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Abstract

Background: Conventional epidemiological surveillance of infectious diseases is focused on characterization of incident
infections and estimation of the number of prevalent infections. Advances in methods for the analysis of the population-
level genetic variation of viruses can potentially provide information about donors, not just recipients, of infection. Genetic
sequences from many viruses are increasingly abundant, especially HIV, which is routinely sequenced for surveillance of
drug resistance mutations. We conducted a phylodynamic analysis of HIV genetic sequence data and surveillance data from
a US population of men who have sex with men (MSM) and estimated incidence and transmission rates by stage of
infection.

Methods and Findings: We analyzed 662 HIV-1 subtype B sequences collected between October 14, 2004, and February 24,
2012, from MSM in the Detroit metropolitan area, Michigan. These sequences were cross-referenced with a database of
30,200 patients diagnosed with HIV infection in the state of Michigan, which includes clinical information that is informative
about the recency of infection at the time of diagnosis. These data were analyzed using recently developed population
genetic methods that have enabled the estimation of transmission rates from the population-level genetic diversity of the
virus. We found that genetic data are highly informative about HIV donors in ways that standard surveillance data are not.
Genetic data are especially informative about the stage of infection of donors at the point of transmission. We estimate that
44.7% (95% CI, 42.2%–46.4%) of transmissions occur during the first year of infection.

Conclusions: In this study, almost half of transmissions occurred within the first year of HIV infection in MSM. Our
conclusions may be sensitive to un-modeled intra-host evolutionary dynamics, un-modeled sexual risk behavior, and
uncertainty in the stage of infected hosts at the time of sampling. The intensity of transmission during early infection may
have significance for public health interventions based on early treatment of newly diagnosed individuals.
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Introduction

Variation in the timing of transmissions over the course of an

infection can have large consequences for the design of HIV

prevention programs [1]. For example, interventions focused on

increasing treatment rates (treatment as prevention [TasP]) are

only able to block transmissions that occur after diagnosis, entry

into care, and consistent adherence to antiretroviral treatment.

Consequently, TasP will preempt fewer transmissions as the

proportion of transmissions from early infections rises. Highly

elevated transmission rates early in infection are both biologically

and sociologically plausible. The transmissibility of HIV per sexual

encounter depends on the viral load within infected hosts [2,3],

which peaks during early HIV infection (EHI) and also rises during

stage 3 (AIDS) [4]. Likewise, a recently infected individual is likely

to have been infected during a period of high-risk behavior; if the

high-risk behavior extends through EHI, then the interaction of

elevated viral load and risky behavior can potentially elevate

transmission rates during EHI.

Several mathematical analyses have argued that transmission

rates during early infection drive the HIV-1 epidemic [5,6]. That

early infection transmissions drove the early epidemic is clear. But

what drives transmission later in the epidemic remains controver-

sial. A recent survey of estimates of the proportion of transmissions

from EHI based on mathematical models of HIV transmission

found very wide ranges, including scenarios where nearly all or

almost no transmissions were coming from EHI [2]. The surveyed

mathematical studies [2] attempted to fit diverse models of HIV

transmission to indirect data such as diagnoses over time. The

variation in parameter estimates could be due to real differences

between the study populations, but it could also be due to a

fundamental limitation of the data used to fit these kinds of

models. Mathematical models of HIV transmission are essential

for understanding HIV dynamics, but model-based analysis of

diagnosis data alone has not yielded consistent estimates of the

timing of HIV transmission over the course of infection.

Direct measurement of the timing of HIV transmission is

possible in large population-based cohort studies that follow

recently infected individuals and their uninfected partners [7,8].

Careful monitoring for seroconversion of the uninfected partner

and administration of questionnaires about sexual practices can

paint an empirically driven picture of the timing of transmission

events over the course of an infection. However, longitudinal

partner studies are expensive and lack generalizability because risk

behavior is highly variable over time and between risk groups.

Traditional surveillance data that are used to estimate incidence

and prevalence of infection have little value for estimating the

intensity of transmission during EHI, because outside of the very

early epidemic period, a given incidence curve can be consistent

with either high or low levels of EHI transmission. Methods have

been developed to back calculate the incidence over time [9,10]

using information about the stage of infection of patients at the

time of diagnosis, and estimates can be further refined by

incorporating diverse data sources such as behavioral surveillance

and seroprevalence surveys [11]. These methods are essential in

evaluating the efficacy of prevention programs; however, the

timing of transmission events cannot be identified from incidence

data alone [12].

HIV genetic sequence data can potentially augment traditional

surveillance data to estimate the timing of HIV transmissions.

After the advent of highly effective antiretroviral therapy

(HAART), increasing concerns about transmitted drug-resistant

mutant strains of HIV, coupled with rapidly dropping prices for

genetic sequencing, led to an abundance of HIV genetic sequence

data from infected individuals in nearly all regions of the United

States. There is substantial molecular epidemiological evidence

that variation in transmission rates over the course of infection

influences the genetic diversity of HIV [13–16]. For example, viral

sequences isolated from patients who were recently infected tend

to be phylogenetically clustered (more closely related to one

another than expected by chance). Simple models of HIV

transmission have been shown to reproduce these phylogenetic

patterns [17], suggesting that the transmission rate from EHI

could be identifiable from genetic data. The probability of

observing a particular viral phylogeny depends not only on the

historical dynamics of HIV in the population but also on the stage

of each patient at the time of sampling. For example, a sample

comprised of only EHI patients will yield a different phylogeny

than one comprised of only AIDS patients, the former having

many more short external branches [17].

