about 1% of flower-
ing heterotrophic plants. Among the latter, obligate mycohe-
terotrophs are the results of replicated deevolutionary events
of the photosynthetic ability loss, triggering the degradation
of both cytoplasmic and nuclear genomes [71]. Full mycohe-
terotrophs demonstrate a wide range of deevolutionary out-
comes such as abrupt morphophysiological changes [2],
genome rearrangements, and massive gene loss [71, 72].

In the large and diverse eudicot family Ericaceae with a
nearly worldwide distribution, two of nine subfamilies,
Pyroloideae and Monotropoideae, contain partial and full
mycoheterotrophs, respectively [73]. In Monotropoideae,
M. hypopitys represents a unique obligate mycoheterotroph.
Recent studies on the M. hypopitys plastid genome and its
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comparison with that of photosynthetic relative Pyrola
rotundifolia indicated that this plant is at the final stages of
plastome degradation, which is expressed in highly reduced
size and content, dramatic structural rearrangements, and
acceleration of nucleotide substitutions in all protein-
coding genes [74–76]. Furthermore, the coordinated loss of
photosynthesis-related functions in both plastome and
nuclear genomes ofM. hypopitys is a sign of ongoing changes
in the nuclear genome of this mycoheterotrophic plant [51].

It is generally accepted that mycoheterotrophic plants
have evolved from photosynthetic mycorrhizal lineages, as

mycoheterotrophy helps to succeed in the low-light condi-
tions of the forest [77]. It has been established that dark-
induced leaf senescence leads to a significant chlorophyll loss
and photosynthesis inactivation [78, 79]. During evolution, a
M. hypopitys ancestor (already with megaphylls) growing in
shaded habitats lost the genetic ability to photosynthesize
due to symbiosis with fungi, which provided a sufficient
amount of carbon to pinesap from the roots of autotrophic
trees. It is shown that the loss of photosynthetic ability and
full heterotrophy are linked to the degradation and/or
modification of vegetative structures [77]. It is believed
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Figure 5: Amino acid clade-specific motifs predicted in M. hypopitys YABBY proteins. MhyFIL1/2/3 (a); MhyYAB5 (b); MhyCRC (c);
MhyINO1/2 (d). Previously suggested clade-specific motifs [29] are shown as boxes. MEME-predicted novel motifs are marked by
arrowheads and shown as letter sequences.
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that in M. hypopitys, an elongated raceme emerges instead
of a true stem, developing directly from the adventitious
bud on the roots [4].

The photosynthetic ability is closely related to the origin
of asymmetrical leaves (providing the absorption of sufficient
light energy by seed plants [80, 81]), in particular, due to the
YABBY genes’ evolutionary duplication and diversification
[6–9, 25, 82, 83]. Although the role of the YABBY genes in
plant evolutionary adaptation to light perception is estab-
lished and they have been systematically studied in model
and nonmodel species [27, 84–87], up to now, no YABBY
genes have been described in mycoheterotrophic plants. It
was interesting to figure out, if these genes and, therefore,
the conserved mechanism of leaf polarity determination,

were exposed to the adaptive deevolution in leafless mycohe-
terotroph M. hypopitys. Therefore, in this study we focused
on the diversity and expression profile of the YABBY genes
in a M. hypopitys that may further the understanding of the
development and evolution of this plant group.

Peripheral cells of the shoot apical meristem give rise to
the leaves that develop along three axes and acquire the
adaxial-abaxial and proximal-distal asymmetry and the med-
iolateral symmetry [88]. The elongated M. hypopitys raceme
carries bracts below flowers and leaf-like sterile bracts [4].
Bracts are thin, 8–15mm long, 3–15mm broad, ovate, and
expanding to the top, with irregularly toothed margins [4],
rudimentary midvein, and parallel veins of similar thickness
(Figures 7(a) and 7(b)). Interestingly, sterile bracts are not
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Figure 6: Expression profiles ofM. hypopitys YABBY genes in the bract, flower, root and bud, and haustoria-enriched root tissues. Expression
was estimated as the transcript number per million equal to the sum of total transcripts in the tissue. TheM. hypopitys adult plant; br—bract,
fl—flower (a); transcriptome-based expression pattern of theMhyFIL1,MhyFIL2,MhyFIL3,MhyYAB5,MhyCRC,MhyINO1, andMhyINO2
genes in pinesap tissues (b); the M. hypopitys roots with adventitious buds; ab—adventitious bud, rs—growing reproductive stem; scale
bar = 1 cm (c); relative expression (qRT-PCR) of the pattern of the MhyCRC, MhyINO1, MhyINO2, MhyFIL3, and MhyYAB5 genes in
pinesap tissues, F—flower, B—bract, R—root (d).
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exactly leaves as they have the genetic signatures of reproduc-
tive organs, which are manifested in the expression of the flo-
ral organ identity MADS-box genes [89] (Figure 2).

