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Simple Summary: The PARP family consists of 17 proteins, and some of them are responsible for
cancer cells’ viability. Much attention is therefore given to the search for chemical compounds with
the ability to suppress distinct PARP family members (for example, PARP-5a and 5b). Here, we
present the results of a family-wide bioinformatic analysis of an important functional region in the
PARP structure and describe factors that can guide the design of highly selective compounds.

Abstract: The PARP family consists of 17 members with diverse functions, including those related to
cancer cells’ viability. Several PARP inhibitors are of great interest as innovative anticancer drugs, but
they have low selectivity towards distinct PARP family members and exert serious adverse effects.
We describe a family-wide study of the nicotinamide (NA) binding site, an important functional
region in the PARP structure, using comparative bioinformatic analysis and molecular modeling.
Mutations in the NA site and D-loop mobility around the NA site were identified as factors that
can guide the design of selective PARP inhibitors. Our findings are of particular importance for the
development of novel tankyrase (PARPs 5a and 5b) inhibitors for cancer therapy.

Keywords: poly(ADP-ribose) polymerase; inhibitor; nicotinamide; 7-methylguanine; D-loop; tankyrase;
molecular dynamics; homology modeling

1. Introduction

Poly(ADP-Ribose) polymerase proteins (PARPs 1–16) catalyze the transfer of ADP-
ribose from the nicotinamide adenine dinucleotide (NAD+) substrate to target proteins
and are involved in many cellular functions (Table 1) [1–7]. In particular, the activity of
the founding family member PARP-1 at DNA damaged sites recruits the base excision
repair proteins XRCC1, DNA polymerase β, and DNA ligase III [8–10]. The most studied
PARP family members are PARP-1 and 2 involved in DNA repair and PARP-5a and 5b
(also known as tankyrases 1 and 2) regulating the Wnt signaling pathway. In the past years,
aberrant Wnt signaling was found to be implicated in numerous malignancies, including
gastrointestinal cancers, leukemia, and breast cancer [11,12].

Cancers 2021, 13, 1201. https://doi.org/10.3390/cancers13061201 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-3887-4195
https://orcid.org/0000-0002-1664-0307
https://orcid.org/0000-0002-5067-7939
https://doi.org/10.3390/cancers13061201
https://doi.org/10.3390/cancers13061201
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13061201
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13061201?type=check_update&version=3


Cancers 2021, 13, 1201 2 of 16

Table 1. Catalytic activity and cellular functions of PARP family proteins.

PARP Activity Function

1 poly 1 DNA repair enzymes regulating transcription and eliminating
single- and double-strand breaks of DNA [13–17]2 poly

3 mono 2 DNA repair [18,19]
4 mono poorly studied
5a poly tankyrase enzymes regulating the Wnt signaling pathway and

controlling cellular proliferation and differentiation [20–23]5b poly
6 mono tumor suppressor regulating Survivin expression [24]
7 mono poorly studied
8 mono poorly studied
9 inactive poorly studied
10 mono regulates Aurora A and suppresses tumor metastasis [25]
11 mono poorly studied
12 mono suppresses Zika virus infection [26]
13 inactive regulates the cellular response to stress [27]
14 mono suppresses kinase-mediated apoptosis [28]
15 mono poorly studied
16 mono poorly studied

1 Poly(ADP-ribosyl)ation. 2 Mono(ADP-ribosyl)ation.

Much attention is being paid to the search for inhibitors of distinct PARP family
members because of their role in breast/ovarian cancers [29–33], gastrointestinal cancers,
and many other, non-oncological diseases [34–36]. A number of PARP inhibitors contain
an amide group attached to an aromatic ring or lactam group built in an aromatic ring
system and mimic the nicotinamide (NA) moiety of NAD+. They suppress enzyme activity
at nanomolar concentrations but lack sufficient selectivity [37–39], for example, isoquinoli-
none derivatives [40] are able to bind to PARPs 1, 3, and 5a. FDA-approved inhibitors of
PARP-1/2 (olaparib, rucaparib, and niraparib) [41,42] can cause serious side effects likely
related to the nonselective interaction with numerous NAD+-binding proteins, including
other PARP family members [43–46].