Recent advances [18–21] in population genetic methods have

enabled the fitting of formal epidemiological models to viral

sequence data. We use these methods to estimate HIV incidence,

HIV prevalence, and the timing of transmission using both genetic

sequence data and conventional HIV surveillance data. These

methods may detect intensified transmission during EHI and

reduced transmission following diagnosis, and may illustrate how

the fraction of transmissions attributable to EHI has varied over

the course of the epidemic.

Methods

Ethics Statement
This research was reviewed by the Institutional Review Boards

at the University of Michigan and the Michigan Department of

Community Health (MDCH). Data used in this research were

originally collected for HIV surveillance purposes. Data were

anonymized by staff at the MDCH before being provided to

investigators. Because this research falls under the original

mandate for HIV surveillance and the data were de-identified,

the study was classified as human subjects research but was exempt

from further Institutional Review Board review.

Data
As previously described in [17], the MDCH curates a database

of partial pol HIV-1 sequences collected as part of routine clinical

care and surveillance of drug-resistant mutant strains. MDCH

provided an anonymized database of 9,002 sequences linked to

clinical, demographic, and behavioral covariates of the patients

from whom the sequences were isolated. Sequences were collected

from October 14, 2004, through February 24, 2012 (Figure S1).

2,808 of these sequences correspond to men who have sex with

men (MSM) in the Detroit metropolitan area (DMA), Michigan.

To be included in the analysis each record must (1) have an HIV-1

subtype B sequence, (2) have a sequence from a HAART-naive

patient within 12 mo of initial diagnosis, and (3) be collected from

a man who has sex with men, residing in the DMA. Additionally,

to achieve an analytically tractable sample size, we restricted our

analyses to records that (4) have a high-quality sequence of at least

1,200 nucleotides. 662 of 2,808 sequence records collected from

DMA MSM met all inclusion criteria. Demographic and clinical

attributes of the study sample and the population are described in

Table 1 and in Data S1. Details of the sequence selection,

alignment, and quality control are contained in Text S1.

MDCH also provided anonymized surveillance data for 30,200

diagnoses reported in Michigan through March of 2012. 9,127 of
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these records corresponded to diagnoses from MSM in the DMA.

These records contained CD4 cell counts, primary risk behavior,

county of residence, and diagnosis dates of any AIDS-defining

illnesses. The mean CD4 count upon diagnosis and number of

AIDS/non-AIDS diagnoses were abstracted from these data and

used for model-fitting and validation. Throughout this manuscript,

‘‘AIDS’’ refers to stage 3 HIV infection as defined in [4].

Phylogenetic Inference
The pattern and timing of coalescent events were inferred using

relaxed clock phylogenetic methods [22] implemented in BEAST

[23]. We used a log-normal relaxed clock model informed by the

sequence data [22] that accounts for variable evolutionary rates

within [24] and between lineages. The full parameters of the

BEAST analysis, convergence diagnostics, and details of sequence

alignment and quality control are reported in Text S1 [25–29].

To give insight into how frequently HIV lineages are introduced

into DMA MSM from other geographic or risk behavior groups,

we supplemented our data with 100 sequences from the Los

Alamos National Laboratory HIV Sequence Database. Sequences

with high similarity to at least one of 662 DMA MSM sequences

were sampled. These sequences were included in subsequent

phylogenetic and coalescent analysis.

To ease the computational burden of analyzing 662 sequences,

phylogenetic analysis proceeded in two steps. First a neighbor

joining tree was calculated using all sequences (TN93+Gamma

model). Then the tree was divided into nine clades by selecting

branches close to the root of the tree. Nine disjoint multiple

sequence alignments were generated, corresponding to taxa in

each clade, which were then independently analyzed with BEAST.

Ten trees were sampled from the results of these nine BEAST

analyses (90 phylogenies in total) in order to capture uncertainty in

topology and branch lengths. These trees were used in subsequent

coalescent analysis.

We found that the estimate of the height of the tree—the time to

the most recent common ancestor (TMRCA) of the whole

sample—was not well identified by the sequence data alone. This

common issue arises when the height of the tree and the mean

evolutionary rate cannot be fully resolved. To alleviate this

problem, we constrained the height of the tree by using a uniform

prior on the TMRCA between 1970 and 1982. In subsequent

coalescent analyses, we sampled the posterior distribution of trees

estimated by BEAST and then merged nine clades at a

polytomous root. To render branch lengths comparable between

different BEAST analyses, we calculated the mean substitution

rate across a sample of trees from each of nine BEAST analyses

and then adjusted the substitution rate within each tree to this

mean value. Because phylogenetic relationships in the distant past

carry little information about the epidemic close to the present,

and in order to reduce the computational burden of fitting the

population genetic model, the subsequent coalescent analysis used

only the portion of the tree dating from 1990 onwards.

