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Abstract

We simulated epidemic projections of a potential COVID-19 outbreak in a residential univer-

sity population in the United States under varying combinations of asymptomatic tests (5%

to 33% per day), transmission rates (2.5% to 14%), and contact rates (1 to 25), to identify

the contact rate threshold that, if exceeded, would lead to exponential growth in infections.

Using this, we extracted contact rate thresholds among non-essential workers, population

size thresholds in the absence of vaccines, and vaccine coverage thresholds. We further

stream-lined our analyses to transmission rates of 5 to 8%, to correspond to the reported

levels of face-mask-use/physical-distancing during the 2020 pandemic. Our results suggest

that, in the absence of vaccines, testing alone without reducing population size would not be

sufficient to control an outbreak. If the population size is lowered to 34% (or 44%) of the

actual population size to maintain contact rates at 4 (or 7) among non-essential workers,

mass tests at 25% (or 33%) per day would help control an outbreak. With the availability of

vaccines, the campus can be kept at full population provided at least 95% are vaccinated. If

vaccines are partially available such that the coverage is lower than 95%, keeping at full

population would require asymptomatic testing, either mass tests at 25% per day if vaccine

coverage is at 63–79%, or mass tests at 33% per day if vaccine coverage is at 53–68%. If

vaccine coverage is below 53%, to control an outbreak, in addition to mass tests at 33% per

day, it would also require lowering the population size to 90%, 75%, and 60%, if vaccine cov-

erage is at 38–53%, 23–38%, and below 23%, respectively. Threshold estimates from this

study, interpolated over the range of transmission rates, can collectively help inform campus

level preparedness plans for adoption of face mask/physical-distancing, testing, remote

instructions, and personnel scheduling, during non-availability or partial-availability of vac-

cines, in the event of SARS-Cov2-type disease outbreaks.
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Introduction

The COVID-19 pandemic caused by the SARS-CoV-2 virus has caused significant disease and

economic burdens since its first outbreak in December 2019. Because of the absence of an

effective vaccine, as of June 2020 at the time of this study and since March 2020, the main

intervention for the prevention of COVID-19 transmissions had been to reduce contacts

between people through lockdowns of non-essential organizations and services [1]. However,

lockdowns are a threat to the economic stability of a nation as seen by the unprecedented rise

in unemployment rates [2, 3]. Therefore, while lockdowns are a good short-term strategy, for a

long-term strategy, or until a vaccine becomes widely available, it has become necessary to

identify alternate strategies and lifestyles that control the disease burden while minimizing the

economic burden. Interventions that are effective include the use of face masks, physical dis-

tancing between persons at a recommended 6ft, and contact tracing and testing or mass testing

to enable early diagnosis in the asymptomatic stage of infection [4]. However, removal of lock-

downs should be strictly accompanied by a reopening plan that rapidly and efficiently enables

the adoption of the above interventions to avoid an epidemic rebound. In addition to public

health agencies, all members of a community, in both public and private sectors, play a key

role in the development and implementation of a reopening plan that is most suited for their

organization [5]. Among these sectors, universities and colleges bear a special burden to

develop a reopening plan that include changes to a range of activities related to teaching,

research, dining, housing, and extra-curricular activities.

We developed a compartmental differential equations model to simulate epidemic projec-

tions of a potential COVID-19 outbreak in a population of 38,000 individuals, which is repre-

sentative of undergraduate and graduate students, faculty, and staff in a typical residential

university in the United States. We simulated epidemic projections of potential outbreaks

under varying combinations of contact tracing and testing, and mass testing, to identify com-

binations that would reduce the effective reproduction numberRe to a value below the epi-

demic threshold of 1. Re is directly proportional to the duration of infectiousness, transmission

rate (the probability of transmission per contact per day, representing the infectiousness of the

virus), and contact rate (the number of contacts per person per day) [6]. Asymptomatic testing

through trace and test or mass tests lead to diagnosis in the asymptomatic phase of the infec-

tion, and thus, if persons diagnosed with infection are successfully quarantined, it reduces the

duration of exposure [7–9] and thus reduce Re. Physical distancing by the recommended 3 or

6ft and use of face masks can reduce transmission rate, and thus reduce Re [10, 11]. Reducing

contact rate such as through transitioning to remote work to reduce population density on

campus directly reduces Re. Thus, different types of interventions help reduce each of these

components of Re. Here, we evaluated different combinations of test rates, transmission rates,

and contact rates that help reduce Re to below 1 to identify minimum levels of testing, physical

distancing and face mask use, and population density necessary for effective control of an

outbreak.

While it is generally known that increasing contact tracing and testing is necessary, studies

evaluating testing at an organizational level, such as university, were only recently emerging at

the time of this study in June 2020. One study that analyzed contact tracing in the general pop-

ulations estimated that reducing R0 of 1.5 to an Re of 1 requires more than 20% of contacts

traced, reducing R0 of 2.5 to an Re of 1 requires more than 80% of contacts traced, and reduc-

ing R0 of 3.5 to an Re of 1 requires more than 100% of contacts traced [12]. A modeling study

applied to the Boston area [13] estimated that the best way-out scenario is a Lift and Enhanced

Testing (LET) with 50% detection and 40% of contacts traced. According to this, the number

of individuals that need to be traced per 1000 persons is below 0.1 under partial reopening and
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below 0.15 under total reopening. Models for a university were only recently emerging at the

time of this study in June 2020 [14–17], but typically, most studies combine transmission rate

and contact rate as one metric in the evaluation of testing.

In this study, instead of using a product of transmission rate and contact rate as one metric

as typically done, we evaluated these separately, due to the following reasons. First, it helps sys-

tematically evaluate different interventions considering that different types of interventions

help reduce each of the three components of Re, testing reduces duration of exposed infectious

stage, transitioning to remote classes reduce contact rate, vaccinations reduce the number of

contacts who are potential disease carriers, and face mask use and 6ft distancing reduces trans-

mission rate. Second, while adoption of each of these decisions are made at an organizational

level, adherence and feasibility of face mask and 6ft distancing are highly influenced by indi-

vidual behaviors and thus have a larger range of uncertainty. Third, while physical distancing

and use of face masks can reduce transmission rate, the baseline transmission rate and

expected reductions could vary based on multiple factors such as indoor vs. outdoor settings

and ventilation, proper use and type of face mask [10, 11, 18, 19], mode of transmission [20–

23], and viral load in the index person [8, 24]. Fourth, though we specifically focus this study

on COVID-19 caused by the original SARS-CoV-2 virus, studying varying levels of transmis-

sion rates could help extrapolate findings to new variants or future outbreaks of viral respira-

tory infections with similar disease progressions [24], especially in the early stages when

specific data is lacking but when the same non-pharmaceutical interventions, such as face

masks, physical distancing, remote instructions, and testing, are suitable options.

