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Abstract

Nucleic acid binding proteins are generally viewed as either specific or non-specific, depending on 

characteristics of their binding sites in DNA or RNA 1,2. Most studies have focused on specific 

proteins, which identify cognate sites by binding with highest affinities to regions with defined 

signatures in sequence, structure, or both 1–4. Proteins that bind to sites devoid of defined 

sequence or structure signatures are considered non-specific 1,2,5. Substrate binding by these 

proteins is poorly understood, and it is not known to what extent seemingly non-specific proteins 

discriminate between different binding sites, aside from those sequestered by nucleic acid 

structures 6. Here, we systematically examine substrate binding by the apparently non-specific 

RNA-binding protein C5, and find clear discrimination between different binding site variants. C5 

is the protein subunit of the tRNA processing ribonucleoprotein enzyme RNase P from E. coli. 

The protein binds 5′ leaders of precursor tRNAs at a site without sequence or structure signatures. 

We measure functional binding of C5 to all possible sequence variants in its substrate binding site, 

using a high-throughput sequencing kinetics approach (HiTS-Kin) that simultaneously follows 

processing of thousands of RNA species. C5 binds different substrate variants with affinities 

varying by orders of magnitude. The distribution of functional affinities of C5 for all substrate 

variants strikingly resembles affinity distributions of highly specific nucleic acid binding proteins. 

Unlike these specific proteins, C5 does not bind its physiological RNA targets with the highest 

affinity, but with affinities near the median of the distribution, a region not associated with a 

sequence signature. We delineate defined rules governing substrate recognition by C5, which 

reveal specificity that is hidden in cellular substrates for RNase P. Our findings suggest that 

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
*Correspondence and requests for materials should be addressed to M.E.H. (meh2@case.edu) or E.J.( exj13@case.edu). 

Author Contributions
U.P.G., M.E.H. and E.J. designed the study. U.P.G, L.E.Y, C.N.N. and F.E.C performed the experiments. V.E.A. contributed to the 
development of the data analysis framework. D.A. developed and performed the modeling for binding models. U.P.G., D.A., M.E.H., 
and E.J. analyzed the data. U.P.G., M.E.H. and E.J. wrote the paper.

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2014 April 17.

Published in final edited form as:
Nature. 2013 October 17; 502(7471): 385–388. doi:10.1038/nature12543.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



apparently non-specific and specific RNA binding modes might not fundamentally differ, but 

represent distinct parts of common affinity distributions.

The term “non-specific” is widely used to describe proteins that bind DNA or RNA 

substrates at sites without apparent sequence or structure signatures 1,2,5. Although “non-

specific” proteins are numerous and play many important biological roles, it is a central 

open question whether the absence of defined recognition elements in nucleic acid binding 

sites reflects largely indiscriminate substrate binding, or if and how non-specific proteins 

discriminate between different binding sites. To answer this question, we systematically 

examined substrate binding for the apparently non-specific RNA binding protein C5, the 

protein subunit of RNase P from E. coli. RNase P is a ribonucleoprotein enzyme that 

removes 5′ leader sequences from precursor tRNA (ptRNA) in Bacteria 7 (Fig. 1a). The C5 

protein promotes ptRNA processing by RNase P 8, and contributes to ptRNA binding by 

associating with six consecutive nucleotides in the 5′ ptRNA leaders 9,10 (Fig. 1a,b). This 

binding site displays no apparent sequence or structure signatures in the 87 genomically 

encoded E. coli ptRNA leaders (Extended Data Fig. 1).

To determine whether and how C5 discriminates between different binding sites, we 

measured functional binding of C5 to all sequence variants in its cognate ptRNA site. Here, 

functional binding reflects productive substrate association in an ongoing enzymatic 

reaction. It is expressed by the specificity constant (kcat/Km) for a given substrate variant, 

which measures biologically relevant specificity 11,12. To simultaneously determine 

functional binding of C5 to all substrate variants, we generated precursor tRNA (non-

initiator ptRNAMet) with a randomized C5 binding site (Fig. 1c), and followed the 

processing reaction of this ptRNAMet(-3-8N) population (Fig. 1d). Reactions were conducted 

with excess ptRNAMet(-3-8N). Under these multiple turnover conditions all sequence variants 

compete for C5 association, and the relative reaction rate for each variant reflects functional 

binding 13.