The lack of leaves inM. hypopitysmay correlate with pos-
sible changes in the conserved genetic network of lateral
organ polarity. In pinesap transcriptomes, we found the
number of genes associated with this network, including
seven YABBY-like sequences encoding proteins, which con-
tain conserved domains and nuclear localization signals
characteristic for YABBY transcription factors.

Initially, “adaxial” and “abaxial” genes are expressed
throughout the leaf primordium, and, as the leaf develops,
their expression becomes restricted to their respective
domains due to themutually exclusive actions of their protein
products [90]. YABBYs are “abaxial” genes involved in stimu-
lation of the cellular division during lamina outgrowth in all
aboveground lateral organs, vegetative or reproductive (e.g.,
[25, 91–93]). M. hypopitys flowers do not show any visible
abnormalities compared to those of other eudicots. Thence,
MhyYABBYs may play common roles in the proper develop-
ment of the floral meristem into a mature flower. However,

the question arises how did the lack of leaves affect the func-
tion of the “vegetative”MhyFIL1–3 andMhyYAB5 genes.

In A. thaliana leaves and sepals, FIL and YAB3 genes
are upregulated by KAN1 and ARF4, and, in turn, FIL
and YAB3 stimulate the expression of ARF4, KAN1, and
AS1 [92, 94, 95], and besides, in complex with LUG and
SEU promote not only organ polarity, but embryonic shoot
apical meristem initiation and maintenance [93]. “Abaxial”
KAN represses the “adaxial” HD-ZIPIII genes [90, 96, 97].
At the boundary between adaxial and abaxial tissues, the
FIL/YAB3 and KAN, respectively, up- and downregulate
theWOX1 andWOX3 genes that specify redundantly lateral
lamina outgrowth and leaf margin cell fate [98]. The YAB5,
KAN2, ARF3, and ARF4 genes are repressed by the “adaxial”
AS1 and AS2 implicated in the proper leaf formation along
all three axes [99–101].

During flowering, YABBYs are required to establish a
correctly developed flower primordium through the interac-
tion with REV, KAN4, SEU, LUG, ANT, SUP, LFY, and the
floral homeotic MADS-box genes [28, 47, 64, 65, 91, 93].
The SEU and LUG are needed to promote and maintain
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Figure 7: A hypothetical scenario for the functioning of the MhyYABBYs during the development ofM. hypopitys bracts and flowers. (a)M.
hypopitys raceme. (b) M. hypopitys sterile bract. (c) M. hypopitys flower with a partially removed perianth. (d) Scheme of possible relations
between “abaxial” and “adaxial” factors in the M. hypopitys bracts. (e) Scheme of possible interactions of MhyYABBYs in the M. hypopitys
flowers. Br—bract, StBr—sterile bract, Ad—adaxial side, Ab—abaxial side, LM—leaf margin, Se—sepal, Pe—petal, St—stamen, Pi—pistil,
Int—integument. Scale bar = 0.5 cm.
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the FIL/YAB3 andHD-ZIPIII expression [64]. In turn, FIL in
combination with ANT acts to upregulate the “adaxial” gene
PHB and MADS-box gene AP3 [65], and together with
REV, AP1, and LFY, spatially regulates the transcription of
the SUP and the MADS-box genes AG, AP3, and PI [31, 44,
47]. To maintain the polar development of the ovule outer
integument, the INO interacts with SEU and LUG, but its
expression is restricted by KAN4, REV, and SUP [28].
CRC, upregulated by AP3/PI/SEP, is involved in the control
of radial and longitudinal gynoecium growth, carpel fusion,
and nectary location, and participates in the floral meristem
termination through the WUS repression [33, 35, 36, 102].

The finding of almost all the above-described polarity
genes in the analyzed transcriptomes (Supplementary
Table 2; Figure 2) suggests that the polarity of M. hypopitys
bracts and floral organs is under the control of conserved
mechanisms (Figure 7), with the exception of the absence
of transcripts PHB and PHV (HD-ZIPIII), WOX1 and
WOX3 (homeodomain protein), andAS2 (LBD domain tran-
scription factor). The PHB and PHV function may be
replaced by another member of the HD-ZIPIII family, REV,
since these three genes can function redundantly [90]. Simi-
larly, the MhyWOX genes may perform the functions of
WOX1 and WOX3 [103]. Although 12 AS2-like (ASL) genes
were found in M. hypopitys transcriptomes, the AS2 cannot
be functionally replaced by other family members [104].
The lack of AS2 transcripts may contribute to a high level
of MhyYAB5 expression compared to other “vegetative”
MhyYABBYs, since the AS1/AS2 complex suppresses YAB5
[88]. Moreover, the lack of AS2 activity may be related to
the characteristics of M. hypopitys bracts having a plump
lamina base, the midvein indistinguishable from parallel
veins, and the absence of petioles. This conclusion may be
supported by the phenotype of the mutant as2, which has a
significantly rudimentary leaf midvein (and several parallel
veins of very similar thickness), shortened petioles and leaf
blades, and a plump and swelled leaf lamina base [105].