Transmission Model
The transmission model that we used to estimate the incidence,

prevalence, and timing of transmission events is an extension of a

model used by Bezemer et al. [12] and Hogan et al. [30]. There

are three essential components to the model structure: the

incidence rate, the diagnosis rate, and the natural history of

infection. The model is illustrated in Figure 1 and described in

detail in Text S2. The natural history of infection is modeled with

a system of ordinary differential equations that tracks infected

individuals as they progress through EHI, three chronic stages of

infection, and AIDS. Diagnosed and treated individuals progress

through infection at a reduced rate. The model incorporates

empirical death rates from natural and AIDS-related causes. The

model closely reproduces empirical observations regarding the

time from infection to AIDS (Text S2).

Table 1. Comparison of demographic and clinical variables for DMA MSM with sequences and those included in the estimated
phylogenies.

Variable Category DMA MSM with Sequences DMA MSM in Phylogeny

n Percent n Percent

Race

Black 1,333 69% 473 71%

White 497 26% 153 23%

Hispanic 52 3% 24 4%

Multiracial/unknown/other 55 2% 12 2%

County

Detroit 1,095 56% 359 54%

Oakland 377 19% 140 21%

Wayne 287 15% 88 13%

Macomb 131 7% 61 10%

St. Clair 21 1% 8 1%

Monroe 16 1% 1 0%

Lapeer 10 1% 5 1%

AIDSa 416 21% 121 18%

FAS+b 143 7% 88 13%

aHIV diagnosis concurrent with AIDS diagnosis.
bHIV diagnosis concurrent with low sequence ambiguity.
doi:10.1371/journal.pmed.1001568.t001
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We defined EHI to have a mean duration of 1 y. This duration

was chosen instead of the more commonly used durations of 2 or

6 mo because the simulation studies described in Text S3 revealed

that transmission rates for shorter periods were not identifiable

given the available number and quality of HIV sequences.

Both the diagnosis rate and incidence rate were modeled using

separate cubic B-splines [30]. Splines are a semi-parametric

method for defining a very wide range of curves with relatively few

parameters. Using splines is a flexible approach that can

approximately capture patterns generated by heterogeneities in

behavior and diagnosis patterns without explicitly modeling them.

We also modeled importation of lineages into the DMA MSM

risk group by adding an additional compartment that represents

infected hosts outside of the DMA MSM risk group. DMA MSM

emigrate out of the risk group at a constant per capita rate, and

immigration rates balance emigration rates by design, such that

prevalence is unchanged by migration dynamics.

We also estimated the HIV incidence from the surveillance data

using a back-calculation method [9]. The back-calculation

estimator is derived from sample survey statistics and is based on

the ratio of the number of total diagnoses to the subset determined

to have been recently infected [31].

Parameter Estimation
The stage of infection at the time of sequencing of every patient

with sampled sequence data was estimated using a naive Bayes

classification method as described in ‘‘Estimating Stage of

Infection’’ in Text S4. Covariates that were used for estimating

stage of infection included the CD4 counts within 6 mo of

diagnosis, whether the patient was diagnosed with AIDS within

2 mo of HIV diagnosis, and a measure of HIV sequence diversity.

High sequence diversity is an indicator of a diverse intra-host viral

population resulting from a long period of intra-host evolution and

has previously been shown to be highly informative about the

recency of infection [32]. The transmission model was fitted by

maximum likelihood. The likelihood of the joint diagnosis time

series data and of the genetic sequence data is given in Text S4.

Full derivations of the likelihood of the genetic data are given in

[18,20,33]. These methods model each lineage in the viral

phylogeny at each time point as corresponding to a single infected

host. The model does not assume complete sampling and correctly

accounts for the possibility that a lineage may pass through

multiple unsampled hosts. Each node in the phylogeny is modeled

as corresponding to a transmission event. These are reasonable

approximations for many rapidly evolving RNA viruses including

HIV [20,34,35] (see simulations in Text S3). The likelihood of the

genetic data is computed by deriving the probability that each

lineage in the phylogeny at each time point corresponds to an

infected individual at a given stage of infection and diagnosis

status. For example, the estimated stage of infection on the interior

of the phylogeny is illustrated in Figure 1 for the HIV phylogeny of

662 patients. This figure shows that the state of an ancestral

lineage at an internal node of the tree is likely to correspond to an

EHI, owing to the large fraction of transmissions attributable to

newly infected individuals.

The likelihood was numerically optimized using the simplex

method via optim in R [36] to obtain maximum likelihood

estimates (MLEs) of the transmission model parameters. Likeli-

hood profiles were calculated for each transmission parameter.

Credible intervals were calculated using an empirical Bayes

approximation [37] (see ‘‘Model fitting’’ in Text S4). This

approach uses a prior distribution that is calculated directly from

the data. We constructed a multivariate uniform prior with bounds

given by the 97.5% CIs calculated for each transmission

parameter using the profile method.

To estimate parameters describing incidence, prevalence, and

diagnosis rates through time, the model depicted in Figure 1 was

fitted to diagnostic time series without using genetic data. To

estimate the relative contribution of different stages of infection to

total transmissions, the model was fitted to the genetic data while

keeping fixed the parameters that describe incidence, prevalence,

and diagnosis rates through time. This approach does not make

full use of the genetic data, which may carry information about

incidence and prevalence as well, but it is computationally

efficient, since only a few parameters need to be estimated with

the genetic data.

The robustness of inferences to phylogenetic error was assessed

both by simulation techniques and by replicating parameter

estimates across multiple independent estimated phylogenies.