The timecourse for the reaction of the randomized ptRNAMet(-3-8N) population differed 

markedly from the timecourse of ptRNAMet82 with a genomically encoded leader (Fig. 1d). 

This difference indicates that sequence variation affects functional binding by C5. Removal 

of C5 slowed the reaction rate as expected and greatly diminished the kinetic differences 

between the substrates with the genomically encoded and the randomized leaders (Fig. 1d).

To determine reaction rate constants for the individual substrate variants, we isolated 

remaining substrates at various reaction times and measured the distribution of the RNA 

species by Illumina sequencing (Fig. 1e,f, Extended Data Fig. 2, Extended Data Tab. 1). We 

used primers with degenerate barcodes to detect biased amplification of sequences during 

the PCR (Extended Data Fig. 2, Extended Data Tab. 1). Of the 4,096 sequence variants, 

2,900 showed unbiased amplification and were retained for further analysis. The distribution 

of sequence variants changed over the reaction time, revealing distinct fast and slow reacting 

species (Fig. 1f). These data demonstrate that C5 discriminates between different sequence 

variants, despite the lack of sequence signatures in genomically encoded E. coli ptRNA 

leaders.
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We calculated a relative processing rate constant rk for each RNA variant, using internal 

competition analysis, developed for the evaluation of kinetic isotope effects (Extended Data 

Fig. 3) 13–15. The rk value is the ratio between the kcat/Km values for the given sequence 

variant and our reference sequence, the physiological leader AAAAAG. The relative rate 

constants for all sequence variants describe C5 binding to the entire sequence space of the 

six nucleotide recognition site. Our approach to measure functional binding of large 

numbers of substrates during an ongoing reaction adds a kinetic dimension to the scope of 

high throughput sequencing experiments with randomized RNA populations 3,4,16,17. We 

therefore propose to term our method High Throughput Sequencing Kinetics (HiTS-Kin). 

The approach is applicable to other systems for kinetic analysis of next generation 

sequencing data.

For the ptRNA processing reaction with C5, the HiTS-Kin method revealed a range of 

relative rate constants spanning several orders of magnitude (Fig. 2a). Obtained relative rate 

constants were highly reproducible in independent experiments (Fig. 2b). We also validated 

rate constants by direct kinetic measurements of selected sequence variants (Fig. 2c, 

Extended Data Fig. 4). Together, these data show that the HiTS-Kin approach provides 

reproducible and accurate relative rate constants.

Next, we plotted the number of sequence variants processed at a given range of relative rate 

constants (Fig. 2d). The resulting histogram revealed that a significant number of sequence 

variants reacted faster than the physiological leader reference (rk > 1). Numerous sequence 

variants reacted slower (rk < 1). These observations indicate that physiological leader 

sequences of non-initiator ptRNAMet are not preferentially bound by C5. Removal of C5 

greatly contracted the range of relative rate constants, highlighting the impact of C5 on 

functional substrate binding and on the characteristic affinity distribution (Extended Data 

Fig. 5).

Most strikingly, the shape of the distribution of functional C5 affinities closely resembled 

affinity distributions of highly specific DNA binding proteins, for which large numbers of 

sequence variants had been examined 18–21 (Fig. 2d). This degree of similarity between the 

non-specific C5 and specific proteins was unexpected, given the absence of sequence 

signatures in the C5 binding site. For specific proteins, the cellular substrates that define 

binding site signatures are found at the high affinity tail of the distribution 18,19 (Extended 

Data Fig. 6a,b). Remarkably, this high affinity region for C5 also shows a clear sequence 

signature (Fig. 2e,f), as seen for specific proteins. In stark contrast to specific proteins, the 

C5 sequence signature does not correspond to the physiological binding sites on the non-

initiator ptRNAMet. None of the genomically encoded non-initiator ptRNAMet leader 

sequences falls into this fastest reacting fraction (Fig. 2d). For both C5 and specific proteins, 

no sequence signatures were detected for other regions of the sequence spectrum (Extended 