To systematically inform these analyses, we first evaluated different combinations of trace

and test rate, mass test rate, and transmission rate for a range of contact rates, to identify the

threshold contact rates that maintain infection cases below certain set levels of tolerance. We

then used the contact rate thresholds to identify the population size thresholds, i.e., the maxi-

mum population size on campus, which could help inform decisions related to campus activi-

ties such as the fraction of classes to transition to remote. We also used the contact rate

thresholds to identify the vaccine coverage thresholds for a post-vaccine era, i.e., the vaccine

coverage necessary for a campus to return to a normal population size. We also identify, under

each intervention combination, the number of trace and tests and quarantines. These metrics

could collectively help inform development of a preparedness plan for reopening a university

during the COVID-19 pandemic or to set protocols in the event of future outbreaks.

Methodology

Simulation methodology

We developed a compartmental model for simulating epidemic projections over time. The epi-

demiological flow diagram for the compartmental model is depicted in Fig 1A. Each box is an

epidemiological state, and each arrow represents a transition from one state to another. Note,

each compartment is further split by age and gender, but for clarity of notations, we do not

include it in the equations below.

Let πt = [S, L, E, I, QL, QE, QI, H, R, D] be a vector, with each element representing the

number of people in a compartment at time t, specifically,

S = the number of susceptible individuals at time t,
L = the number of exposed, but asymptomatic and not infectious individuals (latent stage;

also, the non-infectious phase of incubation stage) at time t,
E = the number of asymptomatic or pre-symptomatically infectious individuals (infectious

phase of the incubation stage) at time t,
I = the number of infectious individuals (symptomatic and infectious stage) at time t,
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QL = the number of exposed, asymptomatic and not infectious (latent) and quarantined

individuals (diagnosed) at time t,
QE = the number of asymptomatic or pre-symptomatically infectious and quarantined indi-

viduals (diagnosed) at time t,
QI = the number of infectious and quarantined individuals (diagnosed) at time t,
H = the number of hospitalized individuals at time t,
R = the number of recovered individuals at time t, and

D = the number of deaths at time t.
Epidemic states L, E, and I were formulated such that each state represented a distinct

phase along the natural disease progression (see Fig 1B), and they collectively included all

phases. Over time, persons from S can transition to L, E, and I, and upon diagnoses, transition

to QL, QE, or QI, and further toH, R, or D, (transitions represented by arrows in Fig 1A) as dis-

cussed below.

Let,

p = transmission rate (probability of transmission per contact per day),

c = contact rate (number of contacts per person per day),

N = total population who are alive,

aB = symptom-based testing rate,

aC,t = rate of testing through contact tracing at time t,

aU,t = rate of testing through mass testing at time t,

ρ = test sensitivity for asymptomatic testing (through mass tests or trace and test),

daysL = duration in latent period,

daysincub = duration in incubation period,

Fig 1. Overview of the extended SEIR compartmental model. (A) Compartmental model flow diagram. (B) Natural

disease progression of SARS-COV-2 virus in infected patients. S = susceptible, L = exposed and not infectious (Latent

stage) (asymptomatic), E = asymptomatic and infectious, I = symptomatic and infectious, QL = exposed and not

infectious (Latent) and Quarantined (diagnosed), QE = asymptomatic and infectious and Quarantined (diagnosed),QI
= Infectious and Quarantined (diagnosed), H = Hospitalized, R = Recovered, and D = Deaths.

https://doi.org/10.1371/journal.pone.0255864.g001
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daysIR = time from onset of symptoms to recovery,

daysQIR = time from diagnosis to recovery,

daysQIH = time from diagnosis to hospitalization,

daysHR = time from hospitalization to recovery,

daysHD = time from hospitalization to death,

prophosp = proportion hospitalized, and

propsevere = proportion of cases that are severe.

Then, we can write the equations for transition rates (arrows in Fig 1A) as follows:

rS;L ¼
pcðEþIÞ
N , which assumes that only infected persons in E and I can transmit, persons in

QE and QI self-quarantine, and persons in L and QL are not infectious.

rL;E ¼
1

daysL

rE;QI ¼
ðpropsevereÞ

daysincub � daysL
, which assumes that only a proportion of cases that are severe (propsevere)

get diagnosed immediately because of exhibition of symptoms, we use the proportion hospital-

ized as a proxy for severe cases; the denominator is based on the assumption that the duration

in state E is equal to the difference between the duration of the incubation period and the

latent period.

rE;I ¼
ð1� propsevereÞ
daysincub � daysL

, which follows from above.

rI;QI ¼ aB, which assumes that under symptom-based testing, only persons who show mod-

erate to severe symptoms get diagnosed and those who show mild symptoms do not.

rQI ;H ¼
prophosp
daysQIH

, for prophosp we use the proportion of persons hospitalized among those diag-

nosed through symptom-based testing.

rL;QL ¼ raU;t þ ð1 � raU;tÞraC;t, which assumes that under the implementation of both

mass testing and contact tracing and testing, persons diagnosed through mass test will not be

tested again on the same day through contact tracing (as our time unit is daily).

rE;QE ¼ raU;t þ ð1 � raU;tÞraC;t , which is similar to above.

rI;R ¼ 1 � aBð Þ raU;t þ 1 � raU;t
� �

raC;t
� �

þ 1

daysIR
, which assumes that persons with mild

cases that did not get diagnosed through symptom-based testing have a chance of getting

tested through additional testing options, and self-quarantine upon diagnosis. Note that we

did not separately model asymptomatic cases but incorporated that into the symptom-based

testing rate (aB) by considering that 35% of cases are mild to no symptoms and thus do not

have a chance of being diagnosed through symptom-based testing.

rQL ;QE ¼
1

daysL

rQE ;QI ¼
½aBð1� propsevereÞþðpropsevereÞ�

daysincub � daysL
, theoretically, rQE ;QI should be the same as rE,I, however, as the

rate of transitioning from QI toH is fixed to fit to the proportion hospitalized under symptom-

based tests, if extensive testing is conducted, the number of persons in QI would increase, thus,

incorrectly inflating the number of persons who are hospitalized; To avoid this, we modified

the equation to consider that the number of persons flowing into QI would be equal to the pro-

portion flowing from I to QI under symptom-based testing.

rQE;R ¼
ð1� ½aBð1� propsevereÞþðprophospÞ�Þ

daysincub � daysL
, which follows from the above equation.

rQI ;R ¼
1 � prophosp
daysQIR
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rH;R ¼
proprecover
daysHR

rH;D ¼
ð1 � proprecoverÞ

daysHD

Note: rs,s is the testing rate (either through mass test or trace and test). We assumed that

susceptible persons go back to the susceptible state after testing, i.e., we did not explicitly track

false positives.

The values and ranges for the above epidemic parameters used in the compartmental simu-

lation model are presented in Table A in S1 Text.

We simulate the epidemic over time using the following system of differential equations

ptþ1 ¼ pt þ ptQt:dt

where, Qt = a matrix of transition rates between states (arrows in Fig 1A), and dt = time-step.

We use a time-unit of per day for the transition rates in Qt and set dt ¼ 1

10
, and thus, the model

simulates every 10th of a day.

