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Objectives: To investigate the risk of colonization with ESBL-producing Escherichia coli (ESBL-Ec) in humans in
Vietnam associated with non-intensive chicken farming.

Methods: Faecal samples from 204 randomly selected farmers and their chickens, and from 306 age- and sex-
matched community-based individuals who did not raise poultry were collected. Antimicrobial usage in chickens
and humans was assessed by medicine cabinet surveys. WGS was employed to obtain a high-resolution genomic
comparison between ESBL-Ec isolated from humans and chickens.

Results: The adjusted prevalence of ESBL-Ec colonization was 20.0% (95% CI 10.8%-29.1%) and 35.2% (95% CI
30.4%-40.1%) in chicken farms and humans in Vietnam, respectively. Colonization with ESBL-Ec in humans was
associated with antimicrobial usage (OR = 2.52, 95% CI = 1.08-5.87) but not with involvement in chicken farm-
ing. blactx-m-s5 was the most common ESBL-encoding gene in strains isolated from chickens (74.4%) compared
with blacrx-m-27 in human strains (47.0%). In 3 of 204 (1.5%) of the farms, identical ESBL genes were detected
in ESBL-Ec isolated from farmers and their chickens. Genomic similarity indicating recent sharing of ESBL-Ec
between chickens and farmers was found in only one of these farms.

Conclusions: The integration of epidemiological and genomic data in this study has demonstrated a limited
contribution of non-intensive chicken farming to ESBL-Ec colonization in humans in Vietnam and further empha-

sizes the importance of reducing antimicrobial usage in both human and animal host reservoirs.

Introduction

The spread of ESBLs in Enterobacteriaceae is a challenge since
therapeutic options for infections with these organisms are lim-
ited." ESBL-producing Escherichia coli (ESBL-Ec) colonization has
been documented in both healthy humans and animals, including
chickens,” and the prevalence of ESBL-Ec colonization has
increased significantly worldwide.** High and inappropriate anti-
microbial drug usage in humans and in animals is an important
driving force for this increased prevalence.”

It has been suggested that transmission of bacteria and/or mo-
bile genetic elements carrying ESBL-encoding genes from animals
to humans may contribute to human infection with ESBL-Ec.®
However, recent studies provide partially contradictory conclusions
regarding the contribution of poultry to ESBL-Ec colonization and
infections in humans. Studies comparing ESBL genes and resistance
plasmids in isolates of poultry and human origin suggest that a sub-
stantial proportion of human extra-intestinal ESBL-Ec infections
may originate from poultry’~*° whereas other studies demonstrate
that the contribution from poultry is limited.**** In addition, these

©The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

561


http://orcid.org/0000-0003-3656-533X
http://orcid.org/0000-0003-3656-533X
http://orcid.org/0000-0003-3656-533X
https://academic.oup.com/

Nguyen et al.

studies mostly compared human E. coliisolated from invasive infec-
tions with those isolated from purchased chicken meat samples.
These isolates were not spatially or temporally associated and the
accompanying data on relevant antimicrobial drug usage were
lacking. In addition, all of these comparative studies were carried
out in high-income countries where industrial well-requlated farm-
ing systems are predominant. In contrast, animals in low- and
middle-income countries, including Vietnam, are often reared on a
small scale with poor biocontainment and unrestricted usage of
antimicrobial drugs.’*** In addition, available data indicate high
rates of carriage of antimicrobial-resistant E. coli in Vietnam,*>'® a
country where antimicrobial drugs for usage in both animals and
humans are available over the counter.!” However, the risk of
human colonization with ESBL-Ec resulting from animal farming
has not been addressed. We therefore investigated the contribution
of non-intensive chicken farming to ESBL-Ec colonization in humans
by determining the prevalence, similarities in resistance encoding
gene content, as well as genomic relatedness, of ESBL-Ec isolated
from chickens and humans in Vietnam.