Data Fig. 6). Our results thus reveal remarkable similarities between sequence 

discrimination by the apparently non-specific C5 and by specific DNA binding proteins. At 

the same time, our data highlight a major difference: sequences bound with the highest 

affinity do not represent physiological substrates for C5, but for specific DNA binding 

proteins with known affinity distributions.
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To delineate sequence determinants that govern substrate recognition by C5, we fit the 

distribution of rate constants to models of increasing complexity and determined which 

percentage of the measured variance in the rate constants was explained by the respective 

model. Our simplest model considered only the number of a given nucleotide in the binding 

site, regardless of position. This model explained 29% of the variance in the measured rate 

constants (Fig. 3a, left panel). The model suggested favorable binding of A/U rich sequences 

(Extended Data Fig. 7a). Since A/U basepairs are thermodynamically less stable than G/C 

basepairs, we speculate that the variance explained by this model reflects in part the 

propensity of the leader to form transient structures with other parts of the ptRNA 22, which 

potentially compete with C5 binding. While competing structures are generally expected in 

RNAs with more than two dozen nucleotides 23, the relatively low correlation of the model 

with measured rate constants suggests that competing RNA structures have only limited 

impact on C5 binding for the majority of sequences.

We next considered both base identity and position in the binding site. This model, a 

traditional Position Weight Matrix 21, explained 39% of the variance in measured rate 

constants (Fig. 3a middle panel, Extended Data Fig. 7b). This modest improvement over the 

previous model indicated that the position of individual bases in the binding site impacted 

C5 binding only to a limited extent. However, the Position Weight Matrix assesses the bases 

independent of each other 21. To probe interdependence of the bases in the binding site, we 

employed a model accounting for functional coupling between two bases. This model 

explained 68% of the variance in measured rate constants (Fig. 3a, right panel). The 

strongest couplings were detected between neighboring bases (Fig. 3b).

The observed strength of the couplings between adjacent bases did not scale with energies 

expected to overcome stacking of the respective bases 22. This finding suggests that the 

couplings result from interactions of the RNA with C5, not primarily from inherent RNA 

conformations. Functional couplings between more than two base positions, assessed by 

neural network analysis, only modestly improved correlation between predicted and 

measured data, and explained 76% of the variance (Extended Data Fig. 8). Thus, functional 

couplings between adjacent bases exert the largest influence on C5 binding. The limited 

resolution of the structural model of RNase P protein bound to RNA 9 currently precludes 

structural interpretation of these effects. However, we note that functional coupling between 

neighboring bases also contributes markedly to the binding of several specific transcription 

factors to DNA 21,24,25.

Taken together, the examination of the functional binding data with models of increasing 

complexity reveals defined rules for substrate binding by C5. The data demonstrate that 

discrimination between different substrates, and thus specificity, is an inherent property of 

C5. However, this specificity is “hidden” in the cellular RNA targets. This observation 

raises the question why the specificity in C5 has not led to selection of ptRNA leaders with 

high affinity sequence signatures, as seen in proteins with canonical specificity 18–21. Our 

data suggest a farther reaching utility of specificity. C5 employs its inherent specificity, as 

reflected in the rules for substrate recognition, to enable binding of diverse substrate variants 

with similar functional affinity. This enables RNase P to process these diverse substrates at a 

similar rate, which may be required for cellular tRNA homeostasis 26.
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The striking similarities between affinity distributions of C5 and those of highly specific 

transcription factors also raise questions about the concept of “non-specific” RNA binding 

proteins. Given that RNA binding requires a protein interface to establish interactions with 

the RNA, certain RNA sequence or structure variants conceivably fit this interface better 

than others. Genuine “non-specificity” might thus be difficult to accomplish, even for 

proteins binding exclusively to the RNA backbone, because sequence differences impact 

backbone geometry 27. Differences between substrate variants may become smaller for 

proteins that bind to the backbone of RNA duplexes, which show less structural 

heterogeneity, but are nevertheless dynamic 28.

Preferences of apparently non-specific proteins for certain binding site variants are thus 

likely to impact substrate selection, unless compensation for these preferences exist. 

Compensation may arise from varying concentrations of RNA species, rate determining 

metabolic steps other than substrate binding, or a combination thereof. Alternatively, a 

single protein could bind multiple distinct substrate regions while thermodynamically 

compensating for the preferences at each region, as shown for uniform binding of diverse 

aminoacyl tRNAs to EF-Tu 29.