The expansion of the system of differential equations are as follows:

Stþ1 ¼ St þ ð� rS;LStÞ dt

Ltþ1 ¼ Lt þ ðrS;LSt � ðrL;E þ rL;QLÞLtÞ dt

Etþ1 ¼ Et þ ðrL;E Lt � ðrE;I þ rE;QE þ rE;QI þ rE;RÞEtÞ dt

Itþ1 ¼ It þ ðrE;IEt � ðrI;QI þ rI;RÞItÞ dt

QL;tþ1 ¼ QL;t þ ðrL;QL Lt � ðrQL ;QEÞQL;tÞ dt

QE;tþ1 ¼ QE;t þ ðrE;QE Et � ðrQE ;QI þ rQE ;RÞQE;tÞ dt

QI;tþ1 ¼ QI;t þ ððrE;QI Et þ rQE ;QI QE;t þ rI;QI ItÞ � ðrQI ;H þ rQI ;RÞQI;tÞ dt

Htþ1 ¼ Ht þ ðrQI ;HQI;t � ðrH;R þ rH;DÞHtÞ dt

Rtþ1 ¼ Rt þ ðrQE ;RQE;t þ rQI ;RQI;t þ rI;RIt þ rH;RHtÞ dt

Dtþ1 ¼ Dt þ rH;DHtdt

We can further expand by substitution of the rate terms with their equations as follows:

Stþ1 ¼ St þ �
pcðEþ IÞ

N

� �

Stdt

Ltþ1 ¼ Lt þ
pcðEþ IÞ

N
St �

1

daysL
þ raU;t þ ð1 � raU;tÞraC;t

� �

Lt

� �

dt
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Etþ1 ¼ Et

þ
1

daysL
Lt �

ð1 � propsevereÞ
daysincub � daysL

þ ðraU;t þ ð1 � raU;tÞraC;tÞ þ
ðpropsevereÞ

daysincub � daysL

� �

Et

� �

dt

Itþ1 ¼ It þ
ð1 � propsevereÞ
daysincub � daysL

Et � aB þ ðraU;t þ ð1 � raU;tÞraC;t þ
1

daysIR
Þ

� �

It

� �

dt

QL;tþ1 ¼ QL;t þ ðraU;t þ ð1 � raU;tÞraC;tÞLt �
1

daysL

� �

QL;t

� �

dt

QE;tþ1 ¼ QE;t

þ ðraU;t þ ð1 � raU;tÞraC;tÞEt �
½aBð1 � propsevereÞ þ ðpropsevereÞ�

daysincub � daysL
þ

1 � prophosp
daysQIR

 !

QE;t

 !

dt

QI;tþ1 ¼ QI;t

þ
ðpropsevereÞ

daysincub � daysL
Et þ

½aBð1 � propsevereÞ þ ðpropsevereÞ�
daysincub � daysL

QE;t þ aBIt �
prophosp
daysQIH

þ
1 � prophosp
daysQIR

 !

QI;t

 !

dt

Htþ1 ¼ Ht þ
prophosp
daysQIH

QI;t �
proprecover
daysHR

þ
ð1 � proprecoverÞ

daysHD

� �

Ht

 !

dt

Rtþ1 ¼ Rt

þ
ð1 � ½aBð1 � propsevereÞ þ ðprophospÞ�Þ

daysincub � daysL
QE;t þ

1 � prophosp
daysQIR

QI;t þ ðraU;t þ 1 � raU;t
� �

raC;t þ
1

daysIR

 !

It

þ
proprecover
daysHR

HtÞ dt

Dtþ1 ¼ Dt þ
ð1 � proprecoverÞ

daysHD
Htdt

Input data assumptions and sources for simulation model

For the rates of natural disease progression, we used estimates from other studies in the litera-

ture. The description of the data, sources, and values (with ranges and medians where applica-

ble) for all parameters are available in the Table A in S1 Text. Briefly, we assumed an

incubation period duration of 5.4 days [25], the first 2.5 days in stage L (not infectious and

asymptomatic) [26], and the remaining 2.9 days in stage E (infectious and asymptomatic). We

assumed about 65% of cases develop medium to severe symptoms [27] and, in the absence of

test and trace or mass test, can be diagnosed through symptom-based testing. We assumed the

remaining 35% of cases show mild to no symptoms and can be diagnosed only through trace

and test, or universal mass test. We assumed an average duration of 3.5 days from the time of

onset of symptoms to hospitalization [28], with the proportion hospitalized varying as a func-

tion of age. For mild cases, we assumed an average duration of 7 days from the time of onset of
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symptoms to recovery [28]. We assumed case fatality rates vary as a function of age and

gender.

Interventions

Mass test and trace and test. We evaluated the following scenarios: mass test only, trace

and test only, delayed trace and test only, combination mass test and trace and test, and combi-

nation mass test and delayed trace and test, each at different rates of testing, as follows. We

evaluated mass testing at rates of 5% 10%, 20%, 25%, and 33% of the population per day,

which is equivalent to testing once every 20 days (5% per day over every 20-day period), 10

days, 5 days, 4 days, and 3 days (33% per day every 3-day period), respectively. We modeled

the rate of trace and test as the inverse of the time from infection to effective isolation of a con-

tact, i.e., the sum of the number of days passed since contact with an individual (as reported by

the index diagnosed person) and the number of days into the future to find, test, and isolate

the infected contact. We chose this definition as each component in this duration can vary sig-

nificantly for every diagnosed person and for each of their contacts. In the case the contact is

never found, the duration would be the full duration of infection. Thus, this definition of trace

and test can be comparable to data that is typically collected. Specifically, the trace and test rate

here should be compared to the average of the inverse of the time from reported contact to

either effective isolation of that contact or maximum infection duration (whichever is the least

value), averaged over all contacts. We evaluated trace and test rates at levels of 10%, 17%, 20%,

25%, 33%, and 50%, equivalent of 10 days, 6 days, 5 days, 4 days, 3 days, and 2 days, respec-

tively, from the time of transmission of infection to effective isolation of that contact. We eval-

uated combinations of mass test and trace and test, by varying mass tests between 5% and 33%

per day and keeping trace and test at 50% as this higher rate of trace and test maybe more feasi-

ble with mass test than symptom-based test only. We assumed trace and test would initiate

within the first 5 cases of diagnosis. Considering there may be delays in setting up a trace and

test system (such as in events of new outbreaks in the future or failure to respond quickly), to

tests its sensitivity, we evaluated scenarios by delaying the initiating of trace and test to after

diagnosis of 20 cases. Thus, the scenarios referred to as ‘trace and test only’ and ‘combination

tests’ refers to initiation of trace and test after first 5 cases of diagnosis. And the scenarios

referred to as ‘delayed trace and test only’ and ‘delayed combination tests’ refers to delaying

initiation of trace and test to after diagnoses of 20 cases. In all scenarios, we applied baseline

symptom-based testing, assumed test results are available within 24 hours, and persons testing

positive self-quarantine for 14-days. For diagnosis in asymptomatic stages, i.e., diagnosis

through trace and test or mass test, we assumed a test sensitivity of 0.9 [29].