Materials and methods

Study setting and bacterial isolates

The setting and design of this study have been described previously.*®
Briefly, a total of 204 chicken farms and 204 chicken farmers were included
in our study. In addition, we included two control groups, consisting of 204
individuals from the same districts as the farmers who were not involved in
poultry farming, matched by age and gender with the studied farmers
(rural controls), and 102 individuals from the provincial city (urban per-
sons).'® Data on antimicrobial drug usage in both chickens and humans
were collected during medicine cabinet surveys as described previously,*®
using structured questionnaires (available as Supplementary data at JAC
Online). Faecal samples including boot swabs from chicken farms and rec-
tal swabs from humans were collected and E. coli isolation and identifica-
tion were performed as described previously.'>'®

The presumptive phenotypic production of ESBLs, as indicated by resist-
ance to ceftriaxone and/or ceftazidime was confirmed phenotypically using
a double disc diffusion test including ceftriaxone and ceftazidime in the
presence and absence of clavulanic acid, in accordance with CLSI guide-
lines.™® A chicken farm or a person was defined as ‘positive’ for ESBL-Ec if at
least one ESBL-Ec isolate was detected.

Data analyses

The adjusted prevalence of faecal colonization with ESBL-Ec in chickens
and humans was calculated by assigning a stratum-specific sampling
weight to each observation unit (farm or subject) as described previously.'®

A logistic regression model was built to study risk factors associated
with the presence of phenotypically positive ESBL-Ec in humans (Table S1).
Variables were included in the multivariate analysis based on a P<0.15
and their biological plausibility of the univariate analyses. ‘Survey’, ‘epicalc’
and ‘adegenet’ packages were used to perform all the statistical analyses
using R (https://www.r-project.org/).

WGS and phylogenetic analysis

Among 734 ESBL-Ec strains isolated from chickens and humans, to avoid
selecting duplicate strains, only one of the identical antimicrobial resistance
pattern strains from the same specimen was kept for further analysis.
A total of 486 isolates with a unique phenotypic antimicrobial resistance
pattern were subjected to WGS. DNA was extracted using the Wizard

Genomic DNA purification kit (Promega, Madison, WI, USA) in accordance
with the manufacturer’s instructions.

Sequencing was performed at the Wellcome Sanger Institute (UK) using
the Illumina Hiseq 2000 (Illumina, Inc., San Diego, CA, USA) with paired-end
reads of length 100bp. An assembly improvement pipeline’® using
VelvetOptimiser v2.2.5 was conducted to generate de novo genome
assemblies.”! These assemblies were annotated with Prokka?? and the out-
put was used for the pan-genome pipeline using Roary?* to construct the
core gene alignment of 486 ESBL-Ec isolates. Sequence reads were depos-
ited in the European Nucleotide Archive (ENA) and isolate accession num-
bers areincluded in Table S6. We identified SNPs in the core gene alignment
using an in-house tool (https://github.com/sanger-pathogens/snp-sites).
This alignment was used to cluster the isolates into unique subpopulations
or sequence clusters using the Bayesian analysis of population structure
(hierBAPS).2*?> We also used this alignment to reconstruct the approxi-
mately maximum-likelihood tree using FastTree version 2.1.3.%°
Phylogenetic trees were visualized by using FigTree (http://tree.bio.ed.ac.uk/
software/figtree/) and iTOL (v3).?’

In silico MLST analysis and identification of
antimicrobial resistance determinants

To compare the distribution of ESBL-Ec in our study with other studies, ST
was identified for each isolate using the previously developed MLST scheme
(http://mist.warwich.ac.uk/mlst/dbs/Ecoli) with an in-house tool (https://
github.com/sanger-pathogens/milst_check). In silico PCR was also used to
assign isolates to E. coli phylogroups A, B1, B2, C, D, E and F using the
Clermont method.?®

We employed the srst2 package?® to identify antimicrobial resistance
genes and plasmid incompatibility groups using the ResFinder database®®
and PlasmidFinder database,>* respectively.

We used discriminant analysis of principal components to compare
overall acquired antimicrobial resistance gene profiles distribution, not lim-
ited to ESBL genes, between the different study groups.*?