Most of the genes that define organ polarity existed
before the emergence of a flat leaf in seed plants. Based on
the analyses of the families of organ polarity genes, such as
HD-ZIPIII [106], ARFs [23], and ASLs [107], it is assumed
that after the ferns’ divergence, multiple paralogs arose in
the seed-plant common ancestor [23]. Unlike other polarity
genes, YABBYs originated in the lineage leading to seed
plants, and it is proposed that they are implicated in the tran-
sition of an ancestral shoot-specific network into a leaf-
specific one [19, 25]. At least four gene duplication events
in the YABBY family led to the emergence of at least five
YABBY genes with both novel and redundant functions in
the last common ancestor of extant flowering plants [23, 29].

The structural and phylogenetic analysis based on
comparison with the YABBY orthologs revealed that each
MhyYABBY belonged to one of the four highly conserved
clades in the angiosperm YABBY family [94]. In the den-
drogram, it is possible to single out a cluster consisting of
the FIL/YAB3, YAB5, and YAB2 clades (Figure 3). CRC-
and INO-orthologs have formed separate clusters, which
corresponds to the previously proposed origin of the CRC
and INO genes from different ancestors [20, 23]. The tree

composition was not completely congruent with the data of
other studies with observations of the two clusters CRC/FIL
and YAB5/YAB2/INO [23], or the two clusters FIL/CRC/
INO and YAB2/YAB5 [20, 29], probably due to the inherent
instability of the tree topology depending on the composition
of taxa and the mode of analysis.

The obtained tree was consistent with the established
phylogenetic relationships among higher plants. The pres-
ence of the MhyYABBY paralogs, which are coorthologous
to the FIL and INO clades, indicates that the MhyFIL1/
MhyFIL2/MhyFIL3 and MhyINO1/MhyINO2 groups could
represent allelic variants (for FIL group), alternative splic-
ing variants (for INO group), or may have originated as a
result of a recent gene duplication event unique to the
Ericales order.

The simplest explanation of the absence of the YABBY2-
like transcripts in all analyzed pinesap transcriptomes may be
the low abundance and insufficient transcriptome size. It is
also possible that YAB2 homologous genes are expressed at
the earlier developmental stages during the formation of lat-
eral organ primordia, which were not analyzed. One of three
possible evolutionary scenarios explaining the YABBYs’
diversification suggests that YAB2 is the result of the earliest
duplication of the YABBY ancestor gene [20], and therefore,
can be associated with the evolution of a leaf stronger than
other YABBYs. The YAB2 ortholog is present in photosyn-
thetic Ericaceae relative species Vaccinum corymbosum.
Hence, the absence of the YAB2 gene in M. hypopitys may
be due to the loss of the gene during the adaptive evolution
(deevolution of the genome) of the autotrophic ancestor of
M. hypopitys accompanied by the loss of the leaf. MhyYAB2
functions could be partially complemented through neofunc-
tionalization of MhyYAB5 or MhyFIL paralogs. Studies in
Oryza sativa and other plants suggest that within the mul-
ticomponent regulatory network composed of homo- and
heterodimers formed by “vegetative” FIL/YAB3, YAB2,
and YAB5 orthologs, protein substitutions and replace-
ments are possible [29, 108]. It was shown that in O.
sativa the loss of the YAB5 genes was complemented by
the FIL and YAB2 paralogs [108]. Accordingly, M. hypop-
itys MhyYAB2 could have been replaced by the MhyYAB5
or the three MhyFILs. It is also known that YAB2 and
YAB5 are important for laminar style and filament mor-
phology evolution in angiosperms, when YAB2 expression
over a certain threshold disturbs the balance in the regula-
tory network, leading to radialization of the laminar struc-
ture [26, 27]. Therefore, given the M. hypopitys style and
filament radial structure and the expression of the
MhyYAB5 gene in flower tissue, the absence of MhyYAB2
transcripts may also indicate a possible substitution of
YAB2 by YAB5 in M. hypopitys.