Non-pharmaceutical interventions. We evaluated transmission rates (p) of 14% (base-

line), 8% (mid), 5.4% (lower-mid), and 2.5% (lowest). The baseline value of p corresponds to

an average estimate under no interventions (no physical distancing and no face masks) [11,

30]. A transmission rate of 8% corresponds to the expected rates with the use of face masks in

a non-health care setting [11]. Transmission rates of 5.4% and 2.5% correspond to expected

rates under 3ft and 6ft physical distancing, respectively [11] (see Table B in S1 Text). We evalu-

ated contact rates between 1 and 25 (c), we did not differentiate between on-campus and off-

campus contact rates.

Application to a university setting

Demographic data. We used the Fall 2018 student enrollment data from the University of

Massachusetts—Amherst, Amherst, MA, to determine the population size of undergraduate

and graduate students and their age and gender distributions [31]. For faculty and staff, we
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used the age distribution of persons 25 years and older from the Town of Amherst, MA, where

the university is located [32]. To initiate an outbreak, we assumed 4 to 5 infected cases on Day

1, estimated as follows. We assumed that the proportion of incoming students who are infected

would be equal to the prevalence of COVID-19 in Massachusetts (MA) in June 2020. We also

assumed that all incoming students would be tested, and about 10% of infected cases would be

false negatives. Prevalence is unknown, as not all cases are diagnosed and diagnosed cases are

not specifically tracked. Therefore, to estimate prevalence of COVID-19 in MA, we used the

simulation model to determine the ratio of new diagnosis to persons with infection and

applied that ratio to the number of new diagnoses on June 26th in MA. This resulted in about 4

infected cases on day 1 remaining undetected, thus initiating an outbreak. We also assumed

that at the beginning of every week, there would be about 3 to 4 infections from outside, calcu-

lated by assuming that about 10% of the population are likely to mix with the population out-

side the university or travel out of Amherst during weekends and are not tested upon return.

Based on the above, we initialized the model on Day 1 with 4 infected persons in the Latent

stage and added 3 to 4 outside cases to the Latent stage at the beginning of every week. We sim-

ulated the model for a 90-day period to represent the duration of the expected Fall 2020

semester.

Tolerance on the number of infected cases for identifying contact rate

thresholds

We evaluated contact rate thresholds under three levels of epidemic tolerance: relaxed toler-

ance, medium tolerance, and tight tolerance. Relaxed tolerance marked the point beyond

which there was an exponential growth in infections, the maximum number of infections

under this tolerance level was about 170. For medium tolerance, we set the number of infec-

tions to less than 77, and for tight tolerance, we set the number of infections to less than 50.

The latter two cases correspond to maximum infections for a case fatality rate (CFR) of 2%,

which is the reported CFR in the general population for the United States [33]. That is, 1/0.02

gives the 50 cases threshold and 77 is obtained by further dividing that by 65%, which is the

proportion of cases with medium to severe symptoms [27], to account for the remaining 35%

of cases with mild to no symptoms that were likely unreported and thus not included in the

CFR calculation. As the CFR for COVID-19 is much lower in university student aged popula-

tions, the use of the alternative tolerance on the number of infections helps avoid spill-over

effect of a breakout into the community. Also note that, because of our assumptions for the

number of initial cases and cases per week entering the population from outside, the minimum

number of cases over the 90-day period would be 45. Therefore, the tolerance of 50 cases is a

very tight tolerance. For context, one of the indicators CDC uses to categorize community

transmission risk is the number of cases per 100,000 persons during the last 7 days, categoriz-

ing as low, moderate, and substantial to high if there were less than 10, 10–49, and greater than

49 cases, respectively [34]. Converting our tolerance levels to the CDC indicator would trans-

late to 35, 15, and 10 cases for relaxed, medium, and tight tolerances, respectively. If we exclude

the 45 cases from outside, it translates to 25, 6, and 1 cases for relaxed, medium, and tight toler-

ances, respectively.

Population behavioral data

While there was limited data on contact rates specific to university students at the time of this

original study in June 2020, studies conducted since then have generated some (though lim-

ited) data on population behaviors. These data include contact rates and behaviors related to

use of non-pharmaceutical interventions such as face mask and 6 ft physical distancing, mostly
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either self-reported in surveys or estimations made in other modeling studies informed

through university settings. We briefly summarize the data from each study in the Table C in

S1 Text. Some of the surveys were specific to university students in the United States while oth-

ers were either university students in other countries or general populations. Studies on sur-

veys of university students, when partial shutdowns were enforced and universities resorted to

varying levels of remote classes, reported 6 to 8 contacts per person per day [35, 36]. However,

students who self-reported as providing essential services or caring for non-household mem-

bers (~23%) reported an average contact rate of about 14 per person per day [37]. Modeling

studies that estimated contacts among university students for a scenario prior to the pandemic

assume contact rates of 16 to 24 per person per day [38–40]. Using data on face mask use and

physical distancing, specifically originating from three surveys of student and general popula-

tion in the United States [38, 42, 43] and the transmission rates corresponding to these inter-

ventions (summarized in Table C in S1 Text), we calculate the expected transmission rate to be

between 5% and 8%. We use these estimates to further streamline our analyses.

Interpretation of contact rate thresholds: Size of social circle, population

size, and vaccine coverage

We utilize the contact rate thresholds, under the different levels of testing and transmission

rate (face mask use and physical distancing), to identify four additional metrics that would

help inform campus decisions: first, the contact rate threshold among non-essential workers

after accounting for the higher contact rate among essential workers, which would help inform

the size of social circles at the individual level and schedule campus activities; second, the

threshold values for population size on campus as a proportion of the actual population size,

which would help decisions related to the fraction of remote vs. face-to-face classes, on-cam-

pus housing, and other campus activities for the era of pre-vaccine availability; third, for the

era of post-vaccine availability, the threshold values for vaccination coverage for the university

to return to normal (i.e., 100% population size); fourth, the threshold values for population

sizes under varying levels of vaccine coverage, which would help decisions related to campus

activities in the event that vaccines are only partially available that coverage is not at levels suf-

ficient to fully return to normal. All four metrics would be used alongside decisions related to

the level of testing.

The metrics were estimated as follows. Suppose Ĉ is the contact rate threshold, we esti-

mated the first metric as Ĉn ¼ ðĈ � CepeÞ=ð1 � peÞ, where Ĉn is the contact rate threshold

among non-essential workers (we limit 0 � Ĉn � Ĉ), Ce is the contact rate among essential

workers (we assume Ce = 14 [37]), and pe is the proportion of the population who are essential

workers (we assume pe = 23% [37]).