The design of highly effective inhibitors is usually focused on a region of the PARP
active site responsible for binding the NA group of NAD+. The architecture of the NA
site provides strong interaction between the substrate/inhibitor amide group and Gly863
residue (PARP-1 numbering) via two hydrogen bonds [47–51]. In many crystal structures,
PARP inhibitors form additional interactions with the other NA site residues: A hydrogen
bond with Ser904, hydrophobic contact with Ala898, and π-stacking with Tyr907 [39,52,53].
The above residues are crucial for the effective binding in the PARP active site, and their
mutations may modulate the affinity for inhibitors. Interactions with flexible loops around
the NA site may also be important for molecular recognition. In this article, we present the
results of a detailed family-wide analysis of the NA binding site in PARPs 1–16 that opens
up new prospects for selective PARP inhibition.

2. Results
2.1. Multiple Sequence Alignment of PARPs 1–16

A multiple sequence alignment highlighting residues of the NA binding site in PARPs
1–16 is shown in Figure 1. Gly is the most prevalent residue at position 863, Ala at position
898, Ser at position 904, and Tyr at position 907 (PARP-1 numbering). Substitutions at
these positions, marked in Table 2, may have a direct impact on the substrate and inhibitor
binding. Notably, the key active site residue Gly863 is substituted only in catalytically
inactive PARP family members, PARP-9 and PARP-13. Crystal structures of PARPs 1–3, 5a,
5b, 10, and 12–16 are available, which helps considerably in understanding how substitu-
tions affect the binding site architecture, and the models of PARPs 4, 6–9, and 11 can be
constructed from their sequences and structures of close homologs. In Sections 2.2 and 2.3,
interactions of PARPs mediated by amino acid residues at positions 863, 898, 904, and
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907 in the multiple alignment are analyzed in detail using molecular dynamics (MD) and
homology modeling.

Figure 1. Multiple sequence alignment of PARPs 1–16 with Clustal Omega. The residues 863, 898,
904, and 907 of the NA binding site (PARP-1 numbering) are marked with an asterisk. PARP family
members with known structures are marked in green, and PARPs with unknown structures in red.

Table 2. Residues of the NA binding site in PARPs 1–16. Amino acid replacements are marked
in gray.

PARP Residues of the NA Site PDB ID 1

1 Gly863 Ala898 Ser904 Tyr907 4zzz [54]

2 Gly429 Ala464 Ser470 Tyr473 4zzx [54]

3 Gly385 Ala416 Ser422 Tyr425 4gv2 [55]

4 Gly439 Ser479 Ser485 Tyr488 -

5a Gly1185 Ala1215 Ser1221 Tyr1224 4w6e/4msg [56,57]

5b Gly1032 Ala1062 Ser1068 Tyr1071 5nwg [58]