Uncertainty of the topology and branch lengths of estimated

phylogenies (Figure S2) can lead to error in parameter estimates

that is difficult to quantify. In ‘‘Simulations and Sensitivity

Analysis’’ in Text S3, a simulation experiment is described that

demonstrates that transmission rates in the first 6 mo of the

infectious period cannot be inferred on the basis of the number

and length of currently available sequences. Simulation experi-

ments also show that it is feasible to estimate transmission rates

within the first year (our definition of EHI) and to distinguish

differing rates between chronic infection and late infection.

Results

Figure 2A and 2B illustrates the estimated fractions and total

numbers of transmissions that originated from EHI and chronic

infections. Transmissions by EHI dominated during the early

epidemic (1980–1990), reflecting the larger prevalence of EHI as a

proportion of the total number of infections and the relative

intensity of transmission from this group [6]. The estimated

fraction of transmissions attributable to EHI has stabilized since

the early 1990s. Combined analysis of genetic and time series data

yields an estimate of 44.7% (95% CI, 42.2%–46.4%) for the

fraction of transmissions originating from EHI (approximately the

first year of infection) at the beginning of 2007. This reflects about

a 4.2-fold increase in transmission rates during EHI relative to the

entire infectious period and an 8-fold increase in transmission rates

relative to chronic infection. This credible interval and subsequent

credible intervals are based on the fitting of a single model. These

estimates do not reflect uncertainty due to model misspecification.

Models with different parameterizations for the infectiousness of

Figure 1. HIV transmission model and phylogeny. Top: A flow diagram describing the mathematical model fitted to surveillance time series
and the HIV-1 phylogeny. Arrows of different colors represent the time-dependent rates at which transitions occur. Infected individuals progress from
EHI to AIDS and may also become diagnosed (‘‘D.’’), as represented by black and green arrows. Orange arrows represent natural mortality. Incidence
occurs at the rate l(t) (red arrow). A more detailed diagram is shown in Figure S6. Bottom: HIV-1 phylogeny comprising virus samples from 662
patients and ancestral states estimated using the methods in [18]. The tree has been randomly downsampled to include 250 terminals for
perspective. Colors at the terminals of the phylogeny represent the estimated stage of infection of the host at the time of sampling based on clinical
data. Colors on the interior of the phylogeny represent the estimated stage of infection of the host harboring virus that is ancestral to the sample.
Yellow corresponds to lineages that are likely to represent infections from outside of the DMA MSM risk group.
doi:10.1371/journal.pmed.1001568.g001
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diagnosed individuals or different interaction effects could yield

different estimates (Table S1).

The true number of transmissions from diagnosed individuals

depends on many factors, including the number of infected

individuals who are diagnosed, the extent to which knowledge of

infection reduces infectiousness, and the effectiveness of HAART

at reducing transmission probabilities per sexual act. We estimate

that transmissions from diagnosed individuals have trended

upwards in recent years, which reflects that a steadily increasing

proportion of infections are now diagnosed (Figure 2). We estimate

that 52.4% (95% CI, 51.1%–53.9%) of transmissions originated

from diagnosed individuals in 2007 (Figure 2C and 2D) [38]. We

found that the proportion of transmissions from EHI mirrors the

trend in diagnoses late in infection over time. Figure 3 shows the

fraction of diagnoses concurrent with AIDS diagnosis and the

estimated number of diagnoses during EHI. We categorized all

diagnoses prior to the availability of the first HIV test (1985) as

AIDS. AIDS diagnoses have fallen over time, while the number of

diagnoses during EHI has risen dramatically since the mid-1990s

from zero to an estimated 21.7% of current diagnoses. Estimated

diagnosis rates are shown in Figure S3. The reported number of

diagnoses that are concurrent with AIDS diagnosis is in close

agreement with the model-estimated number of AIDS diagnoses in

Figure 3. We found that diagnosis rates have risen consistently

since the HIV test became available in 1985, and the time from

infection to diagnosis has steadily decreased.

The mean CD4 cell count of patients at the time of diagnosis is

indicative of the trend of increasing diagnosis rates. The average

CD4 count for new diagnoses by year is shown in Figure 3. While

CD4 counts are a very noisy and unreliable indicator of time since

infection on an individual basis, aggregated CD4 counts follow an

almost linear trend. The CD4 data were not used when estimating

diagnosis rates, but are a useful check that the model is giving

realistic estimates. Also shown in Figure 3 is the mean CD4 count

for new diagnoses predicted by the MLE model fit, as well as the

best-fitting CD4 counts by stage of infection as described in ‘‘CD4

and Model Validation’’ in Text S3.

Estimated incidence and cumulative diagnoses of HIV infection

for DMA MSM are shown in Figure 4. As of the beginning of

2012, there have been a total of 9,127 HIV diagnoses in DMA

Figure 2. Estimated transmission patterns through time. Lines show the MLE, and shaded regions show the 95% credible interval. (A)
Estimated number of transmissions originating from individuals in different stages of infection: EHI, chronic infection, and AIDS. (B) The estimated
fraction of transmissions attributable to EHI, chronic infection, and AIDS. (C) Estimated number of transmissions originating from diagnosed and
undiagnosed individuals through time. (D) The estimated fraction of transmissions attributable to diagnosed and undiagnosed infections through
time. Estimated credible intervals reflect the fit of a single model to the data and do not incorporate uncertainty due to model misspecification error.
doi:10.1371/journal.pmed.1001568.g002
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MSM. We estimate that there have been a total of 12,139

infections in DMA MSM, of which 6,084 are still living; of these

6,084, we estimate that 5,233 have been diagnosed. The estimated

current number of prevalent infections exceeds the number of

living diagnosed individuals by 16.3%. Approximately one in

seven infected individuals is unaware of his infection [39].