The interpretation of the second, third, and fourth metrics arise from our simplifying

assumption that contact rates are directly proportional to the population density [41], C = c0ρ;

ρ = N/A; where C is the actual contact rate (under regular face-to-face instructions), ρ is the

density, N is the population size, A is the campus area, and c0 is a constant. Further, we assume

that university campuses maintain similar levels of population density under regular work

conditions, i.e., though the population sizes may vary across universities, the campus area also

changes proportionally so that the population density is similar, and thus, the contact rates

under regular work conditions are also similar. Multiple studies reported similar contact rates

of 16 to 24 under regular working conditions supporting this assumption [42, 43]. Thus, if our

estimated contact rate thresholds (say Ĉ) are lower than the actual contact rates of 16 to 24 (C),

given fixed area (A), achieving Ĉ would require reducing the population size (N) proportional
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to the reduction in contact rate, i.e., Ĉ=C ¼ N̂=Nð¼ say p̂Þ, implying that the population size

on campus should be at a maximum of p̂% of its original population size (p̂ ¼ Ĉ=C).

The third metric on interpretation of threshold for vaccination coverage (say V̂ ) follows

from the above assumptions. Achieving a contact rate threshold of Ĉ when universities are

back to regular face-to-face classes, i.e., N̂ ¼ N or p̂ ¼ 1, would require that ð1 � Ĉ=CÞ pro-

portion of the population be effectively vaccinated. More precisely, vaccine coverage should be

at least V̂ ¼ ð1 � ðĈ=CÞÞ=ve, where ve is vaccine efficacy and corresponds to the chance that a

vaccinated individual is fully protected from being infected, and thus, is not a potential disease

carrying contact. Intuitively, this is saying that though the actual contact rate is C, because V̂%

are vaccinated and protected from infection or transmitting, the effective contact rate is Ĉ.

This implies that a threshold contact rate of Ĉ can be achieved, while maintaining p̂ ¼ 1, if

V̂% are vaccinated. The vaccine coverage results presented here were estimated by assuming a

vaccine efficacy of 95%, and thus, in the event that this changes, the vaccine coverage results

should be adjusted by multiplying with 95% and dividing by the new value.

Following from above, the fourth metric considers the fact that if the actual vaccine cover-

age (say V) is less than V̂ , achieving the contact rate threshold (Ĉ) would also require some

reduction in N. Specifically, the population size on campus should be at a maximum of p̂% of

its original population size, with p̂ ¼ 1 � ðð1 � VÞC � ĈÞ=C, derived as follows. We can write

ð1 � VÞC � Ĉ as the number of excess contacts, i.e., the number to reduce after accounting

for the proportion vaccinated ((1−V)C), the proportion of contacts to reduce would then be

ðð1 � VÞC � ĈÞ=C, and finally, applying the same assumptions as in the second metric would

give the equation for p̂. If the vaccination coverage is zero, i.e., V = 0, we would get back

p̂ ¼ Ĉ=C. If V = 1, then p̂ ¼ 1þ Ĉ=C, which implies that even if Ĉ ¼ 0, the campus can fully

open. We bound 0 � p̂ � 1, such that, even if Ĉ > 0 we interpret this as fully back to normal

population size (though it would mathematically imply that the campus can handle a higher

density from an epidemic perspective, e.g., influx from outside).

Thus, to keep within the infection tolerance levels, Ĉ would mark the maximum average

contact rate over the full population, Ĉn the maximum average contact rate for non-essential

workers after accounting for the higher contact rate among essential workers, p̂ the maximum

proportion of the population who should return back to campus (either when V = 0 or

0 < V � V̂ ), and V̂ the minimum vaccine coverage to fully return back to normal (p̂ ¼ 1). As

the above method of estimation of thresholds incorporate the effectiveness of vaccinations, we

can interpret that the interventions, such a testing and use of facemask and social distancing,

would be applied to only the unvaccinated persons.

Identifying feasible intervention combinations

We identify three sets of feasible combination results. For the event that vaccines are unavail-

able, we identify the feasible combinations of testing, contact rate for non-essential workers

(Ĉn), and population size on campus (p̂) that can effectively control an outbreak to below the

tolerance levels. We define feasible combinations as those with Ĉn > 2 in the transmission rate

range of 5% to 8%, which would correspond to the reported use of face mask and physical dis-

tancing among the university population (see ‘Population behavioral data’ above). For the

event that vaccines are partially or fully available, we identify the minimum vaccine coverage

threshold (V̂ ) for the campus to fully return back to normal (p̂ ¼ 1), and if the vaccine cover-

age is below this threshold, the reductions in population size (p̂) necessary to control the
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epidemic to within the tolerance levels. We also identify suitable testing scenarios for reported

levels of face mask use and physical distancing (transmission rate of 5% to 8%), and reported

levels of contact rates under regular face-to-face classes (16 to 24 per day) and remote classes

(6 to 8 per day). We define suitable as those that avoid exponential growth in cases over the

duration of a semester. For the above three sets of combination scenarios, we also present

results under the full range of transmission rates in the S1–S3 Tables, which could be useful in

the event of change in transmission rates such as emergence of new virus variants.

Results

When vaccines are unavailable (V = 0%), there is no single intervention that can effectively

control an outbreak. However, there are multiple feasible combinations of testing, contact rate

for non-essential workers (Ĉn), and population size on campus (p̂) that can be implemented to

effectively control an outbreak to keep cases below the relaxed to medium tolerance levels,

though none to keep cases below the tight tolerance level (Table 1). Examples of feasible com-

binations under the relaxed tolerance level include: mass tests only at 25% per day, contact rate

for non-essential workers at 2 to 6 per day, and campus population size at 26% to 42%; or trace

and test only at 33%, contact rate for non-essential workers at 4 to 8 per day, and campus pop-

ulation size at 31% to 47% (see full list in Table 1). Under the medium tolerance level, only sce-

narios with combination tests were feasible, examples include: 5% mass test, 50% trace and

test, contact rate for non-essential workers at 2 to 5 per day, and campus population size at

26% to 36%; or 33% mass test, 50% trace and test, contact rate for non-essential workers at 8 to

14 per day, and campus population size at 47% to 73% (see full list in Table 1). Note: the range

in population size results correspond to mid-points of the range for contact rate (C) of 16 and

24 in Table 1.

The corresponding peak numbers of trace and tests per day (per 10,000 persons) in the

above feasible scenarios were at a reasonably manageable level. The relaxed tolerance level had

a higher value (14 to 55 per day) than the medium tolerance level (3 to 11 per day) considering

the population size on campus were lower in the latter case because of the tighter tolerance

(Table 1). The peak number of quarantines per day (per 10,000 persons) for the above feasible

scenarios also seem manageable. As with above, the relaxed tolerance level had a higher value

(6 to 25 per day) than the medium tolerance level (5 to 6 per day). Combinations of testing,

contact rate, and population size for the full range of transmission rates evaluated are pre-

sented in S1 Table.

When vaccines become partially or fully available, to keep the population size on campus at

100% (p̂ ¼ 1), the level of testing necessary to effectively control an outbreak would depend

on the vaccine coverage in the population (Table 2). To keep infection cases within the relaxed

tolerance level, implementing symptomatic-testing-only will be sufficient if at least 95% (V̂ ) of

the population are vaccinated (Table 2). With the addition of mass tests only, 5%, 10%, 20%,

25%, and 33% mass tests per day would be sufficient if at least 89% to 95%, 84% to 89%, 74% to

84%, 63% to 79%, and 53% to 68% (V̂ ) of the population are vaccinated (Table 2), respectively,

the range corresponding to transmission rate of 5% to 8%, i.e., the unvaccinated continue to

use face masks and maintain physical distancing at current compliance levels.