Results

Prevalence and risk factors for ESBL-Ec colonization

Among 510 enrolled persons, the median age was 46 (IQR 39-
54 years) and 63.9% were male. The prevalence of faecal coloniza-
tion with ESBL-Ec was significantly higher in humans than chickens
(40.2% versus 14.7%, P< 0.001, ). Among human participants,
the prevalence of ESBL-Ec colonization in chicken farmers was sig-
nificantly lower than in other rural persons (31.9% versus 49.5%,
P <0.001). The adjusted prevalence of ESBL-Ec colonization was
20.0% in chickens, 31.1% in chicken farmers, 47.8% in rural per-
sons and 38.2% in urban persons (Table 1). Rural individuals not
involved in poultry farming were at higher risk of colonization with
ESBL-Ec than chicken farmers were (OR = 2.04; 95% CI=1.32-
3.15). Usage of antimicrobial drugs in the 4 weeks prior to study
participation was associated with human ESBL-Ec colonization
(OR=2.52;95% CI = 1.08-5.87) (Table 2).

Genetic characterization and phylogeny of ESBL-Ec

The results from MLST indicated that the ESBL-Ec belonged to 85 dif-
ferent STs (Table S2). No ST was assigned to 14 isolates that carried
at least one novel allele not included in the database. The most
common STs were ST131 (12.8%), ST648 (8.6%), ST38 (7.2%), ST10
(6.4%) and ST69 (5.8%), which together accounted for 40.8% of the
total number of isolates. All isolates of the above-mentioned STs,
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except one, were of human origin. Among 85 STs, 14 (16.5%) were
found in both human and chicken host reservoirs (Table S2).

A maximum-likelihood phylogenetic tree of the 486 ESBL-Ec
was created based on 230 791 SNPs in the core gene alignment,
composed of 2232 genes. The core gene phylogeny revealed a di-
verse population of ESBL-Ec, containing six major lineages, which
generally corresponded to the E. coli phylogroups except for a few
outliers (Figure 1). Chicken and human isolates were mostly inter-
mixed in phylogroups A, B1, Cand F. In contrast, the phylogroup B2
was predominantly represented by human isolates.

The population structure of ESBL-Ec isolates was also defined
based on BAPS clustering, and the assignment of phylogroups and
the output of each method was analysed in the context of the phyl-
ogeny (Figure 1). There was a partial concordance between the
BAPS clusters and phylogroups, with all isolates from phylogroup B1
assigned to BAPS cluster 2 and the majority of phylogroup E isolates
assigned to BAPS cluster 1. Phylogroup A and C were included to-
gether in BAPS cluster 3. Similarly, all phylogroup F isolates were
included in BAPS cluster 6. In contrast, phylogroup B2 isolates were
assigned to three different BAPS clusters (4, 5 and 6). In general,
BAPS clustering gave a better definition of ESBL-Ec population struc-
ture that was more consistent with the phylogeny, as some phy-
logroups (e.g. group E) occurred in multiple phylogenetic clusters.

Distribution of ESBL genes and other resistance genes
among ESBL-Ec

The distribution of ESBL genes among 486 ESBL-Ec isolated from
chickens, farmers and individuals not involved in poultry farming is

Table 1. Prevalence of faecal colonization with ESBL-Ec in chickens and
humans in southern Vietnam

No. of ESBL-Ec-positive Adjusted
subjects prevalence
Subject (prevalence, %) (95% CI)
Chicken (N = 204) 0(14.7) 20 0(10.8-29.1)
small-scale chicken (N =102) 0(9.8) 4 (2.5-16.3)
household chicken (N =102) 0(19.6) 20 0(10.8-29.3)
Human (N =510) 205 (40.2) 35.2 (30.4-40.1)
farmer (N = 204) 5(31.9) 31.1(24.3-37.8)
rural person (N = 204) 101 (49.5) 47.8 (40.4-55.1)
urban person (N =102) 9(38.2) 38.2 (28.7-47.7)

shown in Figure 2. In general, blactx-m genes were the predomin-
ant ESBL genes, found in 468 of 486 (96.3%) ESBL-Ec isolates.
A total of eight subtypes of blacrx.m genes were detected.
However, the distribution of blactx-m gene variants across chicken
and human isolates was different. blactx_u-ss was identified as the
most common ESBL-encoding gene in chicken isolates (32 of 43,
74.4% versus 60 of 443, 13.5% in human isolates, P< 0.001, ),
whereas blactyx.m-27 was the most prevalent in human isolates
(208 of 443, 47.0% versus 3 of 43, 7.0% in chicken isolates;
P <0.001, x?). Co-carriage of more than one B-lactamase gene ina
single isolate was observed in 312 of 486 (64.2%) isolates.