Estimates using the HIV model are very similar to those obtained

from widely used back-calculation methods [10,31] (Figure 4B),

despite the fact that the HIV model uses much more data and

more realistically models diagnosis rates and the natural history of

infection.

Following the initial rapid rises in the 1980s, we found that

incidence (Figure 4B) and the number of undiagnosed infections

(Figure S4) have been steady since the mid-1990s. The total

number of individuals living with diagnosed infections has trended

upwards since 1995 because of reduced mortality with effective

Figure 3. HIV diagnoses and CD4 cell count through time. (A) The sample proportion (points) and estimated proportion (lines) of diagnoses
that are concurrent with AIDS diagnosis over time, and the estimated proportion of diagnoses that are not concurrent with AIDS. The diameter of
points is proportional to the number of diagnoses used to calculate the proportions. (B) The sample mean (points) and estimated mean (lines) CD4
cell count in newly diagnosed individuals over time. The mean is calculated from CD4 counts aggregated by year. The diameter of points is
proportional to the number of CD4 counts used to calculate the mean. Inset: The mean CD4 cell count by stage of infection, which gives the best fit
(least squares) to the observed trend in mean CD4 count over time.
doi:10.1371/journal.pmed.1001568.g003

Figure 4. Estimated HIV diagnoses and HIV incidence through time. (A) Actual (blue) and estimated (red) cumulative HIV diagnoses in DMA
MSM. (B) Estimated incidence of infection over time. The red line shows estimated incidence from surveillance time series data. The blue line shows
estimated incidence using the back-calculation method.
doi:10.1371/journal.pmed.1001568.g004
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treatment (Figure S4). We estimate that incidence at the beginning

of 2007 stood at 256 new infections per year, and incidence at the

beginning of 2012 stood at 290 new infections per year; however,

there is a great deal of uncertainty in estimated incidence close to

the present.

Infectiousness can vary with stage of infection and diagnosis

status; however, it is not clear a priori which factors are necessary

to include in a model to provide a satisfactory fit to the data. We

conducted a data-driven comparison of several models that

differed in how relative infectiousness was described. Results of

this analysis are shown in Table S1. In the most general model,

three parameters describe the relative infectiousness of diagnosed

individuals, those with chronic infection, and those with AIDS.

The simplest models include only one parameter describing the

relative infectiousness of those with late infection (chronic and

AIDS) or diagnosed individuals. Analyzing the fits of these models

to the phylogenetic data provides strong support for the two-

parameter model, which includes parameters only for infectious-

ness of chronic infection and AIDS. Thus, we do not detect

reduced infectiousness with diagnosis; however, this finding may

be related to sample selection. Only sequences from recently

diagnosed individuals were considered in this analysis. It is possible

that analysis of sequences from individuals who have been

diagnosed for a long time may reveal reduced infectiousness with

diagnosis and treatment; however, the present HIV model is not

equipped to fit such data. The estimated fractions of transmissions

from EHI and diagnosed individuals are consistent across model

variants, with the exception of one model that fit the data poorly.

To give greater intuition into why variation in transmission rates

is identifiable from genetic data, we present simulated trees in

‘‘Simulated Trees’’ in Text S3. Simulations were carried out under

scenarios in which individuals with EHI transmit at greater rates

than those with chronic infections or at equal rates. The times and

states of patients in the simulated trees were chosen to match the

real data. In addition to the results presented in [17], these

simulations give a graphical representation of how EHI transmis-

sion influences HIV phylogenetic structure.

Discussion

We have estimated that almost half of transmissions occur

within the first year of infection in the contemporary HIV

epidemic among MSM in the DMA. This inference was made

possible by recently developed population genetic methods

[18,20,33] that enable characterization of the major sources of

transmission. These findings may have significance for control

strategies based on prophylactic use of antiretroviral medications.

TasP [1,40] is a strategy based on early administration of HAART

following HIV diagnosis in an effort to suppress viral loads and

reduce transmission probabilities. The impact that transmission

during early infection will have on TasP strategies has been a

subject of recent debate. Cohen et al. [41] present contrasting

views regarding the potential impact of EHI transmission on TasP

effectiveness. A simplistic interpretation of our results would hold

that a lower fraction of transmissions will be prevented by TasP

because a large fraction of transmissions are likely to occur before

diagnosis. A more nuanced view presented by Cohen et al. [41]

holds that high transmission during EHI and observed incidence

trends are consistent with a low reproduction number, and

therefore TasP may nevertheless have large population-level

impacts even if it prevents few transmissions directly. Contact

patterns and fluctuations in risk behavior can markedly raise the

fraction of transmissions from early infection [42], and these

factors were not modeled in this study. These same factors may

yield lower reproduction numbers at any given endemic preva-

lence level, so that TasP would have to prevent only a small

fraction of all transmissions in order to have very large population

effects.