If vaccine coverage (V) is below 53% (the threshold noted above), it would be necessary to

also reduce the population size (Table 2). If vaccine coverage (V) is between 38% and 53%,

23% and 38%, or 8% and 23%, in addition to mass tests at 33% per day, it would be necessary

to maintain a population size threshold (p̂) of at most 90%, 75%, or 60% on average, respec-

tively, (Table 2) and the unvaccinated continue to use face masks and maintain physical
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distancing at current compliance levels. Note: the population size threshold noted here is the

average of the values reported for contact rate (C) of 16 and 24 in Table 2.

Instead of adding mass tests only, addition of trace and tests only to symptom-based testing

at the lowest rate of 10% (or highest rate of 50%) will also be sufficient to keep the population

Table 1. Feasible combinations ⁋ of testing, contact rate, and population size on campus for effective control of a disease outbreak in the absence of a vaccine.

Tolerance Testing Contact rate threshold (per

day)† for non-essential

workers‡

Population size† (if

regular contact rate is

16)

Population size† (if

regular contact rate is

24)

Peak trace and tests

per day (per 10,000

persons)

Peak quarantine per

day (per 10,000

persons)

Relaxed

tolerance

S+25%U 2–6 31% - 50% 21% - 33% 0–0 6–7

S+33%U 5–9 44% - 63% 29% - 42% 0–0 7–7

S+33%T 4–8 38% - 56% 25% - 38% 14–21 18–18

S+50%T 6–11 50% - 75% 33% - 50% 36–55 22–23

S+5%U+50%T 10–16 69% - 100% 46% - 67% 33–48 20–20

S+10%U+50%T 11–18 75% - 100% 50% - 75% 24–35 15–15

S+20%U+50%T 15–22 94% - 100% 63% - 92% 16–25 13–13

S+25%U+50%T 16–24 100% - 100% 67% - 100% 14–20 13–12

S+33%U+50%T 18–25 100% - 100% 75% - 100% 12–15 10–9

S+5%U+50%dT 4–9 38% - 63% 25% - 42% 36–55 21–25

S+10%U+50%

dT

6–13 50% - 81% 33% - 54% 32–63 21–25

S+20%U+50%

dT

11–18 75% - 100% 50% - 75% 36–54 21–21

S+25%U+50%

dT

13–19 81% - 100% 54% - 79% 28–41 19–18

S+33%U+50%

dT

15–23 94% - 100% 63% - 96% 21–33 16–18

Medium

tolerance

S+5%U+50%T 2–5 31% - 44% 21% - 29% 8–9 6–6

S+10%U+50%T 4–8 38% - 56% 25% - 38% 7–11 6–6

S+20%U+50%T 5–10 44% - 69% 29% - 46% 4–7 5–5

S+25%U+50%T 6–11 50% - 75% 33% - 50% 4–6 4–5

S+33%U+50%T 8–14 56% - 88% 38% - 58% 3–6 5–5

S+20%U+50%

dT

2–5 31% - 44% 21% - 29% 4–4 6–6

S+25%U+50%

dT

4–6 38% - 50% 25% - 33% 4–4 6–5

S+33%U+50%

dT

5–9 44% - 63% 29% - 42% 3–4 6–5

Tight

tolerance

No scenarios

were feasible ⁋

Relaxed tolerance: Less than 1 death or 170 cases of infection. This point also marks the point beyond which there was an exponential growth in infections in the

simulated runs.

Medium tolerance: Less than 77 cases of infections. Estimated as 1/CFR /%reported cases. We assumed a case fatality rate (CFR) of 2% in the general population in the

US [33]; We assumed that 65% of infected cases are reported, which is the proportion showing medium to severe symptoms [27].

Tight tolerance: Less than 50 cases of infection. Estimated as 1/CFR. We assumed a case fatality rate (CFR) of 2% in the general population in the US [33].

S: symptomatic testing, U: Mass test, T: trace and test, dT: delayed trace and test.

⁋ We defined a testing scenario as feasible if estimated contact rate thresholds among non-essential workers were at least 2 when transmission rates were 8% and 5%

(corresponding to reported use of face mask and physical distancing [11, 30]). The range of values in the table thus correspond to transmission rate of 8% - 5%.

‡ We assume 23% are essential workers and have a contact rate of 14 per day [37].

† Contact rate threshold (per person per day): the average value for contacts per person per day to keep infections below the tolerance level. These reduced contact rates,

from the original rates of 16 to 24 [42, 43], can be achieved through reduction in population size at the noted thresholds.

https://doi.org/10.1371/journal.pone.0255864.t001
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size on campus at 100% (p̂ ¼ 1) if at least 84% to 95% are vaccinated (or 42% to 63% are vacci-

nated) (Table 2). If vaccine coverage (V) is below 42% it would be necessary to also reduce the

population size, keeping it to at most 89% on average if vaccine coverage is between 27% and

42%, and to at most 75% on average if vaccine coverage is between 12% and 27%. Considering

that 50% trace and test, equivalent to 2 days from infection to isolation is a very tight timeline,

which may be more feasible only with digital tracing, we also evaluated at a maximum of 20%

trace and test, equivalent to 5 days from infection to isolation. This level of 20% trace and test

only will be sufficient to keep the population size on campus at 100% if vaccine coverage is at

least 74% to 84%. If vaccine coverage is below that, it will also require a reduction in popula-

tion size, e.g., to 75% on average if only 44% to 54% of the population are vaccinated (Table 2).

All the above scenarios for trace and tests also correspond to the continued use of face masks

and physical distancing at least at current compliance levels (transmission rate of 5% to 8%).

The combinations of testing and vaccination coverage under the full range of transmission

rates are presented in S2 Table.

The total cases of infections and deaths over a 90-day semester if a fully unvaccinated popu-

lation is on campus (contact rates of 16 to 24 per person per day as reported for regular face-

Table 2. Combinations of testing, vaccine coverage, and population size for effective control of a disease outbreak.