The distribution of other antimicrobial resistance genes in ESBL-
Ecisolated from farmers, rural individuals and urban individuals is
shown in Table S3. The discriminant analysis of principal compo-
nents of antimicrobial resistance gene profiles, including all
detected antimicrobial resistance genes, indicated similarity be-
tween isolates from human sources (Figure 3). Isolates from chick-
ens exhibited profiles that were overall distinct from those from
the human groups. However, ESBL-Ec in the urban population was
most distinct and the antimicrobial resistance gene profiles of the
chicken isolates were closer to the rural and farmer isolates than
toisolates from the urban population.

Plasmid incompatibility groups

Atotal of 29 plasmid incompatibility groups were identified by WGS.
Atotal of 19 of 29 (65.5%) plasmid incompatibility groups were pre-
sented in ESBL-Ec isolated from both humans and chickens
(Figure 4). The most common plasmid incompatibility groups across
all 486 ESBL-Ec isolates were IncFIA, IncFII, IncFI, ColBS512, IncI1l
and IncHI2A (Figure 4). However, the distribution of plasmid incom-
patibility groups across chicken and human isolates was different.
IncFIA, IncFII, IncFI and ColBS512 were the more common plasmid
replicons in human isolates, whereas plasmid replicons Col156,
IncHI2A, IncQ1 and IncU were more prevalent in chicken isolates
(P<0.05).

Characteristics of ESBL-Ec isolated from chickens and
farmers on the same farm

On 16 of 204 farms (7.8%; 95% CI = 4.7%-12.7%) ESBL-Ec was
detected phenotypically in both the farmers and their chickens on
the same farm. WGS revealed that in three farms (1.5%; 95%
(I = 0.3%-4.6%), ESBL genes of ESBL-Ec isolated from the farmers

Table 2. Multivariate analysis of risk factors associated with faecal colonization with ESBL-Ec in human individuals (N = 510) in southern Vietnam,

2012-13

Variable No. tested No. ESBL-Ec positive OR (95% CI) Pvalue

Participant group
rural person® 204 101 2.04(1.32-3.15) 0.001
urban person® 102 39 1.40 (0.84-2.33) 0.192
farmer 204 65 referent

Use of any antimicrobial drugs® 34 18 2.52(1.08-5.87) 0.033

Intercept: —0.87 (SEM + 0.165).
“Not involved in chicken farming.
®During the month prior to the study visit.
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Figure 1. Circular maximume-likelihood core-gene phylogenetic tree of ESBL-Ec isolated from chickens and humans in Vietnam. Phylogenetic tree
was reconstructed based on 230 791 SNPs in the core genome of 486 ESBL-Ec isolates. Inner ring designates the host of the isolates. Middle ring des-
ignates different phylogroups. Outer ring designates sequence clusters identified by hierBAPS.

and their chickens were identical (farms 3, 11 and 16; Table 3).
However, the sequence of single genes provides very limited tem-
poral resolution as even identical single genes can share a long
time back to the last common ancestor. We detected identical STs
among ESBL-Ec between chicken and farmer isolates in only
one farm (farm 11, Table 3). The same plasmid replicon types
were observed in this pair of isolates (IncFIB and IncR),
although again, temporal resolution is limited with this analysis.
The isolates also had similar core gene sequences, with only one
pairwise SNP distance based on core gene alignment, indicating
potential recent sharing of ESBL-Ec between the chickens and
farmer on that farm.

Discussion

We showed evidence that the contribution of non-intensive chick-
en farming to ESBL-Ec colonization in occupationally exposed
human individuals is very limited in southern Vietnam. Although
this study was performed in a non-intensive farming setting, our
findings are concordant with recently published studies from
Europe.t!?

