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Abstract: Increased antibiotic resistance has prompted the development of bacteriophage agents for
a multitude of applications in agriculture, biotechnology, and medicine. A key factor in the choice of
agents for these applications is the host range of a bacteriophage, i.e., the bacterial genera, species,
and strains a bacteriophage is able to infect. Although experimental explorations of host ranges
remain the gold standard, such investigations are inherently limited to a small number of viruses and
bacteria amendable to cultivation. Here, we review recently developed bioinformatic tools that offer
a promising and high-throughput alternative by computationally predicting the putative host ranges
of bacteriophages, including those challenging to grow in laboratory environments.
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1. Introduction

There are approximately 1031 viruses on earth [1]—more than stars in the observable
universe. The vast majority of this diverse virosphere consists of bacteriophages, i.e., viruses
that infect and prey on bacteria. Independently discovered by Frederick William Twort and
Félix d’Herelle in the early 1900s [2,3], these abundant biological entities have since been
routinely used for a multitude of purposes—ranging from diagnostics [4], to drug design
and discovery [5,6], to vaccine development [7], to agriculture [8], to food preservation and
safety [9], and to wastewater treatment [10].

In order to leverage the bactericidal effects of bacteriophages for these applications,
bacterial host ranges (i.e., collections of bacterial species and strains that support the life
cycle of the bacteriophage) need to be established. Several experimental techniques allow
for the study of bacteriophage–host relationships (such as spot, plaque, and liquid assays,
viral tagging, microfluidic PCR, phageFISH, and single-cell genomics [11]). However, they
are often time- and labor-intensive, costly, and can be scientifically challenging (e.g., due to
inconclusive or absent signs of infection [12]). These approaches are also inherently limited
in scope due to both the bacterial cultures used in the experiments—with a limited number
of microbial hosts [13,14] and viruses [15,16] being amendable to cultivation—as well as
the conditions under which they are performed in the laboratory (such as growth media
and temperature [17]).

Recent advances in sequencing technologies have enabled the discovery and iden-
tification of bacteriophages and their hosts from environmental (rather than cultivated)
samples, thus providing an important avenue to comprehensively study the natural viral
diversity [18,19]. In concert with these technical advances, many bioinformatic approaches
have been developed to computationally predict putative bacteriophage host ranges at
large scale, based on genomic features shared between bacteriophages and their bacterial
hosts through their co-evolution over time. Although predictive by their nature, these tools
can highlight the most promising candidates for subsequent experimental work to validate
the bacteriophage’s ability to identify and adsorb to the host, as well as to characterize
infection cycles, bacteriophage–host interactions, and lysis efficacy.
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In this review, we provide an overview of several available computational host pre-
diction methods, discuss similarities and differences in their design, and provide key
considerations when choosing between different approaches.

2. Methods to Computationally Predict Bacteriophage Host Ranges

Bioinformatic approaches to computationally predict putative bacteriophage host
ranges can be broadly classified into three categories: (i) alignment-based methods based
on sequence homology and sequence similarity, (ii) alignment-free methods based on
sequence composition and genomic features, and (iii) machine-learning-based methods.

2.1. Alignment-Based Methods

Many factors can impact bacteriophage host specificity. Temperate bacteriophages can
integrate their own genomes into that of their bacterial hosts as lysogenic prophages [20].
This process often alters the phenotype of the host, which can lead to an increased fitness
(e.g., by providing antibiotic resistance, increasing virulence, producing toxins, or prevent-
ing further (super)infections; see review by Touchon and colleagues [21]). At the same time,
many bacterial hosts guard themselves against virulent bacteriophages and other invaders
by employing a variety of restriction-modification (RM) and clustered regularly interspaced
short palindromic repeats (CRISPRs)/Cas (CRISPR-associated protein) strategies [22,23].
In the latter case, a stretch of nucleotides from the invasive genetic material is incorporated
into a CRISPR spacer array upon infection (adaptation), and this new spacer is used as a
guide to create site-specific cleavages, ultimately leading to the degradation of the invading
bacteriophage (immunity) [24]. In both scenarios, the host genome is ultimately altered by,
or due to, the invading bacteriophage.

