(J BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY

Cobalt-catalyzed nucleophilic addition of the allylic
C(sp?®)-H bond of simple alkenes to ketones

Tsuyoshi Mita”, Masashi Uchiyama, Kenichi Michigami and Yoshihiro Sato”

Letter

Address:

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo
060-0812, Japan

Email:

Tsuyoshi Mita” - tmita@pharm.hokudai.ac.jp; Yoshihiro Sato” -
biyo@pharm.hokudai.ac.jp

* Corresponding author

Keywords:
alkenes; C—H activation; C(sp3)—H bonds; cobalt; ketones

Abstract

Beilstein J. Org. Chem. 2018, 14, 2012-2017.
doi:10.3762/bjoc.14.176

Received: 14 May 2018

Accepted: 18 July 2018

Published: 02 August 2018

This article is part of the thematic issue "Cobalt catalysis".

Guest Editor: S. Matsunaga

© 2018 Mita et al.; licensee Beilstein-Institut.
License and terms: see end of document.

We herein describe a cobalt/Xantphos-catalyzed regioselective addition of simple alkenes to acetophenone derivatives, affording

branched homoallylic alcohols in high yields with perfect branch selectivities. The intermediate of the reaction would be a nucleo-

philic allylcobalt(I) species generated via cleavage of the low reactive allylic C(sp*)—H bond of simple terminal alkenes.

Introduction

The cleavage of C—H bonds of unreactive hydrocarbon fol-
lowed by functionalization should be an ideal method for con-
structing complex molecules without introduction of reactive
functionality in advance [1-9]. Since terminal alkenes including
a-olefins (CyHyy) are abundantly present in nature or are readily
accessible, they should be appropriate starting materials for
C—C bond forming reactions to create organic frameworks of
value-added compounds such as natural products, drugs, and
fine chemicals. There have been tremendous synthetic methods
involving catalytic C—C bond construction with the double bond
of terminal alkenes (e.g., Heck reaction, hydrometalation fol-
lowed by functionalization, carbometalation, and olefin metath-
esis) [10-13]. However, direct C—C bond formation of the
allylic C(sp®)-H bond adjacent to double bonds has remained

underdeveloped even though C-O bond formation of allylic
C(sp?)-H bonds was firmly established by using SeO, [14] or
Cr03/3,5-dimethylpyrazole [15] (ene-type allylic oxidation).
Although the most prominent work on catalytic allylic functio-
nalization studied thus far is considered to be a palladium-cata-
lyzed C—C bond formation using a stoichiometric amount of an
oxidant [16-22], the m-allylpalladium intermediate [23-25] is an
electrophilic species that exclusively reacts with nucleophiles.
Therefore, it would be a formidable challenge for the genera-
tion of a nucleophilic w-allylmetal complex that reacts with
electrophiles, triggered by allylic C(sp?)-H activation. To this
end, Schneider [26], Kanai [27], and we [28,29] reported in
2017 catalytic allylic C(sp®)-H activation of alkenes to react
carbonyl electrophiles such as imines, ketones, and CO, via
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nucleophilic allylmetal species (Figure 1). However, the sub-
strates employed have been restricted to allylarenes and 1,4-
enyne, and 1,4-diene derivatives and a-olefins were totally
unexplored. Therefore, the next challenge would be to use less
reactive a-olefins (pK, value of 1-propene = 43). In this paper,
we describe an allylic C(sp?)-H addition of a-olefins, mainly
1-undecene and their analogues, to ketone electrophiles.

Results and Discussion

We initially conducted screening of conditions using 1 equiv of
I-undecene (1a) and 3 equiv of acetophenone (2a) as starting
materials (Table 1). When the reaction was conducted at 60 °C
in DMA according to our previously established catalytic condi-
tions (Co(acac); (10 mol %), Xantphos (20 mol %), and AlMe3
(1.0 equiv)) [29], branched homoallylic alcohol 3aa was ob-
tained in only 23% yield with 1.6:1 diastereoselectivity
(Table 1, entry 1). In constant to the C(sp3)-H addition of ally-
larene to acetophenone that exhibited high linear selectivity
[29], perfect branch selectivity was observed using 1a as a sub-
strate. When the reaction temperature was raised, the yield of
3aa was improved to 45% yield at 90 °C (Table 1, entries 2 and
3). An increase in the amount of AlMej to 1.5 equiv further im-
proved the yield of 3aa to 54% yield (Table 1, entry 4). The
moderate yield was attributed to the generation of the olefin
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isomerization product derived from 1a (vide infra). We then
changed the equivalents of reagents 1a and 2a. Although the
yield of 3aa was decreased when the reaction was conducted
using a 1:1 ratio of 1a and 2a (Table 1, entry 5), the use of an
excess amount of 1a (3 equiv) greatly improved the yield to
70% (Table 1,
1-octadecene (1b) was subjected to the optimized reaction

entry 6: optimized conditions). When

conditions without adding 2a, internal olefins were exclusively
obtained (mixture of positional and geometric isomers) in 97%
yield. It was shown by '"H NMR analysis that the mixture
contained about 60% of 2-octadecene (£/Z mixture).