Bioinformatics analysis of the MhyYABBY structural
organization revealed the presence of 18 previously known
conserved motifs [29] and 7 putative novel candidate
sequences for clade-specific motifs (Figure 5), which may
be used as markers to identify appropriate genes. Given the
shared evolutionary history of YABBYs, the novel motifs
could be biologically relevant and involved in subfamily-
specific functions, which need further investigation.
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The MhyYABBY gene orthology data are supported by
theMhyYABBY expression patterns (Figure 6). In Arabidop-
sis, “vegetative” genes FIL, YAB3, and YAB5 are expressed in
leaves and leaf-like cotyledons, sepals, petals, stamens, and
carpels, whereas expression of CRC and INO is restricted to
specific floral organs that are evolutionarily derived from
leaves [20].MhyYABBY transcripts were also found in above-
ground tissues (bracts and flowers). In the case of the
MhyYAB5 gene, its atypical expression in roots indicates
that it may have some roles in the development of the
M. hypopitys root system. On the other hand, the peren-
nial plant M. hypopitys commonly develops underground
adventitious buds on the roots, which presumably contain
an embryonic inflorescence [109], and, thus, the MhyYAB5
gene can be expressed in the buds. Interestingly, in bracts,
the expression level of MhyYAB5 is much higher than that
of MhyFILs. Given the possible synergy of their action, it
can be assumed that the low expression of MhyFILs was
compensated by an increase in the expression of the
MhyYAB5 gene not only in bracts, but also in roots, or
rather in adventitious buds.

The MhyFIL expression profiles indicate the possible
subfunctionalization of the paralogs. The MhyFIL3 gene,
which according to phylogenetic analysis is at the base of
the M. hypopitys FIL clade, is expressed approximately at
the same level as MhyFIL1, while the extremely low number
of transcripts of the third paralog MhyFIL2 is present only
in two of the six transcriptomes (Supplementary Table 3).
It is possible that MhyFIL3 and MhyFIL1 may have redun-
dant functions, and MhyFIL2 may be a pseudogene. Given
trace amounts of MhyFIL2 transcripts in the root and bud
library, similar to MhyYAB5, it is likely that MhyFIL2 may
be involved in the development of inflorescence at the early
stages after bud dormancy release [110].

The MhyCRC expression was detected only in flower
tissue, confirming its potentially conserved roles in carpel
fusion, style/stigma and nectary development, and in the flo-
ral meristem termination as it was shown for A. thaliana
CRC [33, 38, 102], as well as in vascular development, as
indicated by a recent report on the functional role of Pisum
sativum CRC [111]. Similar to A. thaliana INO [40, 112],
MhyINO1 and MhyINO2 may redundantly define and pro-
mote the outer ovule integument growth in M. hypopitys,
while MhyFIL1/2/3 and MhyYAB5 may influence the abaxial
cell fate in all aboveground lateral organs like their corre-
sponding YAB1/3 and YAB5 orthologs [23].

It has recently been shown that “vegetative” YABBYs
act as transcriptional activators of jasmonate-triggered
responses. Jasmonate-induced degradation releases YABBYs
from complexes with JAZ3 to mediate anthocyanin accumu-
lation and chlorophyll breakdown [113]. The analysis of M.
hypopitys transcriptome data did not reveal JAZ3-like tran-
scripts, which may be consistent with complete chlorophyll
loss in M. hypopitys. Thus, such mechanism may become
evolutionarily obsolete in mycoheterotrophic plants.

The current study is the first to identify the YABBY genes
in a mycoheterotrophic plant devoid of vegetative leaf-like
organs. SevenMhyYABBYmembers were detected and classi-
fied inM. hypopitys, and putative protein structure, conserved

motifs, andphylogenetic relationshipwere systematically ana-
lyzed. MhyYABBY transcription profiling in different plant
tissues indicated the involvement of MhyYABBY proteins in
the regulatory network controlling bract and flower forma-
tion. Our findings should further the investigation of YABBY
functional roles in the regulation of developmental and phys-
iological processes in achlorophyllous plant species and help
to reveal possible differences in generally conservedmolecular
mechanisms underlying plant development and evolution.
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Supplementary 1. Tables 1–7: primers used for qRT-PCR
analysis of pinesap gene expression (1); assembled tran-
scripts homologous to the known organ polarity genes in
six pinesap transcriptomes (2); MhyYABBY characteristics
(3); estimates of evolutionary divergence between nucleo-
tide sequences of the MhyYABBY genes (4); estimates of
evolutionary divergence between amino acid sequences of
the MhyYABBY proteins (5); set of YABBY orthologues
from different plant species used for MEME-mediated
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Supplementary 2. Figures 1-2: structural analysis of the
MhyYABBY genes and encoded proteins. (1) Alignment of
M. hypopitys YABBY genes (a) and encoded putative proteins
(b); (2) novel amino acid motifs predicted in the sequence of
the MhyYABBY proteins. (a)–(g) Logos created from aligned
sequences and copied directly from MEME graphically
represent amino acid conservation: FIL-H (a); FIL-I (b);
YAB5-Cm (c); CRC-E (d); INO-B (e); INO-C (f); and INO-
D (g). The height of the letters in each stack indicates the
relative frequency of individual residues at the position
(in portable document format (.pdf)).
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