The robustness of our conclusions depends on the sensitivity of

the conclusions to potential violations of several assumptions on

which the population genetic model is based. The population

genetic model accounts for the effects of incomplete sampling and

the possibility that a lineage in the viral phylogeny may pass

through more than one infected host. However, the approach

relies on the assumption that a single lineage at a given time

corresponds to a single infected host. This assumption would be

problematic if multiple lineages circulate in a host and are

independently transmitted. But a growing body of evidence

suggests that new infections are established by a very small

number of viral particles [34,43,44]. Virus derived from a single

transmitting host at a single transmission event is likely to have

limited diversity. In contrast, dual infection from distinct partners

may present a greater challenge to attempts to reconstruct

epidemiological dynamics from genetic data. Virus derived from

distinct partners is likely to be more diverse, which in the presence

of high levels of recombination makes estimation of an accurate

phylogeny difficult. Recent studies [45,46] have found low

prevalence of HIV dual infections (including super- and coinfec-

tion [47]). There is some evidence based on African heterosexual

cohorts that the incidence of super-infection is comparable to the

incidence of infection generally [48]. However, bias due to dual

infection will depend on when transmission occurs during the

course of infection. If transmission occurs early, it is more likely to

occur before a host is multiply infected. Additionally, if the super-

infecting strain has low abundance within the host, it is unlikely to

have a large influence on phylogenies estimated from consensus

sequences. We removed all sequences with evidence of recombi-

nation, further reducing the possibility of bias from dual-infected

hosts. In ‘‘Dual Infection’’ in Text S3, we provide a simple

calculation that gives the approximate bias that can be expected if

the prevalence of super-infection is 10%. In this scenario, the

estimated HIV incidence would be biased downwards by at most

3.75%.

This analysis assumes that the internal nodes of the phylogeny

represent transmission events. In reality, the viral lineage that is

transmitted may have arisen in the host some time before

transmission occurred [35]. The magnitude of the potential bias

introduced by this assumption is an empirical question that we

have addressed by simulation in ‘‘Simulations and Sensitivity

Analysis’’ in Text S3. By incorporating an empirical distribution

[49,50] for the time of common ancestry within hosts into

epidemic simulations, we have established that intra-host evolu-

tionary dynamics are unlikely to introduce large bias into our

estimates.

The methods that we presented in this paper are sensitive to

uncertainty both in the phylogeny and in the stage of infection of

patients at the time of sampling. Estimation of stage of infection is

very imprecise and is limited by the available clinical and self-

reported data. Improved antibody avidity assays promise to greatly

improve our ability to determine when newly diagnosed individ-

uals were infected. Serial sampling with deep sequencing of the

virus within hosts is another promising strategy to estimate the

time since infection [51]. Increasing the number, length, and

quality of sequence data can greatly improve the quality of the

phylogenetic reconstruction. In this study, we were limited to using

only about a quarter of potentially informative sequences by the

computational demands of both estimating a relaxed clock

phylogeny and fitting complex models to the estimated phylogeny
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(see ‘‘Computation’’ in Text S4). The value of genetic data for

epidemiological inference will increase as computational tech-

niques are developed that allow for the incorporation of more

sequences.

The accuracy of the phylogenetic reconstruction may also be

affected by sampling from different stages of infection. In our analysis,

the sample was skewed towards viral sequences from EHI or late

infections. The mean substitution rate varies over the course of

infection [24], adding an extra layer of complexity to the phylogenetic

analysis. We found that the mean substitution rate in external

branches of the phylogeny is significantly correlated (Pearson

correlation 20.17, p,0.001) with the estimated stage of infection of

the patient from whom the virus was sampled (Figure S5). This

correlation suggests that the relaxed clock methods that we used to

estimate the branch lengths in units of time was flexible enough to

account for variable rates of evolution over the course of infection.

While our conclusions are sensitive to many different sources of

error, we can evaluate the robustness of our conclusions by

reestimating parameters with simulated data where the true

parameter values are known. In Text S3, we describe several

simulation experiments designed to test the robustness of our

estimates to error in the phylogeny and to errors arising from

stochastic population dynamics. These simulations demonstrate that

it is feasible to estimate EHI transmission rates given the available

data. This analysis can be repeated with different HIV transmission

models, which may be appropriate when more is known about

heterogeneous risk behaviors and sexual networks. Sexual network

heterogeneity influences HIV phylogenetic structure [52,53], which

may make it possible to estimate features of the sexual network from

phylogenetic data [54]. Our estimated credible intervals are based

on the fit of a single model to the data, and models that more

realistically account for individual-level heterogeneities may yield

different estimates. Although we report estimates based on the

model that best fit the data, our estimated credible intervals do not

account for error due to model misspecification.

The analysis we have presented can be replicated for other cities

and risk groups where drug-resistant mutant strain sequence

databases are available and can be linked to clinical and

behavioral covariates for each patient. Phylodynamic analysis of

HIV can supplement routine surveillance, addressing the need to

monitor sources of transmission and generating the evidence

necessary to efficiently allocate resources and assess control

program effectiveness.