Having established the reaction conditions, we then screened
the scope and limitation of substituted acetophenone deriva-
tives using an excess amount of 1-undecene (1a, 3 equiv,
Figure 2). Electron-neutral and electron-donating substituents
such as H (2a), Me (2b), and OMe (2¢) at the para-position
efficiently promoted the allylic C(sp>)-H addition, in which the
reaction of 2a could be scaled-up (1 mmol) to afford 3aa in a
slightly higher yield (78%). Electron-withdrawing substituents
such as F (2d) and CO,Me (2e) also promoted the reaction with
similar levels without damaging the ester functionality. Further-
more, 2-naphtophenone (2f) and propiophenone (2g) were
tolerated well, affording branched products selectively in over

Schneider [26]
H N-TMPNHMDS (10 mol %) Nal N
A N.
+ " |— Pn PMP
NP ph”~H  dioxane, 25°C PR /\/\/Ph
nucleophilic 91% vield
b yie
Kanai [27]
H MesCu' (10 mol %) cull
O (s,S)-Ph-BPE (10 mol % " 7
/\/ + )k (5.5) ( ‘) Z|— pn Z
Z Ph THF, 30 °C =Z
Ph Ph
nucleophilic .
our previous works [28,29] 90% yield, 97% ee
H
A CO5H
R A Co(acac), (10 mol %) colL.| €O, R~ P
L Xantphos (20 mol %) | (1 atm) .
< up to 84% yield
H AlMez, DMA, 60°C | R
\\/\)\/ /\/\/\C(DzH
R e m el nucleophilic up to 78% vyield

H
L S
_ and/or Rmz

up to 85% yield (b/l = 92:8 to 0:100)

Figure 1: Precedent examples of catalytic allylic C(sp3)—H additions to carbonyl electrophiles.
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Table 1: Screening of reaction conditions.

Co(acac), (10 mol %)
Xantphos (20 mol %)

LI

H O php PPh OH
\/\/\/\)\/ * J\ - - o +*  CgH \ OH
Ph AlMe; (x equiv) CeHir” NF 8 17/\%
1a 2a DMA, 16 h 3aa not obtained
Entry 1a:2a Temp (°C) AlMejs (x equiv) 3aa (dr) (%)?2
1 1:3 60 1.0 23 (1.6:1)
2 1:3 80 1.0 44 (1.3:1)
3 1:3 90 1.0 45 (1.3:1)
4b 1:3 90 15 54 (1.3:1)
5 1:1 90 1.5 46 (1.2:1)
6 3:1 90 15 70° (1.3:1)

aYields were determined by 'H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard. The diastereoselectivity (dr) was determined by
H NMR analysis. PThe olefin isomerization product was obtained in 32% yield. Isolated yield.

Co(acac), (10 mol %) R OH
H i Xantphos (20 mol %) Arj/\/
+
NN N N Ar” TR AlMe; (1.5 equiv) Z

CgH47
DMA, 90 °C, 16 h

1a (3 equiv) 2 (0.2 mmol) 3ax
©)J\ /(j)\ /©)J\ /Ej)k MeOzC/©)‘\
2a: 70% (78%°2) 2b: 76% (1.2:1) 2c: 53% (1.3:1) 2d:47% (1.1:1) 2e: 66% (1.4:1)
(dr =1.3:1)
| X
=
2f: 63% (1.4:1) 29:62% (1.2:1)

Figure 2: Substrate scope for acetophenone derivatives. ?Preparative scale synthesis using 1 mmol of 2a.

60% yield. However, p-CF3-acetophenone (18%), acetone  value of 1-propene = 43), it is noteworthy that thermal cleavage
(14%), cyclohexanone (29%), and benzophenone (25%) were  of allylic C(sp>)—H bonds is possible without using highly basic
not suitable substrates for C(sp®)—H addition of 1a (figures not  organolithium or organomagnesium reagents (Grignard
shown). reagents) that react with ketones rather than deprotonating the
allylic C(sp)-H bonds.