The prevalence of colonization with ESBL-Ec in chicken farms in
Vietnam was 20.0% (95% CI 10.8%-29.1%). This prevalence is
relatively low compared with the prevalence of ESBL-Ec coloniza-
tion in chicken farms in European countries, which can range
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Figure 2. Distribution of B-lactamase genes in 486 ESBL-Ec isolated from chickens and humans in Vietnam.
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Figure 3. Discriminant analysis of principal components of genotypic antimicrobial resistance profiles of 486 ESBL-Ec isolated from chickens and

humans in Vietnam.
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Table 3. Comparison of ESBL-Ec isolated from farmer and their chickens on the same farm

Farm Subject ST Plasmid replicons Acquired resistance genes

1 farmer 38 IncFI blactx-m-27, aadA5, mph(A), strA, strB, sul2, tet(A)
farmer 38 IncFI blactx-m-27, aadA5, mph(A), strA, strB, sul2, tet(A)
chicken 156 IncHI2, IncHI2A, IncN blacrx-m-ss, aac(3)-I1, aadA2, aph(3')-I, blarem-1, dfrA12, dfrAl4,

[nu(F), mcr-1, mph(A), strA, strB, sul2, sul3, tet(A)
chicken 156 ColBS512, IncHI2, IncHI2A, IncN  blactx-m-ss, aac(3)-11, aadA2, aph(3')-1, blatem-1, dfrA12, dfrA14,
[nu(F), mcr-1, mph(A), strA, strB, sul2, sul3, tet(A)

2 chicken 206 IncFII, IncN blacrx-m-ss, gnrS, aadA2, blarem-1, cmlA1, dfrA12, fosA6, sul3, tet(A)
farmer 131 Col156, IncFIA, IncFII, IncI1 blactx-m-14, aac(3)-II, aadA>5, blatgm-1, mph(A), strA, strB, sul2, tet(A)

3 chicken 7160 not detected blactx-m-ss, gnrs, tet(A)
farmer 155 IncHI2, IncHI2A blacrx-m-ss, gnrS, aac(3)-11, aadA5, aph(3')-1, blatgm-1, dfrA14, Inu(F),

strA, strB, sul2, sul3, tet(A)
farmer 155 IncFIB, IncHI2, IncHI2A blactx-m-ss, gnrS, aac(3)-1I, aph(3’)-1, blarem-1, dfrA14, Inu(F), strA,
strB, sul2, sul3, tet(A)

4 chicken 617 IncFII, IncQ1, IncR blacrx-m-ss, aac(3)-1I, aadA2, aph(3')-1, aph(3')-IIa, cmlA1, dfrA12,

fosA6, sul3
chicken 156 not detected blacrx-m-ss, aac(3)-I1, aac(6’)-1b-cr, blarem-1, catAl, catB3, dfrAl,
strA, strB, sul2, tet(A), tet(B)
chicken 7160 IncY blactx-m-10s, aac(3)-1I, aadA2, aph(3’)-1, blatem-1, StrA, strB, sul2, sul3,
tet(A)
farmer 38 IncFIA, IncFIL_p blactx-m-27, aadA5, blargm-1, erm(B), mph(A), -strA, strB, sul2, tet(A)
farmer 38 IncFIA, IncFIL_p blactx-m-27, aadA5, blargm-1, erm(B), mph(A), -strA, strB, sul2, tet(A)
farmer 101 IncFI blactx-m-27, aadA2, aadA5, blatenm-1, cmlA1, erm(B), mcr-1, mph(A)

5 chicken 349 not detected blacrx-m-ss, aac(3)-I1, dfrA14, Inu(F), sul3, tet(A)
farmer 1163 IncFIA blactx-m-27, aadA5, blarem-1, erm(B), mph(A), tet(B
farmer 1163 IncFIA blactx-m-27, aadA5, blarem-1, erm(B), mph(A), tet(B)
farmer 1163 IncFIA blactx-m-27, aadA5, blarem-1, erm(B), mph(A), tet(B)
farmer 1193 Col156, ColBS512, ColpVC, IncFIA,  blactx-m-15, aac(3)-11, aadA5, blatgm-1, mph(A), strA, strB, sul2, tet(A)