6 Gly474 Ser510 Ser516 Tyr519 -

7 Gly533 Ala566 Ser572 Phe575 -

8 Gly698 Ser734 Ser740 Tyr743 -

9 Gln706 Thr739 Leu745 Lys750 -

10 Gly888 Ala921 Ser927 Tyr932 5lx6 [59]

11 Gly205 Ala238 Ser244 Phe247 -

12 Gly565 Ala598 Ser604 Tyr607 2pqf [60]

13 Ala788 Ala821 Ser827 Asn830 2x5y [60]

14 Gly1602 Ala1635 Ser1641 Tyr1646 3smj [37]

15 Gly538 Ala571 Ser577 Tyr582 4f0e [61]

16 Gly153 Thr184 Ala190 Tyr193 4f0d [62]
1 Representative crystal structures.

2.2. Modeling of PARPs with Known Structures

To model the NA binding site of PARPs 1–3, 5a, 5b, 10, and 12–16, we have selected rep-
resentative crystal structures for each family member. Available structures listed in Table S1
were manually clustered into groups based on the similarity of the NA site conformation
(outliers/minor conformations were excluded), and then a representative structure with
the best resolution was selected from each cluster (Figure S1, Table S1). Single clusters were
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produced for all PARPs except PARP-5a, whose structures were divided into groups I and
II differing in the D-loop conformation. The mobile D-loop of PARP-5a is located around
the NA site [63] and may be involved in inhibitor binding. The D-loop residue Tyr1203 is
oriented towards the NA site in conformation I, and Phe1208 in conformation II (Figure S2).
The phenyl ring of the D-loop residue occupies a similar position in conformations I and II,
indicating that the D-loop can mediate nonpolar interactions with NA site ligands in both
possible conformational states.

The representative crystal structures of PARPs shown in Figure 2 provide a good
starting point for modeling intermolecular interactions with NA mimics and probing
the selectivity. We have chosen 7-methylguanine (7-MG) as a probe PARP inhibitor for
the following reasons. (i) 7-MG is a promising competitive inhibitor of the founding
family member PARP-1 [64–67], (ii) 7-MG is a small NA mimic that occupies only the NA
binding region, forming crucial interactions with the Gly863, Ala898, Ser904, and Tyr907
residues [51,65], (iii) high-quality force field parameters of 7-MG are available and ready
for use in molecular modeling [64]. The 7-MG molecule was docked into the NA binding
site of PARPs, and then its position was refined using MD simulation and analyzed.

The overall structure of the catalytic domain is similar in PARPs 1–3 and includes
an (ADP-ribosyl) transferase subdomain and a regulatory helical subdomain [68]. The
residues of the NA binding site are conserved in these proteins and form interactions
with 7-MG typical for PARP inhibitors: Two hydrogen bonds between Gly863/429/385
(PARP-1/2/3) and the lactam group, which act simultaneously as a donor and an acceptor,
a hydrogen bond between Ser904/470/422 and the lactam oxygen, hydrophobic contact
between Ala898/464/416 and the 7-methyl group, π-stacking between Tyr907/473/425
and the 7-MG fused rings (Figure 3, Figure S3 showing a close-up view of the NA site, and
Table S2 providing mean distances and angles from 10 ns simulation). It is, therefore, not
surprising that 7-MG inhibits PARP-1 and 2 with comparable potency [64].

In PARPs 5a and 5b, also known as tankyrases, the NA site residues are the same as in
PARPs 1–3 and mediate similar interactions with 7-MG (Figure 4, Table S2), but additional
intermolecular contacts may be formed due to the D-loop mobility. In the starting model
of PARP-5a conformation I, the Tyr1203 side chain contacted with an aromatic nitrogen
of 7-MG, but during the MD simulation, it moved away (without affecting the main
chain coordinates). Meanwhile, the unfavorable contact with the Phe1208 side chain was
persistent in conformation II (Figure 5). The starting D-loop position in the PARP-5b model
was similar to conformation I of PARP-5a, and the corresponding Tyr1050 residue also
moved away from 7-MG during the simulation. Both PARP-5a and 5b models indicate
that D-loop interactions with donor/acceptor atoms of NA mimics are unfavorable, in
accordance with our preliminary experimental data demonstrating the 7-MG selectivity
for PARP-1 over PARP-5b (Table S3) [69]. However, more hydrophobic inhibitors may be
selective against tankyrases due to additional contacts with Tyr1203/1050 or Phe1208. For
example, the chloro substituent of an aromatic inhibitor interacts with the Tyr1050 side
chain in the PARP-5b structure 4j1z [70].
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Figure 2. Structure of the NA binding site in PARPs 1–16. Underlined PARP structures (1–3, 5a, 5b, 10, 12–16) were
obtained from the Protein Data Bank, and other structures (4, 6–9, 11) were obtained by homology modeling. Amino acid
substitutions in the NA site are marked in red. The NA site architecture is quite similar in PARPs 1–3, 5a, 5b, 10, 12, 14, and
15 due to the lack of substitutions. The coordinates of the 7-MG molecule (colored by atom type) are transferred from the
docking model of PARP-1–7-MG complex.
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Figure 3. 7-MG position in the NA binding site of PARPs 1–3 obtained using MD modeling. The NA
site residues are colored in green.