Alignment-based methods rely on these host–virus shared sequences to computation-
ally predict host ranges from sequence homology (i.e., the common evolutionary ancestry
between sequences) and sequence similarity. Many alignment-based methods—including
the most prominent example, the Basic Local Alignment Search Tool (BLAST [25])—are
straightforward to use, for example by comparing a user-provided viral sequence with
those of putative bacterial hosts publicly available in well-maintained (reference) databases.
Consequently, the inference of virus–host relationships through alignment-based methods
is limited by the comprehensiveness and completeness of the used databases. On the one
hand, sequences of bacteriophages that infect a single host not yet present in a database
might yield no results; on the other hand, sequences of bacteriophages that exhibit a broad
host range might yield multiple results, often ranked by some user-defined criteria (e.g., the
overall length of similar sequence) to improve manual/visual dissemination. However,
such rankings can also introduce challenges: (i) rankings may change depending on the
criteria and thresholds used, (ii) the highest ranked result may not be the most prevalent
host (or, in fact, it may not be a host at all), (iii) mosaic bacteriophage genomes may point
towards several (equally well supported) related hosts, and (iv) comparable results may
arise between distantly related viruses and bacterial species due to spurious alignments or
other artifacts.

To circumvent some of these issues, Zielezinski and colleagues [26] developed a com-
putational tool, Phirbo, that exploits the full range of BLAST results. Phirbo works under
the assumption that the similarity between a pair of bacteriophage and host sequences is
proportional to the overlap between their independent BLAST searches against the same
dataset. Specifically, Phirbo generates two ranked lists from two independent BLAST
searches—one using a bacteriophage-reference dataset and one using a host-reference
dataset—and compares them using the Ranked-Biased Overlap metric [27], a procedure
that has been shown to improve precision compared to several other state-of-the-art host
prediction tools [26].
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2.2. Alignment-Free Methods

Viral and host sequences may lack sequence homology, making them less well-suited
for alignment-based methods. In these cases, alignment-free methods offer a promising
alternative to infer bacteriophage–host relationships by studying the similarity in patterns of
sequence composition, such as codon usage or oligonucleotide (short nucleotide fragment)
frequency [11]. Such similarities in patterns of sequence composition are expected from
first principles. For example, viruses frequently corrupt the translational machinery of their
hosts to synthesize their own viral proteins [28], and this synthesis is generally more efficient
if the codon usage patterns of the virus matches that of its host [29,30]. Taking advantage
of this relationship, Crane, Versoza and colleagues [31] determined the codon usage bias
of 129 mycobacteriophages across 14 putative mycobacterial hosts using COUSIN [32] to
obtain important insights into putative mycobacterial host ranges in nature. Bacteriophage
genomes can also acquire molecular characteristics of their hosts due to exposure to similar
genome-wide mutational pressures, a process referred to as ‘genome amelioration’ [33–35].
By matching the nucleotide composition of their hosts, bacteriophages are able to avoid
host RM systems that recognize specific tetranucleotides [36].

Alignment-free, sequence composition-dependent tools can be categorized by whether
the genome-wide signature of a viral sequence is compared to (i) a database of potential
hosts (virus–host similarity), or (ii) a database of viruses with known hosts (virus-virus
similarity). Examples of the first category include VirHostMatcher [37] which calculates
virus–host similarity by comparing oligonucleotide frequencies between the viral sequence
and those of potential hosts, and WIsH [38] which calculates virus–host similarity in terms
of differences in frequencies of oligonucleotides of a specified length (so-called ‘k-mers’). In
contrast, HostPhinder [39], an example of the second category, uses virus-virus similarity
measures, assuming that similar oligonucleotide usage between viruses indicates shared or
closely related hosts.