While hidden specificity remains to be revealed for other proteins, the findings for C5 

indicate that absence of sequence or structure signatures in cellular binding sites does not 

reflect an inability to discriminate between different RNA binding sites. At the same time, 

the data highlight the key difference between the hidden specificity of C5 and proteins that 

are specific in a canonical sense. For proteins with canonical specificity, cellular substrates 

appear to fall mainly into the high affinity region of the sequence distribution. This region is 

associated with sequence signatures, even for C5. Biological substrates for C5 bind near the 

median of the affinity distribution, which does not produce a sequence signature. These 

findings suggest that specific and “non-specific” binding modes might not fundamentally 

differ, but represent distinct parts of similar affinity distributions. Our data thus have 

potentially broad implications for RNA binding by proteins thought to be “non-specific”, 

including many RNases, RNA helicases, or the La-protein.

Methods Summary

ptRNAs and ptRNAMet with randomized leader sequences were produced by in vitro 

transcription from PCR-generated templates. RNase P processing reactions were performed 

with 1 μM ptRNA and 5 nM RNase P holoenzyme (equimolar RNase P RNA and C5). 

Product and unreacted ptRNA were separated by PAGE. cDNA libraries for Illumina 

sequencing were prepared from unreacted ptRNA at each given timepoint. Primers with 

degenerate barcodes were used to detect biased PCR amplification of certain sequences. 

Sequencing was performed on an Illumina GA2. Relative rate constants rk for individual 

substrate variants were calculated from changes in the distribution of substrates over time, 

using a multiple turnover reaction scheme for competitive substrate kinetics, which was 

extended to several thousand substrates. Computational modeling for the rules of substrate 

discrimination was performed by ordinary least squares regression of the matrix of values 

for ln(rk) for each sequence variant according to four models of increasing complexity. The 

quality of the different models was judged by the correlation coefficient between a dataset 
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calculated from values obtained from the regression analysis and the set of experimentally 

obtained values for ln(rk).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Processing of ptRNA with randomized leader sequences
(a) ptRNA processing reaction by RNase P. (b) Structure of the RNase P holoenzyme 9. (c) 

Sequences of non-initiator ptRNAMet leaders (reference: black; randomized: red). The tRNA 

body is omitted for clarity. The arrow indicates the cleavage site. (d) Timecourses of RNase 

P processing of ptRNAMet82 (black), and ptRNAMet(-3-8N) (red), in the presence (filled 

circles), and in the absence of C5 (open circles). The solid lines are fits to the integrated rate 

equation for a biphasic first order reaction. (e) PAGE of reactions processed for Illumina 

sequencing. (f) Distributions of species for individual timepoints, ranked from fastest to 

slowest. Distributions are normalized to t = 0.
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Fig. 2. Discrimination of C5 between different ptRNAMet leader sequences
(a) Relative rate constants (rk) for processing of all ptRNA leader sequence variants, ranked 

from slow to fast. Relative rate constants are averaged from four values (two timepoints of 

two experiments) and shown for only sequences where data from all four measurements 

passed quality control criteria (Extended Data Tab. 1). The line at rk = 1 marks the reference 

sequence. (b) Correlation of relative rate constants from two independent biological 

replicates (red line: linear fit through the data, R2: correlation coefficient). (c) Correlation 

between relative rate constants obtained by PAGE and by the HiTS-Kin approach for 

selected sequence variants. Error bars represent the standard deviation of multiple individual 

experiments. (d) Distribution of relative rate constants for processing of ptRNAMet(-3-8N) 

sequence variants by C5 (black) and apparent affinities for DNA binding by the transcription 

factor Arid3a, indicated as Z-scores based on published microarray data 18. The Z-score is 

not identical to rk values, but accurately reflects affinity-based ranking of all sequences 18 

(triangles: rk values for genomic leader sequences of ptRNAMet). (e) Plot of all sequence 

variants ranked from slowest to fastest processed. The bracket marks of 0.3% of sequence 

variants with the largest relative rate constants. (f) Sequence logo for this fraction.
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Fig. 3. Rules for sequence discrimination by C5
(a) Correlation between observed rk and values calculated with the best fit of the data to 

models of increasing complexity. Logarithmic rk values are used because of their 

correspondence to differences in binding energies 30. R2 expresses the correlation of each 

model with measured processing rate constants. (b) Functional coupling between two base 

positions. Yellow squares show promotion of processing (high linear coefficients), black 

squares indicate small or no effects, blue squares mark inhibition of processing.
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