Figure 4. 7-MG position in the NA binding site of PARP-5a (conformations I and II) and 5b obtained
using MD modeling. The NA site residues are colored in green.
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Figure 5. D-loop conformation in PARP-5a and its interaction with the NA binding site revealed by
MD modeling. The NA site residues are colored in green, D-loop conformation I is shown in blue,
conformation II in yellow.

In PARP-10 and 12, the NA site residues are also conserved (Figure 6). However, the
hydrogen bond with the Ser604 residue in the active site of PARP-12 was characterized
by an increased mean distance (Table S2) because its side chain periodically formed an
alternative bond with the Asp600 main chain. In PARP-13 the crucial Gly residue is
replaced with Ala788 whose methyl group is oriented away from the inhibitor and does not
significantly affect the formation of hydrogen bonds between the main chain and lactam
group. The Tyr residue is replaced with Asn830 in the NA site of PARP-13, which results in
loss of the stacking interaction (Figure 7).

The NA site residues in PARP-14 and 15 are the same as in PARPs 1–3 (Figure 8).
However, during the simulation of PARP-15 an additional hydrogen bond was formed
between the aromatic nitrogen of 7-MG and the D-loop residue Gly558 (Figure 9). In
PARP-16 one hydrogen bond with the lactam group is lost due to the Ser replacement by
Ala190, while the replacement of another NA site residue Ala by Thr184 does not affect
the ability to form favorable contacts with the inhibitor’s hydrophobic group (Figure 10,
Table S2).

Figure 6. 7-MG position in the NA binding site of PARP-10 and 12 obtained using MD modeling.
The NA site residues are colored in green.

2.3. Modeling of PARPs with Unknown Structures

The NA binding site architecture in PARPs of unknown structure (4, 6–9, and 11) was
predicted and studied using homology modeling (template structures are listed in Table
S4). We consider such an approach reasonable because the functional sites of the protein



Cancers 2021, 13, 1201 8 of 16

tend to be more conserved in evolution (than the rest of the fold) and thus more accurately
modeled [71]. The coordinates of 7-MG were transferred into the NA site of the obtained
PARP models and then optimized. The modeled fold of PARP-4 was similar to its homologs
PARPs 1–3, and the replacement of Ala with Ser479 did not affect significantly the NA site
structure because the Ser479 side chain was oriented away from the inhibitor (Figure 11,
Table S5). Similarly to PARP-4, PARP-6, and PARP-8 contain non-essential substitutions of
Ala by Ser510 and Ser734, respectively (Figure 11).

Figure 7. 7-MG position in the NA binding site of PARP-13 obtained using MD modeling. The
conserved NA site residues are colored in green, and unique residues in red.

In PARP-7 and 11, the replacement of Tyr by Phe575/Phe247 does not disrupt π-
stacking because this interaction with the inhibitor can be mediated by a phenyl ring of
both Tyr and Phe residues (Figure 12, Table S5). Lastly, the modeled PARP-9 protein is a
PARP family member in which all the NA site residues are substituted (Figure 13). Gly
is replaced by Gln706 whose side chain is oriented away from the inhibitor and does not
affect the formation of hydrogen bonds between the main chain and lactam group. Ser is
replaced by Leu745, which results in the loss of an additional bond with the lactam group.
Similarly to PARP-16, Ala is replaced by Thr739, which does not significantly affect the
hydrophobic interaction. The stacking interaction with the inhibitor is lost in PARP-9 due
to the replacement of Tyr with Lys750.