Incl1

6 chicken 448 not detected blacrx-m-ss, aac(3)-I1, dfrA14, sul3, tet(A)
farmer 131 IncFI blactx-m-24, aac(3)-II, aadA5, blagm-1, mph(A), strA, strB, sul2, tet(A)

7 chicken 457 not detected blacrx-m-27, aac(3)-I1, aadA2, aph(3')-I, blargm-1, cmlA1, dfrA14,

erm(B), strA, strB, sul2, sul3

chicken 457 not detected blacrx-m-27, aac(3)-11, aadA2, aph(3')-1, blargm-1, cmlA1, dfrA14,
erm(B), strA, strB, sul2, sul3

farmer 394 IncFI, Incll blactx-m-15, blaTem1

farmer 394 IncFI, Incll blacrx-m-1s, blatem-

8 chicken 7179 not detected blacrx-m-14, aac(3)-I1, aph(3')-1, blatem-1, dfrAl4, sul2, sul3, tet(A)
farmer 31 IncFIB, IncFII, IncI1 blactx-m-27, aac(3)-I1, aadA5, blargm-1, catAl, erm(B), mph(A), tet(A)
farmer 517 IncFI aac(3)-11, aadA5, blarem-1, mph(A)
farmer 31 IncFIB, IncFII, IncI1 blactx-m-27, aac(3)-I1, aadA5, blargm-1, catA1, erm(B), mph(A), tet(A)
farmer 31 IncFIB, IncFII, IncI1 blactx-m-27, aac(3)-II, aadA5, blargm-1, catAl, erm(B), mph(A), tet(A)

9 chicken 101 Incl1, IncR blacrx-m-ss, gnrsS, aac(3)-11, aph(3’)-I, blarem-1, dfrA14, Inu(F), mcr-1,

sul2, sul3, tet(A)

chicken 101 Incl1, IncR blacrx-m-ss, gnrsS, aac(3)-I1, aph(3')-1, blatem-1, dfrA14, Inu(F), mcr-1,
sul2, sul3, tet(A)

farmer 7193 IncFI blacrx-m-27, aadA2, dfrA12, erm(B), mph(A), strA, strB, sul2, tet(A)

10 chicken 6823 IncFI aadA5, blarem-1, erm(B), mph(A), strA, strB, sul2, tet(A)
chicken 6823 IncFI aadA>5, blarem-1, erm(B), mph(A), strA, strB, sul2, tet(A)
farmer 1193 ColBS512, IncFIA, IncI1 blactx-m-15, aadA5, blarem-1, mph(A), strA, strB, sul2, tet(A)
farmer 1193 ColBS512, IncFIA, IncI1 blactx-m-15, aadA5, blarem-1, mph(A), strA, strB, sul2, tet(A)

11 chicken 226 IncFIB, IncR blacrx-m-es, aac(3)-II, aadA2, cmlA1, dfrA12, strA, strB, sul3, tet(A)
farmer 226 IncFIB, IncR blacrx-m-es, aac(3)-1I, aadA2, cmlA1, dfrA12, strA, strB, sul3, tet(A)

Continued
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Table 3. Continued