Supporting Information

Data S1 Comparison of clinical and demographic
characteristics of patients selected for phylogenetic
analysis and all patients diagnosed, 2004–2012.
(TXT)

Figure S1 Number of HIV sequences sampled in
Michigan by year.
(PNG)

Figure S2 Comparison of estimated terminal branch
lengths from relaxed clock phylogeny and the true
branch lengths from a simulated tree. Color indicates the

stage of infection of patient at time of sampling. Darker colors

indicate patients sampled earlier in the infectious period.

(PNG)

Figure S3 Estimated diagnosis rates over time.
(TIFF)

Figure S4 Estimated prevalence of infection over time.
(TIFF)

Figure S5 HIV nucleotide substitution rate and stage of
infection. Blue points: the mean substitution rate is compared to

the estimated stage of infection. The substitution rate for each

patient corresponds to an external branch in the relaxed clock

phylogeny estimated with BEAST. The stage of infection is

estimated from AIDS-defining illness, the frequency of ambiguous

sites of the HIV sequence, and CD4 as described in ‘‘Estimating

Stage of Infection’’ in Text S4. Red line: linear regression.

(PNG)

Figure S6 A flow diagram representing transitions
made by infected individuals in the HIV model. Boxes

represent categories of individuals who are infected with HIV and

who may be diagnosed or undiagnosed in any of five stages of

infection. Arrows represent the time-varying rates with which

individuals transition between categories.

(PNG)

Figure S7 A schema illustrating how data were used at
each stage of the analysis and how each analysis method
was used to generate each result. The corresponding

supporting text file that discusses each method is also listed.

Primary data are shown in the red rectangle, procedures are

shown in yellow ellipses, intermediate results are shown in grey

rectangles, and final results are shown in blue rectangles.

(PDF)

Figure S8 A flow diagram representing transitions
made by infected individuals in the source–sink HIV
model. Boxes represent categories of individuals who are infected

with HIV and who may be diagnosed or undiagnosed in any of

five stages of infection. Arrows represent the time-varying rates

with which individuals transition between categories. The source

and sink compartments represent migration of viral lineages in and

out of the Detroit MSM risk group.

(PDF)

Figure S9 Simulated durations of chronic infection,
which we define as the interval from the end of early
HIV infection to the beginning of AIDS. Data are simulated

based on data from the Multicenter AIDS Cohort Study.

(PDF)

Figure S10 Antiretroviral uptake and usage through
time. Left: Date of diagnosis and self-reported date of first

antiretroviral therapy usage for participants in the Medical

Monitoring Project in Michigan. Instances in which first

antiretroviral therapy usage precedes diagnosis may be due to

self-administered prophylaxis or due to reporting error. Right: The

estimated HAART availability, as a function of time.

(PNG)

Figure S11 CD4 cell count by stage of infection at time
of diagnosis. Left: A linear regression fit to the distribution of

root CD4 counts for EHI and AIDS. Right: The distribution of

root CD4 counts for EHI and AIDS.

(PDF)

Figure S12 The probability that a sequence originated
from a patient with early HIV infection if the number of
ambiguous sites is less than the given threshold (positive
predictive value).

(PNG)

Figure S13 Likelihood surface for simulation experi-
ment with demographic stochasticity. Left: The coalescent

likelihood versus bc and d. Right: Contour plot of the coalescent

likelihood. The innermost contour shows all points within two log
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units of the maximum of the likelihood surface. The black circle

indicates the true parameter value corresponding to the MLE in

the main text. The black star indicates the maximum of the

likelihood in the simulation experiment.

(PNG)

Figure S14 A flow-chart representation of the simula-
tion experiment to determine the robustness of infer-
ences to phylogenetic error.
(PDF)

Figure S15 Estimated posteriors for the parameters b1

and b25 based on three trees estimated independently from
BEAST. Also shown are estimates based on the true coalescent tree,

and the parameters used to generate the coalescent tree (red star).

(PNG)

Figure S16 Within host coalescence of HIV lineages. Left:

Histogram of intra-host coalescent times (TMRCA) for all pairs of

isochronously sampled sequences in [49]. Right: Time to serocon-

version versus intra-host coalescent times for all pairs of isochro-

nously sampled sequences for nine patients in [49]. The blue line

shows the median TMRCA at each sample point, and the green line

shows a linear regression of TMRCA on time since seroconversion.

(PDF)

Figure S17 Likelihood surface for simulation experi-
ment with intra-host evolution. Left: The coalescent

likelihood versus bc and d for a simulated tree where nodes

correspond to intra-host coalescent events rather than transmission

events. Right: Contour plot of the coalescent likelihood. The

innermost contour shows all points within two log units of the

maximum of the likelihood surface. The black circle indicates the

true parameter value corresponding to the MLE in the main text.

The black star indicates the maximum of the likelihood in the

simulation experiment.

(PNG)

Figure S18 Simulated coalescent trees for HIV models.
(A) A simulated coalescent tree under a scenario where individuals

with EHI transmit at a rate equal to that of individuals with

chronic infection or AIDS. (B) The HIV-1 phylogeny of 437

patients. (C) A simulated coalescent tree such that individuals with

EHI transmit at a greater rate than those with chronic infection, as

described by the MLE model fit in the main text. Terminals of the

tree are colored according to stage of infection of the patient at the

time of sampling. Red indicates those sampled during EHI or

chronic infection stages. Blue indicates sampling during AIDS.

(PDF)

Table S1 Model comparisons.

(PDF)

Text S1 Detailed methods for phylogenetic analysis.