Figure 8. 7-MG position in the NA binding site of PARP-14 and 15 obtained using MD modeling.
The NA site residues are colored in green.
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Figure 9. D-loop conformation in PARP-15 and its interaction with 7-MG. The NA binding site is
colored in green, and D-loop in blue.

Figure 10. 7-MG position in the NA binding site of PARP-16 obtained using MD modeling. The
conserved NA site residues are colored in green, and unique residues in red. The Cγ atom of Thr184
forms a hydrophobic contact with the 7-MG methyl group.

Figure 11. 7-MG position in the NA binding site of PARPs 4, 6, and 8 obtained using homology
modeling. The conserved NA site residues are colored in green and unique residues in red. The Cβ

atom of Ser479/510/734 forms a hydrophobic contact with the 7-MG methyl group.
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Figure 12. 7-MG position in the NA binding site of PARP-7 and 11 obtained using homology
modeling. The conserved NA site residues are colored in green and unique residues in red.

Figure 13. 7-MG position in the NA binding site of PARP-9 obtained using homology modeling. The
Gln706 main chain forms hydrogen bonds with the lactam group. The Cγ atom of Thr739 forms a
hydrophobic contact with the 7-MG methyl group.

3. Discussion

PARP inhibitors represent a promising new component of cancer chemotherapy, and a
lot of attention is given to the design of compounds selective towards distinct PARP family
members. In particular, PARP-1 and 2 are involved in the elimination of single- and double-
strand breaks of DNA, and tankyrases (PARP-5a and 5b) modify the axin protein in the
Wnt pathway to promote cell proliferation. Therefore, PARP-1/2 inhibitors can be effective
against BRCA-deficient tumors [72,73], whilst tankyrase inhibitors against tumors with
abnormal Wnt signaling [74–77]. Here, we present a detailed study of the NA site, crucial
for substrate and inhibitor binding, in PARP family proteins. Bioinformatic analysis and
molecular modeling with a probe 7-MG inhibitor allowed us to identify structural features
of the NA site in PARPs 1–16 important for the selective binding. It should be noted that a
recently published paper by Kam et al., also dedicated to an in silico family-wide analysis
of PARPs, is mostly focused on new potential targets for inhibition beyond the NA site [78],
and therefore, our findings do not conflict with or duplicate previously reported data.

The most prevalent NA site residue at position 863 (PARP-1 numbering) is Gly which
forms key hydrogen bonds with the inhibitor’s lactam group in the obtained PARP models.
The replacement of Gly in PARP-9 and 13 (with Gln and Ala, respectively) does not
significantly affect the formation of these main-chain hydrogen bonds. Ala, Ser, or Thr at
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position 898 provide favorable contacts with the inhibitor’s hydrophobic group. Ser at
position 904 forms an additional hydrogen bond with the lactam group, except PARP-9
and 16 where it is replaced by Leu and Ala, respectively. Tyr or Phe at position 907 form
π-stacking interactions, except PARP-9 and 13 containing substitutions with Lys and Asn,
respectively. Thus, substitutions at positions 904 and 907 presumably provide selectivity
of NA mimics for PARPs 1–8, 10–12, 14, and 15 over PARPs 9, 13, and 16. The mobility of
the D-loop around the NA site of PARPs 5a, 5b and 15 can result in additional interactions:
hydrophobic (PARP-5a, 5b) or polar (PARP-15). This may be exploited in the design of
selective inhibitors of PARP-1/2 or PARP-5a/5b: more hydrophobic NA mimics would
tend to bind with PARP-5a and 5b, while more polar compounds, forming unfavorable
contacts with D-loop, would preferentially target PARP-1 and 2. As surgery remains the
primary modality of cure in cancers associated with aberrant Wnt signaling, additional
targeted treatments with selective PARP-5a/5b inhibitors may be of great interest [79,80].

4. Materials and Methods

Amino acid sequences of the catalytic domain of PARPs 1–16 were obtained from the
UniProt database [81]. To construct a multiple alignment of PARPs, various state-of-the-
art methods (COBALT, PROMALS3D, Matt, Clustal Omega) were independently used,
followed by manual expert evaluation, and the alignment by Clustal Omega [82–84] was
found to be the most accurate due to correct superimposition of key NA site residues.