Farm Subject ST Plasmid replicons Acquired resistance genes
farmer unknown Col8282, ColE10, ColBS512, blactx-m-es, gnrS, aac(3)-1I, aadA2, aadA5, aph(3')-1, blatem-1, cmlAl,
ColMP18, ColpVC, IncFI, IncFIB, dfrA12, dfrAl4, strA, strB, sul3, tet(A)
IncQ1, IncR, IncW
farmer 226 IncFIB, IncR blacrx-m-es, aac(3)-1I, aadA2, cmlA1, dfrA12, strA, strB, sul3, tet(A)
12 chicken 746 not detected aadA2, cmlAl, dfrA12, sul2, sul3, tet(A)
farmer 69 Col8282 blacrx-m-27, aadA5, erm(B), mph(A), strA, strB, sul2, tet(A)
farmer 69 Col8282 blactx-m-27, aadA5, erm(B), mph(A), strA, strB, sul2, tet(A)
farmer 69 Col8282 blactx-m-27, aadA5, erm(B), mph(A), strA, strB, sul2, tet(A)
13 farmer 131 not detected blactx-m-1s, aac(3)-I1, aac(6’)-1b-cr, aadA5, mph(A), tet(A)
chicken 10 IncA C aadB1, blarem-1, catB3, dfrA1, strA, strB, sul2, tet(A)
14 chicken 156 not detected blacrx-m-ss, aac(3)-I1, aph(3')-I, blatem-1, dfrA14, Inu(F),
mcr-1, sul3, tet(A)
farmer 10 ColBS512, Incl1 blacrx-m-1s, blarem-1, dfrA1, dfrAl4, mph(A), sul2, tet(A)
farmer 10 ColBS512, IncI1 blacrx-m-1s, blargm-1, dfrA1, dfrAl4, mph(A), sul2, tet(A)
farmer 10 ColBS512, IncI1 blacrx-m-1s, blarem-1, dfrAl, dfrA14, mph(A), sul2, tet(A)
farmer 10 ColBS512, Incl1 blacrx-m-1s, blarem-1, dfrA1, dfrA14, mph(A), sul2, tet(A)
farmer 10 ColBS512, Incl1 blacrx-m-1s, blarem-1, dfrA1, dfrA14, mph(A), sul2, tet(A)
15 chicken 7200 IncHI2, IncHI2A, IncN blactx-m-ss, gnrS, aac(3)-11, aph(3')-I, blarem-215, dfrA14,
[nu(F), mph(A), strA, strB, sul2, sul3
farmer 226 IncFI, IncFII, InclI1 blactx-m-27, erm(B), mph(A)
farmer 226 IncFI, IncFII, InclI1 blactx-m-27, erm(B), mph(A)
16 chicken 155 IncFIA, IncFIB, IncY blactx-m-ss, aac(3)-11, aadA2, aadA5, aph(3')-1, aph(4)-Ia, blarem-219,
cmlA1, dfrA12, dfrA14, Inu(F), mph(A), strA, strB, sul2, sul3, tet(A)
chicken 162 IncFIA, IncY blactx-m-ss, aac(3)-1I, aadA2, aadA>5, aph(4)-Ia, blaenm-1, mph(A),
StrA, strB, sul2, sul3, tet(A)
farmer 410 not detected blacrx-m-ss, aac(3)-I1, aph(3')-1, blatem-1, dfrA14, strA, strB, sul2,
sul3, tet(A)

Underlining indicates that isolates with identical ESBL genes were detected in both the farmer and their chickens on the same farm.

between 40% and 100%.°*3 Although the use of third-
generation cephalosporins in ovo or in day-old chicks is a probable
explanation for the higher prevalence of faecal colonization with
ESBL-Ec in industrial chicken farms in these studies in Europe,®
such data are not available for Vietnam. Although we found veter-
inary drugs for chicken usage that contain cephalosporins in a vet-
erinary drug store survey (data not shown), cephalosporin-
containing products were not found in the studied chicken farms
using the medicine cabinet assessment.'® Given the poor biosecur-
ity on the studied chicken farms, ESBL-Ec from other common
sources in the farm environment could potentially pass to the
chickens as has been demonstrated previously.?” In addition, since
antimicrobials, such as tetracyclines, streptomycin and sulphona-
mides were commonly used on these chicken farms,*> another
plausible explanation for the presence of ESBL-Ec is the co-
selection pressure exerted through the use of other classes of anti-
microbials.*® However, we should interpret these comparisons
with caution because the data were obtained in intensive farming
settings in Europe as opposed to the household and small-scale
farm settings in Vietnam, and used different sampling methods.

In contrast, the prevalence of ESBL-Ec colonization in rural and
urban individuals in this study was much higher than reported in
Europe® but was similar to the figures reported in the community
in other Asian countries.“%*! High ESBL-Ec colonization prevalence

is probably the consequence of uncontrolled and high human
usage of antimicrobial drugs in the community."” Indeed, al-
though exposure to non-intensive chicken farming did not increase
the risk of colonization with ESBL-Ec in humans, we observed an
association between human antimicrobial use during the previous
month and ESBL-Ec colonization, in line with previous publications
in which usage of any class of antimicrobials was identified as one
of the risk factors associated with ESBL-Ec colonization.*?