We next examined several a-olefins 1 (3 equiv) for allylic

C(sp®)-H addition to acetophenone (2a). Not only 1-undecene  Based on the observed perfect branch selectivity, we propose
(1a) but also 1-octadecene (1b) and 6-phenyl-1-hexene (1¢) the catalytic cycle of the C(sp®)-H addition of 1-undecene (1a)
were tolerable to afford the corresponding products in around to acetophenone (2a, Figure 4). First, methylcobalt(I) I should
70% yield with perfect branch selectivity (Figure 3). Although be generated from Co(acac),, Xantphos, and AlMej [28,29].
the allylic C(sp®)-H bond of o-olefins is weakly acidic (pK, Oxidative addition of the allylic C(sp>)~H bond to I would
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H )OK Xantphos (20 mol %) ph—H
+
RJ\/ Ph AlMe; (1.5 equiv) R NF
_ DMA, 90 °C, 16 h
1 (3 equiv) 2a 3xa
H H

\/\/\/\)\/
1a: 70% (dr =1.3:1)

Figure 3: Substrate scope for a-olefins.
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Figure 4: A possible catalytic cycle.

proceed to afford n3-allylcobalt(III) intermediate II, which is
tautomerized to n'-allylcobalt(III) III by the assistance of the
oxygen atom in the Xantphos ligand [30]. When using a-olefin
as a substrate, the cobalt atom should be located at the terminal
position due to the avoidance of steric repulsion between the
bulky Xantphos ligand and an alkyl substitution (similar to the
case of nucleophilic n!-allylpalladium species [31-39]), where-
as the cobalt atom preferred to reside at the internal position
when allylarenes and 1,4-dienes were employed in our previous
studies [28,29]. Subsequently, reductive elimination of methane
from IIT would lead to a low-valent allylcobalt(I) species, and
then C—C bond formation of IV with 2a would proceed at the
y-position to produce cobalt alkoxide(I) V [28,29,31-39]. Trans-

1b: 74% (1.2:1)

L,Co'Me
I
AlMe,

H
)\/ Ph \/\)\/

1c: 67% (1.4:1)

H
=
CsH17)\/
1a
[
i
H/C|0\Me
CgH17
" \
L, L
Coll /Cg)"L

H Me H Me
Cus/\) — \/\/\/\)\/
AR ‘7{ Il e
Pha
= 0

metalation between V and AlMe3 would furnish branched alu-
minium alkoxide VI along with the regeneration of I. Alkoxide
VI is converted to homoallylic alcohol 3aa by usual work-up.

Conclusion

In conclusion, we have successfully developed a cobalt-cata-
lyzed nucleophilic addition of the C(sp)-H bond of simple
alkenes to ketones. This novel transformation could realize
perfect branch selectivity for all substrates. Much effort toward
the development of an asymmetric variant is ongoing. We are
also conducting computational analysis to explain the observed
perfect regioselectivity. These results will be reported in due

course.
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Experimental

Representative procedure: To an oven-dried test tube was
placed Co(acac); (5.2 mg, 20 pmol, 10 mol %) and Xantphos
(23.1 mg, 40 pmol, 20 mol %) in DMA (2 mL). The resulting
mixture was stirred at room temperature until the materials had
been completely dissolved. After the solution had been cooled
to 0 °C, it was stirred for 1 minute, and then AlMes3 (2 M in tol-
uene, 0.15 mL, 0.3 mmol, 1.5 equiv) was added. The dark green
solution was stirred for another 1 minute, and then alkene 1
(0.6 mmol, 3.0 equiv) was added followed by the addition of
ketone 2 (0.2 mmol, 1.0 equiv). The resulting mixture was
stirred at 90 °C for 16 h. After cooling the mixture to 0 °C, the
reaction was quenched by 1 M HCI aq and extracted with ethyl
acetate (3 times). The combined organic layer was washed with
brine and dried over Na;SOy. After the solids had been filtered
off, the solvent was removed under reduced pressure and the
residue was dried under vacuum to afford the crude mixture.
The approximate yield of 3 was determined at this stage using
1,1,2,2-tetrachloroethane (8 = 6.1 ppm in CDCl3, 2H) as an
internal standard. If the ketone remained, NaBH,4 was added to
convert it into the corresponding alcohol, which could be easily
separated from 3 by silica-gel column chromatography. It was
then purified by silica-gel column chromatography to afford the
products 3.

Supporting Information

Supporting Information File 1
Experimental details and characterization data.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-14-176-S1.pdf]
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