Testing Vaccination coverage Population size (if regular contact rate is 16) Population size (if regular contact rate is 24)

S 95% - 100% 100% - 100% 100% - 100%

Mass tests only (% tested per day)

S+5%U 89% - 95% 100% - 100% 100% - 100%

S+10% U 84% - 89% 100% - 100% 100% - 100%

S+20%U 74% - 84% 100% - 100% 100% - 100%

S+25%U 63% - 79% 100% - 100% 100% - 100%

S+33%U 53% - 68% 100% - 100% 100% - 100%

S+33%U 38% - 53% 100% - 97% 79% - 83%

S+33%U 23% - 38% 85% - 82% 64% - 68%

S+33%U 8% - 23% 70% - 67% 49% - 53%

Trace and tests only

S+10%T 84% - 95% 100% - 100% 100% - 100%

S+17%T 79% - 89% 100% - 100% 100% - 100%

S+20%T 74% - 84% 100% - 100% 100% - 100%

S+25%T 68% - 84% 100% - 100% 100% - 100%

S+33%T 58% - 74% 100% - 100% 100% - 100%

S+50%T 42% - 63% 100% - 100% 100% - 100%

S+50%T 27% - 42% 100% - 92% 77% - 75%

S+50%T 12% - 27% 87% - 77% 62% - 60%

Trace and tests only (capped at 20%)

S+10%T 84% - 95% 100% - 100% 100% - 100%

S+17%T 79% - 89% 100% - 100% 100% - 100%

S+20%T 74% - 84% 100% - 100% 100% - 100%

S+20%T 59% - 69% 96% - 94% 84% - 86%

S+20%T 44% - 54% 81% - 79% 69% - 71%

S+20%T 29% - 39% 66% - 64% 54% - 56%

S+20%T 14% - 24% 51% - 49% 39% - 41%

The range of value presented correspond to transmission rate range of 5% - 8%, thus fixing face mask and physical distancing at reported levels.

S: symptomatic testing, U: Mass test, T: trace and test, dT: delayed trace and test.

https://doi.org/10.1371/journal.pone.0255864.t002
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to-face instructions [42, 43]) suggest an exponential growth in infections in most testing sce-

narios, even if face mask and physical distancing are used at levels reported during the pan-

demic (transmission rates of 5% to 8%) (S3 Table). With contact rate of 6 to 8 per person per

day (corresponding to reported numbers when several universities moved to partial or full

remote instructions [35, 36]) and use of facemask and physical distancing at levels reported

during the pandemic, an exponential growth in infections was prevented with the following

testing scenarios: 33% per day mass test only, at least 33% trace and test only, any of the combi-

nation tests, and any of the delayed combination tests (Table 3). In these suitable scenarios, the

peak number of trace and tests, per 10,000 persons, varied from 2 to 64 per day, and the peak

number of quarantines, per 10,000 persons, varied from 3 to 26 per day (Table 3).

Discussions

This work estimates, under varying combinations of mass test, trace and test, and transmission

rate, the contact rate thresholds that would help efficiently control an infectious disease out-

break on residential university campuses in the United States. The metric typically used in the

COVID-19 literature for evaluating testing strategies is the reproduction number R0, which

combines the contact rate and transmission rate. As interventions that influence transmission

rates are different than those that influence contact rates, separating these parameters help sys-

tematically evaluate metrics to inform epidemic control protocols on university campuses. In

this study, we extracted four main metrics. First, the contact rate threshold among non-essen-

tial workers after accounting for the higher contact rate among essential workers, which could

help inform the size of social circles at the individual-level and schedule group activities such

as in labs and offices. Second, population size threshold, i.e., the maximum proportion of the

Table 3. Suitable testing options ⁋ for effective control of a disease outbreak keeping contact rates at reported levels † ‡.

Testing Number infected (per 10,000 persons) Peak trace and tests per day (per 10,000

persons)

Peak quarantine per day (per 10,000

persons)

Transmission rate (p) —> 5% 8% 5% 8% 5% 8%

S+33%U 23 (20, 27) 44 (32, 67) 0 (0, 0) 0 (0, 0) 4 (3, 5) 7 (5, 13)

S+33%T 30 (25, 36) 60 (42, 89) 14 (9, 17) 22 (14, 28) 12 (9, 14) 24 (18, 33)

S+50%T 23 (21, 26) 34 (29, 41) 20 (12, 24) 29 (19, 36) 10 (9, 13) 18 (14, 22)

S+5%U+50%T 19 (17, 21) 25 (22, 29) 8 (7, 13) 16 (10, 19) 6 (5, 7) 9 (8, 12)

S+10%U+50%T 17 (16, 19) 22 (20, 24) 6 (5, 9) 8 (7, 10) 5 (4, 5) 7 (6, 8)

S+20%U+50%T 16 (15, 16) 19 (18, 21) 4 (3, 4) 4 (4, 5) 4 (3, 4) 5 (4, 5)

S+25%U+50%T 15 (15, 16) 18 (17, 20) 3 (2, 4) 3 (3, 3) 3 (3, 4) 4 (4, 4)

S+33%U+50%T 15 (14, 16) 17 (16, 18) 2 (2, 2) 2 (2, 3) 3 (3, 3) 4 (3, 4)

S+5%U+50%dT 30 (26, 34) 45 (38, 55) 26 (16, 32) 46 (36, 64) 15 (12, 18) 26 (21, 34)

S+10%U+50%dT 24 (22, 27) 34 (29, 40) 11 (9, 18) 24 (15, 32) 10 (8, 12) 17 (14, 21)

S+20%U+50%dT 19 (18, 21) 25 (22, 28) 4 (3, 8) 10 (6, 10) 6 (5, 7) 9 (8, 11)

S+25%U+50%dT 18 (17, 19) 22 (20, 25) 3 (3, 3) 6 (4, 8) 5 (5, 5) 7 (6, 9)

S+33%U+50%dT 17 (16, 17) 19 (18, 22) 2 (2, 2) 3 (2, 6) 4 (4, 4) 6 (5, 7)

S: symptomatic testing, U: Mass test, T: trace and test, dT: delayed trace and test.

†Reported value of contact rate is on average between 6 and 8 per person per day under remote instructions [35, 36]; Using our estimations, this would correspond to

population size of about 31% and 42%. Results in the table correspond to this contact rate, presented as average (minimum, maximum).

‡ Reported contact rate is on average between 16 and 24 per person per day under face-to-face instructions [42, 43]. None of the scenarios for this contact rate were

suitable, and thus, are not presented in the table.

⁋ We defined a testing scenario as suitable if there were no exponential growth in infections when transmission rates were 5% and 8% (corresponding to reported use of

face mask and physical distancing [11, 30]).

https://doi.org/10.1371/journal.pone.0255864.t003
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actual population size, which could help university-level activity decisions such as the fraction

of classes that should be moved to remote instruction. Third, the threshold values for vaccina-

tion coverage for the campus to return to normal, i.e., the minimum vaccination coverage for

having 100% of the population back on campus, which would help plan for the period post

introduction of vaccines. Fourth, the threshold values for population size if vaccine coverage is

below required thresholds, which could help decisions in the event that vaccines are not widely

available that coverage (proportion vaccinated) is not at levels sufficient to fully resume normal

activities. The fourth metric could especially be useful in the transitionary phase to normality

(until vaccines become fully available) and where the results suggest lowering the population

size by just a small number, which could be achieved by moving only a few classes online, such

that, the overall population density on campus on any given day is lower but most students

have most (if not all) of their classes as face-to-face.

While the implementation of the decisions related to the above metrics are driven at the

university-level, adherence and feasibility to use of interventions such as face mask and physi-

cal distancing could vary by individual behaviors [37, 39, 40]. By separately modeling contact

rates and transmission rates in this study, we extracted results corresponding to transmission

rates (of 5% to 8%) that match reported behaviors for face mask use and physical distancing

[11, 30], and thus evaluated the university-level decisions under these adherence or feasibility

ranges.