(PDF)

Text S2 Detailed description of HIV transmission
model.

(PDF)

Text S3 Model validation and simulations.

(PDF)

Text S4 Detailed methods used for model fitting and
parameter estimation.

(PDF)
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Editors’ Summary

Background. Since the first recorded case of AIDS in 1981,
the number of people infected with HIV, the virus that
causes AIDS, has risen steadily. About 34 million people are
currently HIV-positive, and about 2.5 million people become
newly infected with HIV every year. Because HIV is usually
transmitted through unprotected sex with an infected
partner, individuals can reduce their risk of infection by
abstaining from sex, by having only one or a few partners,
and by always using condoms. Most people do not become
ill immediately after infection with HIV, although some
develop a short flu-like illness. The next stage of HIV
infection, which may last more than ten years, also has no
major symptoms, but during this stage, HIV slowly destroys
immune system cells. Eventually, the immune system can no
longer fight off infections by other disease-causing organ-
isms, and HIV-positive people then develop one or more life-
threatening AIDS-defining conditions, including unusual
infections and specific types of cancer. HIV infection can
be controlled, but not cured, by taking a daily cocktail of
antiretroviral drugs.

Why Was This Study Done? The design of effective
programs to prevent the spread of HIV/AIDS depends on
knowing how HIV transmissibility varies over the course of HIV
infection. Consider, for example, a prevention strategy that
focuses on increasing treatment rates: antiretroviral drugs, in
addition to reducing illness and death among HIV-positive
people, reduce HIV transmission from HIV-positive individuals.
‘‘Treatment as prevention’’ can only block transmissions that
occur after diagnosis and entry into care. However, the
transmissibility of HIV per sexual contact depends on a
person’s viral load, which peaks during early HIV infection,
when people are often unaware of their HIV status and may
still be following the high-risk patterns of sexual behavior that
caused their own infection. Epidemiological surveillance data
(information on HIV infections within populations) can be
used to estimate how many new HIV infections occur within a
population annually (HIV incidence) and the proportion of the
population that is HIV-positive (HIV prevalence), but cannot
be used to estimate the timing of transmission events. In this
study, the researchers use ‘‘phylodynamic analysis’’ to
estimate HIV incidence and prevalence and the timing of
HIV transmission during infection. HIV, like many other viruses,
rapidly accumulates genetic changes. The timing of transmis-
sion influences the pattern of these changes. Viral phylody-
namic analysis—the quantitative study of how epidemiolog-
ical, immunological, and evolutionary processes shape viral
phylogenies (evolutionary trees)—can therefore provide
estimates of transmission dynamics.

What Did the Researchers Do and Find? The researchers
obtained HIV sequence data (collected for routine surveil-
lance of antiretroviral resistance mutations) and epidemio-
logical surveillance data (including information on the stage
of infection at diagnosis) for 662 HIV-positive men who have
sex with men living in the Detroit metropolitan area of
Michigan. They constructed a phylogenetic tree from the
sequences using a ‘‘relaxed clock’’ approach and then fitted
an epidemiological model (a mathematical model that

represents the progress of individual patients through
various stages of HIV infection) to the sequence data. Their
approach, which integrates surveillance data and genetic
data, yielded estimates of HIV incidence and prevalence
among the study population similar to those obtained from
surveillance data alone. However, it also provided informa-
tion about HIV transmission that could not be obtained from
surveillance data alone. In particular, it allowed the
researchers to estimate that, in the current HIV epidemic
among men who have sex with men in Detroit, 44.7% of HIV
transmissions occur during the first year of infection.

What Do These Findings Mean? The robustness of these
findings depends on the validity of the assumptions included
in the researchers’ population genetic model and on the
accuracy of the data fed into the model, and may not be
generalizable to other cities or to other risk groups.
Nevertheless, the findings of this analysis, which can be
repeated in any setting where HIV sequence data for
individual patients can be linked to patient-specific clinical
and behavioral information, have important implications for
HIV control strategies based on the early treatment of newly
diagnosed individuals. Because relatively few infected
individuals are diagnosed during early HIV infection, when
the HIV transmission rate is high, it is unlikely, suggest the
researchers, that the ‘‘treatment as prevention’’ strategy will
effectively control the spread of HIV unless there are very
high rates of HIV testing and treatment.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001568.

N This study is further discussed in a PLOS Medicine
Perspective by Timothy Hallett

N Information is available from the US National Institute of
Allergy and Infectious Diseases on HIV infection and AIDS

N NAM/aidsmap provides basic information about HIV/AIDS
and summaries of recent research findings on HIV care and
treatment

N Information is available from Avert, an international AIDS
charity, on many aspects of HIV/AIDS, including informa-
tion on HIV treatment as prevention (in English and
Spanish)

N The PLOS Medicine Collection ‘‘Investigating the Impact of
Treatment on New HIV Infections’’ provides more infor-
mation about HIV treatment as prevention

N A PLOS Computational Biology Topic Page (a review article
that is a published copy of record of a dynamic version of
the article as found in Wikipedia) about viral
phylodynamics is available

N The US National Institute of Health–funded HIV Sequence
Database contains HIV sequences and tools to analyze
these sequences

N Patient stories about living with HIV/AIDS are available
through Avert; the charity website Healthtalkonline also
provides personal stories about living with HIV
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