The diversity of ESBL-Ec in our study was consistent with previ-
ous studies.**>** Although genetically diverse, ST131, ST648, ST38,
ST10 and ST69 were the predominant STs. It is interesting to note
that these worldwide circulating STs were only detected in human
ESBL-Ec isolates, except for one ST10 isolate, which was of chicken
origin. In addition, among 204 studied farms, we only detected
one pair of chicken-farmer ESBL-Ec isolates on the same farm with
identical STs and these had only one pairwise SNP distance based
on core gene alignment. These findings suggest a low likelihood
that E. coli has been recently shared between chickens and
humans. The above-mentioned pair of isolates also shared identi-
cal plasmid replicons indicating that the dissemination of ESBL
genes was most likely due to sharing of the strain together with
the plasmid, rather than the plasmid transferring independently of
its host strain. Although the frequency of bacterial and/or mobile
genetic elements sharing was low (<1.0%), given the high number
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Figure 4. Distribution of plasmid replicons in 486 ESBL-Ec isolated from chickens and humans in Vietnam.

of household chicken farms in Vietnam (~7 million), the cumula-
tive burden of exchange of antimicrobial-resistant bacteria and/or
their resistance determinants between humans and chickens in
the community should not be underestimated.

Although we were not able to identify any carbapenemase-
encoding genes in our ESBL-Ec collection, the percentage of iso-
lates that carried the mcr-1 gene was 4.3% (21 of 486 isolates).
Although the co-carriage of ESBL and mcr-1 in ESBL-Ec was
detected in both reservoirs, the proportion was significantly higher
in chicken isolates than human isolates (25.6% versus 2.3%, re-
spectively). This adds to the argument that the isolates are not epi-
demiologically related, as colistin is used only in poultry and not in
humans. The data still suggest an alarming trend and given the
common presence of ESBL and mcr-1 genes in E. coliisolated from
the community in Vietnam and elsewhere,*®4>“® it is necessary to
monitor the acquisition and subsequent transmission of an add-
itional carbapenemase-encoding gene in ESBL-Ec to protect
human health.

ESBL-Ec isolates from chickens and humans were not only dif-
ferent in the distribution of ESBL genes but also different in the dis-
tribution of plasmid replicons. The findings suggest that different
plasmids are potentially circulating in the different host popula-
tions, concordant with findings from previous studies.*’*®

We are aware of the limitations of a cross-sectional study de-
sign, which precludes any inferences on the dynamics of ESBL-Ec
sharing between humans and chickens in Vietnam. In addition,
the number of isolates from chickens available for WGS was
smaller than expected owing to the relatively low prevalence
ESBL-Ec colonization in chicken farms. This could have had an im-
portant impact on the detection of transmission events where
some of them could be missed.*® Moreover, we were unable to as-
semble the plasmid sequences with short read data to infer further
the plasmid sequence diversity and compare plasmid distribution
between ESBL-Ec from different hosts. In addition, we were unable
to identify any known ESBL gene in 15 of 486 ESBL-Ec isolates. As
this phenomenon was also described in previous studies,”®°* we
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have re-checked the phenotype of these isolates and confirmed
that 6 of 15 isolates were resistant to third-generation cephalo-
sporins. The remaining nine isolates were susceptible potentially
through the loss of ESBL genes/plasmids.”®>? We have removed
these nine E. coli isolates from the data set and repeated our anal-
yses to ensure that we did not include any ESBL-negative isolates
in our prevalence and risk factor analyses. After the analyses, the
key messages of the study remained unchanged. These results are
presented in Tables S4 and S5. Despite these limitations, this study
provides a comprehensive view of the contribution of non-
intensive chicken farming to ESBL-Ec colonization in humans in
Vietnam where chicken farms and healthy human populations
with spatial and temporal association were sampled.
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