2.3. Machine-Learning Methods

In addition to alignment-based and alignment-free methods, machine-learning (ML)
approaches have found a home in bacteriophage research in general [40] and in the pre-
diction of bacteriophage–host interactions specifically [41]. In order to infer virus–host
relationships, ML approaches utilize ‘features’, i.e., measurable properties of the object be-
ing analyzed such as the nucleotide and amino acid content of the viral genome, amino acid
properties, and protein domains (see [42] for a comparison of feature representations). For
example, both the Host Taxon Predictor (HTP) [43] and the Prokaryotic virus Host Predictor
(PHP) [44] tools use nucleotide features to predict bacteriophage–host interactions, with
HTP representing the bacteriophage sequence using absolute and relative frequencies of
oligonucleotides as well as nucleic acid types, and PHP using a Gaussian model to predict
hosts based on the oligonucleotide frequency differences between viral and host genome
sequences. In contrast, PredPHI (Predicting Phage–Host Interactions [45]) identifies pu-
tative bacteriophage hosts using a mix of amino acid frequency, chemical composition,
and molecular weight as feature representations. Similarly, VirHostMatcher-Net [46]
integrates multiple features, including virus-virus similarity, virus–host alignment-free
similarity, virus–host alignment-based similarity, and virus–host CRISPR-based similar-
ity, to predict virus–host interactions. BacteriophageHostPrediction [41] uses more than
200 features—ranging from genomic sequences (such as nucleotide and codon frequencies
and GC-content), to protein sequences (such as amino acid frequency), to protein secondary
structure (such as α-helix and β-sheet frequencies), and to physicochemical properties
(such as molecular weight and isoelectric point)–to represent receptor-binding proteins
which play a crucial role in determining host specificity by recognizing receptors on the
surface of the bacterial host [47]. At a higher level of sequence representation, PHERI [48]
infers bacterial hosts from bacteriophage sequences through annotated protein sequence
clusters.
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3. Bacteriophage–Host Databases

Experimental evidence through bacteriophage isolation and cultivation remains, when-
ever possible, the gold standard in determining bacteriophage host ranges. However, ex-
perimental validation is often time- and labor-intensive. For example, nearly half a decade
passed between the initial prediction and concrete experimental evidence that crAssphage–
a highly abundant bacteriophage in the human gut microbiome–can infect bacteria of the
genus Bacteroides [49,50]. As a consequence, information regarding bacteriophage–host
relationships remains sparse, with information deposited in the well-established National
Center for Biotechnology Information (NCBI) RefSeq and GenBank databases often being
either restricted to the genus and/or species level or limited to a handful of samples [51].
The recently developed Viral Host Range database (VHRdb [52])–a web-based tool that
integrates host range data as an analysis tool and search engine–aims to collect additional
data by allowing researchers to directly share their experimental findings with the scientific
community (at the time of writing, 16,715 interactions between 760 viruses and 1923 hosts
have been recorded). Given the need of validated training datasets, bacteriophage–host
databases such as VHRdb are expected to play a significant role in the development of
future ML methods.

4. Method Choice: Key Considerations
4.1. Prediction Accuracy

Apart from their underlying algorithms, bacteriophage–host prediction tools also differ
in their prediction accuracy, i.e., the percentage of bacteriophages for which the taxonomy of
their predicted and known hosts agree [46]. Prediction accuracy can be reported at different
taxonomic levels—ranging from the family, genus, and species levels down to the phylum
and domain levels. It is thus important to consider which taxonomic levels were measured
when selecting the most appropriate tool for any analysis. Methodological differences
(such as the type of data included in the benchmarking process) can further contribute to
differences in prediction accuracy between tools. Hence, comparisons should ideally be
performed using a uniform benchmarking dataset. Using such uniform benchmarking data,
Zielezinski and colleagues [26] performed a comparison between a variety of alignment-
based, alignment-free, and ML-based host-range prediction tools, demonstrating that tools
based on sequence homology generally have a higher predictive accuracy than those reliant
on sequence composition similarity (see their Tables 1 and 2).

A challenge faced by researchers working with environmental samples is the non-
uniform abundance of microbial species present in a metagenomic sample. As sequencing
technologies are optimized for moderate- to high-coverage individual samples, metage-
nomic samples often result in different read coverage profiles across different genomes [53].
Due to these differences, contigs (a gapless stretch of nucleotide sequence generated by
overlapping sequencing reads [54]) obtained from metagenomic samples are frequently
short, resulting in genome assemblies that are fragmented and/or incomplete [55]. This
is a non-negligible factor in the prediction accuracy of most tools, with short viral contigs
(<10 kb) generally experiencing a significant drop in prediction accuracy [26,37,44]. A no-
table exception in this regard is the tool WIsH, which matches VirHostMatcher’s full-length
genome prediction accuracy with merely 3 kb of nucleotide sequence, thus establishing
itself as an alignment-free alternative for samples containing short viral contigs.