Our analyses suggest that implementing only testing, only face mask use and physical dis-

tancing, or only population size reductions will not be sufficient, but require combinations of

these interventions to successfully control an outbreak on university campuses. Further, in the

absence of vaccinations, at reported levels of face mask and physical distancing, testing alone

without reducing population size would also not be sufficient to control an outbreak. This sug-

gests that university campuses have high population densities that, for effective control of

highly virulent infections such as SARS-CoV-2, it would require reducing the population size

such as through remote learning.

Although individual interventions are not sufficient, there are multiple choices for combi-

nations of interventions to choose from if vaccines are unavailable. If, along with continuing

face mask and physical distancing at current levels, the population size is kept to at most 34%

(or 44%) of the actual population size, mass tests only of 25% (or 33%) per day would help con-

trol an outbreak (Table 1). The choice between mass tests of 25% per day vs. 33% per day

should consider the costs of a greater proportion remote learning (quantitative and qualitative

costs) vs. costs of both testing more often and testing a larger population.

An alternative to mass tests only would be trace and test only, along with continuing face

mask and physical distancing at current levels and reducing population size. Trace and test

only would also be sufficient at rates of 33% (or 50%) if population size is kept to at most 39%

(or 52%) (Table 1). These population size range are close to the 34% (or 44%) reported above

for 25% (or 33%) per day mass tests only. Trace and test of 33% and 50% correspond to 3 days

and 2 days, respectively, from the time an infected person makes contact with an individual to

effective isolation of that individual. Feasibility of this short turnaround times would deter-

mine the choice between use of mass test vs. trace and test. Turnaround times are expected to

be shorter with digital contact tracing, such as smart phone apps, compared to manual tracing,

and feasibility and adoption of apps could be higher among university students than general

population. However, studies related to its feasibility and adoption followed by adherence to

isolation, among other issues such as privacy and alternative digital technologies are only

recently emerging [44–47]. Our results also suggest that, if these turnaround times are not

achievable and further if there are any delays in trace and test initiation, then trace and test

alone is not favorable (none of the delayed trace and test were feasible (Table 2)) and should
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instead adopt either mass tests only or mass test with trace and test. Use of mass test with trace

and test could improve trace and test due to potential early diagnosis of index persons. Our

results suggest that, if mass tests can increase trace and test to 50% (within two days from con-

tact to isolation), there is more flexibility in trade-offs between mass test rates and contact rate

thresholds, and thus more flexibility in population size (Table 2).

In the event that vaccines are available, the full population can be back on campus and

resume normal activities provided at least 95% of the population is vaccinated (Table 2). If vac-

cine coverages are lower than 95%, resuming normal activities with the full population size on

campus would require additional asymptomatic testing, with the level of testing depending on

vaccine coverage. Mass tests of at least 25% per day would be sufficient if vaccine coverage is at

least 70%, or mass tests of at least 33% per day would be sufficient if vaccine coverage is at least

59%. If vaccine coverage is below 59%, to control an outbreak, in addition to mass tests at 33%

per day, it would also require lowering the population size to 90%, 75%, and 60%, if vaccine

coverage is at 46%, 31%, and 16%, respectively (Table 2).

Corresponding to the reported compliance to face mask and physical distancing and

reported contact rates of 6 to 8 per person per day (a population size of 31% to 42% as per our

estimations), from surveys [35, 37, 39] conducted over the year 2020 when universities transi-

tioned a large proportion of classes to remote instructions and vaccines were unavailable, our

results suggest the need for at least 33% mass test only or 33% trace and test only (Table 3). Sce-

narios that did not meet these criteria led to exponential growths in infections. These results

generally match observed cases over the Fall 2020 semester, where several campuses saw cases

into the thousands within the first two weeks of opening and were able to quickly control the

spread within two to three weeks by temporarily transitioning to remote instructions [48].

While the universities were able to effectively control the outbreak quickly, it was also observed

by this study [48] that the infections rapidly spread into the neighboring community, which

were less successful in controlling the spread. Therefore, we believe, results obtained from our

study, which set tight tolerance levels on infection cases, would be beneficial for developing

epidemic response plans that consider the interests of the broader community. Our results

also suggest that, with asymptomatic testing only, it would be necessary to have a vaccination

coverage threshold of>95% for a university to fully return back to normal. This threshold is

much higher than the typical 70% to 80% range used for herd-immunity in the literature for

the general population [49], to a small extent because of setting a tighter tolerance but to a

large extent because of the higher population density characteristic of university campuses.

The latter can also be observed in R0 values estimated for universities, which in some instances

went above 10 even with online instructions [48], while the herd-immunity in the general pop-

ulation is approximately calculated as 1−1/R0 using a R0 of 3.5.

Our work is subject to limitations. Our model is deterministic. We used an average contact

rate for all persons in order to estimate threshold values that could help inform university-

level decisions. We did not model contact rates to be representative of actual expected net-

works between individuals. We did not explicitly model other interventions that could reduce

transmission rate such as controlled ventilation, filtering air and controlling air flow, which

are likely to impact transmissions [50]. The transmission rates also have a large range of uncer-

tainty due to varying individual behaviors, the data used for streamlining the analyses in this

study are based on limited data availabilities, however, the extrapolations over the wide range

of transmission rates could be utilized. We did not model false positives for any of the testing

scenarios and thus susceptible persons immediately return back to susceptible compartment

after testing. We did not model other flu like illnesses and thus we did not assess the additional

healthcare resource needs such as testing and quarantining because of similarity in symptoms

with COVID-19. In estimation of vaccination thresholds, we did not consider the natural
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immunity developed among persons who may have been infected previously. The estimation

of vaccination thresholds assume that the virus is still prevalent in the larger community and

thus there is a chance of the infection entering the population, such as through local or global

travel. We assume that the population density is similar across university campuses with con-

tact rates between 16 and 24, and thus, this assumption should be considered when generaliz-

ing to campuses.

In conclusion, the results from this study could be used to collectively inform decisions

related to testing, population size reductions through remote instructions, size of social circles,

personnel scheduling in labs and offices, under scenarios of both unavailability or partial avail-

ability of vaccines, and within the observed levels of compliance to face mask use and physical

distancing. The analyses conducted here specifically streamlined the results to the COVID-19

disease caused by the SARS-CoV-2 virus. However, given the wide range of transmission rates

evaluated here, which were based on results from a meta-analysis study that evaluated SARS-

CoV-2 and other viruses of similarly high virulence [11], broader observations from this study

could be extrapolated for use in early stages of new outbreaks of similar viral respiratory infec-

tions with similar incubation periods [24], where non-pharmaceutical intervention options

such as face masks, physical distancing, remote instructions, and testing are the suitable

options. As was the case at the time of conducting this study, in the early stages of an outbreak,

there is uncertainty in the baseline transmission rate, efficacy of face mask use and physical

distancing [11]. Thus, the results over the range of transmission rates might only serve as a pre-

liminary guide, until more information becomes available for more streamlined analyses.
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