Crystal structures of the catalytic domain of PARPs 1–3, 5a, 5b, 10, and 12–16 were
obtained from the Protein Data Bank [85], superimposed with Matt 1.0 [86], and manu-
ally clustered based on the NA binding site conformation. Molecular models of PARPs
1–3, 5a (conformations I and II), 5b, 10, and 12–16 were then constructed based on the
selected representative crystal structures. The coordinates of missing residues of the PARP
catalytic domain were predicted with Modeller 9.20 or transferred from other structures
(Table S6) [87,88]. Next, the protein structures were optimized with AmberTools 15 and
Amber 14 [89,90], according to the following protocol. Hydrogen atoms were added to the
structure considering ionization of amino acid residues, and then it was solvated by 12
Å-thick layer of TIP3P water. Chloride or sodium ions were added to neutralize the net
charge. The energy minimization was performed with positional restraints on heavy atoms
of the protein (2500 steepest descent steps + 2500 conjugate gradient steps). The 7-MG
molecule was docked into the active site of the PARP models with Lead Finder 1.1.16 [91,92].
The obtained PARP–7-MG complexes were re-optimized in two stages, one with positional
restraints on the protein and inhibitor atoms (2500 steepest descent steps + 2500 conjugate
gradient steps) and the other without restraints (5000 steepest descent steps + 5000 con-
jugate gradient steps). The system was then heated up from 0 to 300 K (50 ps, constant
volume) and equilibrated at 300 K (500 ps, constant pressure). Lastly, 10 ns trajectory of
equilibrium simulation was calculated and analyzed. Structures of PARPs 4, 6–9, and 11
were obtained using homology modeling. Close homologs of these family members were
identified with a HHpred server [93,94] and used as templates for Modeller 9.20. 7-MG
coordinates were transferred from the docking model of PARP-1 complex, and the obtained
homology models of PARP–7-MG complexes were then energy minimized in two stages,
as described above.

Control data for energy minimization and MD simulation are provided in Table S7.
The ff14SB force field [95] was used to describe the protein with molecular mechanics, and
recently developed parameters [64] were used to describe the 7-MG molecule. VMD 1.9.2
was used for the visualization of structures [96].

5. Conclusions

The present paper systematically describes the architecture of the NA binding site
in 17 PARP family proteins (PARPs 1–4, 5a, 5b, 6–16) and can serve as a useful guide to
estimate the selectivity of NA mimics towards distinct family members. Certain factors
may lead to the selective inhibition: (i) Mutations in the NA site and (ii) D-loop mobility
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around the NA site. An important finding of our study is that only in tankyrases (PARP-5a
and 5b) the mobile D-loop can form additional hydrophobic contacts with NA mimics,
which provides opportunities for the development of highly selective tankyrase inhibitors
as promising anticancer agents.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/6/1201/s1, Figure S1: Cluster of similar conformations of the NA binding site in PARP-1 crystal
structures, Figure S2: Two possible conformations of the D-loop in crystal structures of PARP-5a,
Figure S3: Interactions of 7-MG in the NA binding site of PARP-1 revealed by molecular modeling,
Table S1: Crystal structures of PARPs used in the analysis of the NA binding site architecture, Table S2:
Interactions between a probe inhibitor (7-MG) and NA site residues in PARPs revealed by 10-ns
MD simulation, Table S3: Activity of PARP-1 and PARP-5b (tankyrase 2) at 7-MG concentration
of 360 µM determined with an immunochemical assay, Table S4: PARPs of unknown structure
and their close homologues, Table S5: Interactions between a probe inhibitor (7-MG) and NA site
residues in PARPs revealed using homology modeling, Table S6: Missing residues in representative
PARP structures, TableS7: Control data used for energy minimization and MD simulation of the
PARP–7-MG complexes.
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