4.2. Usability

Operating system restrictions can be an important aspect in the choice of a suitable
bacteriophage–host prediction tool. In order to facilitate both automation and reproducibil-
ity, the majority of prediction tools rely on the command line interface (CLI) embedded
within UNIX-based operating systems (such as Linux and macOS) (see Table 1). Conse-
quently, users of other operating systems (such as Windows and Chrome OS) will need
to either purchase a dedicated machine or install the necessary operating system on an
available machine, for example via dual boot or a virtual machine. Windows users can also
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leverage the Windows Subsystem for Linux (WSL) to allow native Linux programs to run
on Windows.

Table 1. Computational methods in predicting bacteriophage host ranges.

Prediction Tool Input Output User Interface Key Considerations Reference

A
li

gn
m

en
t-

ba
se

d

Phirbo
two ranked lists
(phage and host

genomes)

phage–host
predictions CLI (Python) Linux and macOS

multi-threading support [26]

HostPhinder phage FASTA file predicted hosts web-based not limited to any OS [39]

VirHostMatcher
phage FASTA file
host FASTA file

taxonomy text file

dissimilarity
index phage–host

pairs
CLI (Python) Linux, macOS, Windows [37]

A
li

gn
m

en
t-

fr
ee

WIsH phage FASTA file
host FASTA file predicted hosts CLI (C++) Linux and macOS

multi-threading support [38]

Bacteriophage-
HostPrediction phage FASTA file predicted hosts CLI (Python) Linux and macOS [41]

M
ac

hi
ne

-l
ea

rn
in

g-
ba

se
d

Host Taxon
Predictor (HTP)

phage FASTA file Predicted host
lineages

CLI (Python) Linux and macOS [43]

Prokaryotic
virus Host

Predictor (PHP)
phage FASTA file predicted hosts CLI (Python);

web-based

Linux and macOS
user-defined training

models
[44]

PredPHI
protein sequences

(phage–host
pairs)

phage-host
predictions CLI (Python) Linux and macOS [45]

PHERI phage FASTA file

predicted hosts
predicted shared

genes protein
sequence clusters

CLI (Python) Linux and macOS [48]

VirHostMatcher-
Net phage FASTA file predicted hosts CLI (Python) Linux and macOS

multi-threading support [46]

CLI, command line interface; OS, operating system; FASTA file, text file representing nucleotide or amino acid
sequences.

Web-based prediction tools (such as HostPhinder and PHP) offer a valuable alternative.
Apart from being user-friendly and intuitive, web-based tools avoid the inconvenience of
installation and potential dependency issues, as their only requirement is a compatible
browser. However, a major drawback of web-based tools is their cap on input data. For
example, while the web-based version of PHP is limited to <100 viruses, the stand-alone ver-
sion can analyze datasets that are orders of magnitude larger [44]. An additional advantage
of many phage–host prediction CLI tools (including Phirbo, WIsH, and VirHostMatcher-
Net) is multi-threading which increases the speed of the analyses.

5. Conclusions

Due to their bactericidal effects, bacteriophages are now routinely used for a multitude
of biotechnological and clinical purposes, including personalized phage therapy to treat
multi-drug resistant infections [56]. Although large-scale bacteriophage banks (such as the
Phage Directory [57]) offer a broad range of bacteriophages to the scientific community, the
host range that a bacteriophage can infect must be known in order to effectively guide the
usage of bacteriophages in these disciplines. Traditional methods to experimentally charac-
terize host ranges–phage isolation and cultivation–remain the gold standard. However,
they are time-intensive and thus ill-suited for large-scale analyses. Recently developed
computational prediction tools offer a promising alternative, allowing researchers to nar-
row down the sheer quantity of potential hosts to a limited set that can feasibly (and more
cost-efficiently) be tested in a laboratory setting. As tools employ different strategies to
predict bacteriophage–host relationships–each with their own advantages and disadvan-
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tages, the use of multiple, complementary prediction tools can help to select the most
promising candidates, especially for bacteriophages with large host ranges. For example, if
time and computational resources permit, a three-way combination of alignment-based,
alignment-free, and ML approaches may be used to select those that have been predicted
by all three strategies for experimental validation as well as characterization of infection
cycles and bacteriophage–host interactions. Although a vast diversity of bacteriophages
and bacterial hosts remain to be discovered, advances in genomic databases, machine
learning, and high-performance computing have begun to pave the way towards even
more sophisticated and accurate computational methods in the near future.
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