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Nanotechnology is revolutionizing many sectors of science, from food

preservation to healthcare to energy applications. Since 1995, when the first

nanomedicines started being commercialized, drug developers have relied on

nanotechnology to improve the pharmacokinetic properties of bioactive

molecules. The development of advanced nanomaterials has greatly

enhanced drug discovery through improved pharmacotherapeutic effects

and reduction of toxicity and side effects. Therefore, highly toxic treatments

such as cancer chemotherapy, have benefited from nanotechnology.

Considering the toxicity of the few therapeutic options to treat neglected

tropical diseases, such as leishmaniasis and Chagas disease, nanotechnology

has also been explored as a potential innovation to treat these diseases.

However, despite the significant research progress over the years, the

benefits of nanotechnology for both diseases are still limited to preliminary

animal studies, raising the question about the clinical utility of nanomedicines in

this field. From this perspective, this review aims to discuss recent

nanotechnological developments, the advantages of nanoformulations over

current leishmanicidal and trypanocidal drugs, limitations of nano-based drugs,

and research gaps that still must be filled to make these novel drug delivery

systems a reality for leishmaniasis and Chagas disease treatment.
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Introduction

Neglected tropical diseases (NTDs) comprise a group of 20

diseases that affect 1.7 billion people living in middle- and low-

income tropical countries. It is estimated that everyone living in

extreme poverty (income < US $1.90/day) have one or more

NTD (Hotez et al., 2020). Leishmaniasis and Chagas disease

(CD) are NTDs caused by the trypanosomatid protozoa

parasites Leishmania spp. and Trypanosoma cruzi, respectively.

Despite numerous efforts by global agencies to eradicate these

pathogens, the incidence of cutaneous leishmaniasis and the

prevalence of CD increased between 2006 and 2016 according to

the Global Burden of Diseases report (Vos et al., 2017; Lin et al.,

2022). The rising morbidity rates indicate how poverty may

weaken entire populations by limiting access to healthcare,

housing, sanitary conditions, and education, perpetuating a

poverty cycle by limiting productivity and impairing physical

and cognitive development (Souto et al., 2019; Ahmed

et al., 2022).

The status of leishmaniasis and CD as NTDs emphasizes the

need for affordable, safe, and effective treatments for these

diseases since current treatments are inadequate or

inaccessible. The toxicity of current therapies contributes to

significant side effects, which often necessitate treatment

termination. Decades of continuous use of the same drugs has

led to the development of drug-resistant strains, further

justifying the need for new therapies (Field et al., 2017; Santos

et al., 2020b). Additional challenges for leishmaniasis and CD

treatment include patient compliance with therapy, drug

instability, complex or unknown pathogenic mechanisms, and

environmental factors that impact transmission of infection

(Field et al., 2017; Menna-Barreto, 2019; Souto et al., 2019).

Nevertheless, the association of these diseases with poverty

represents a major obstacle to the research and development

of drugs, vaccines, and diagnostic methods to treat and prevent

them (Weng et al., 2018; Winkler, 2021).

As drug discovery and development is a long and expensive

process, nanotechnology has emerged as a promising approach

to overcoming limitations associated with the current drug

formulations, without the need to create new drugs from

scratch. The flexibility inherent in nanotechnology platforms

permits tailoring of the novel nanoformulation with respect to

the material (lipid-based polymeric, inorganic), charge, size, and

surface modifications, giving rise to high-precision therapies and

repurposing of therapeutics (Scott et al., 2017; Burke et al., 2022;

Vincent et al., 2022). The encapsulation of drugs within these

systems helps to increase cargo stability and improve

pharmacokinetic aspects, such as prolonging circulation time

and modifying biodistribution (Mitchell et al., 2021).

Nanotechnology has the potential to reduce toxic effects and

potentialize the drug efficacy by delivering low drug doses to

target-infected cells/tissues (Barry and Sadler, 2013).
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Since 1995, when the first nanomedicine, Doxil, was

commercialized, approximately 60 nanomedicines and 100

nanomedicine-related products have been registered around

the world (Abdellatif and Alsowinea, 2021; Shan et al., 2022).

The most recent approvals were given to mRNA-Covid-19

vaccines that use lipid nanoparticles to deliver mRNA to

monocytes and dendritic cell subsets for immunization against

SARS-CoV-2 (Shan et al., 2022; Trougakos et al., 2022). Yet after

almost two decades since the approval of Doxil, no

nanomedicine has been approved for the treatment of CD and

only the nanomedicine liposomal amphotericin B (LAmpB)has

been approved for the treatment of leishmaniasis, despite the

very high cost of this treatment (Prasanna et al., 2021; Assolini

et al., 2022).

In this sense, is there hope in nanotechnology to fight

neglected tropical diseases? Does nanotechnology have

potential to fill gaps in current pharmacotherapy to treat

leishmaniasis and CD? To answer these questions, we will

discuss the most publicized nanomedicines and the most

recent advances in nano-based drug delivery systems to treat

CD and leishmaniasis in this review. Clinical trials and animal

studies will be reviewed and the specific advantages of

nanotechnology will be highlighted in terms of remodeling

drug biodistribution and pharmacokinetics to improve drug

efficacy, reduce toxicity, and modulate the inflammatory

response. Main aspects and findings of all studies discussed

here are summarized in Table 1.
Leishmaniasis

Leishmaniasis is a zoonotic infectious disease caused by

more than 20 species of Leishmania and transmitted by over

90 species of phlebotomine sandflies, especially in low-income

tropical countries. The World Health Organization estimates

that 700,000 to 1 million new cases of leishmaniasis occur

annually around the world, resulting in up to 30,000 deaths

(WHO, 2022). Leishmania infection has three major clinical

forms: cutaneous leishmaniasis (CL - localized and disseminated

or diffuse), mucocutaneous leishmaniasis (MCL), and visceral

leishmaniasis (VL). The development of a specific clinical

manifestation depends on the Leishmania species involved,

which induces a specific host immune response that also

contributes to pathogenesis. Immunocompromised people,

such as those with HIV infection, are more susceptible to

developing a diffuse infection. L. infantum and L. donovani are

species that cause VL, which can be fatal if not treated. The main

symptoms of VL are hepatosplenomegaly, anemia and bleeding,

and weight loss (Forrester et al., 2022). L. mexicana and L.

braziliensis are likely to cause CL and MCL, respectively. CL and

MCL cause skin and mucosal ulcers associated with an intense

Th-1 inflammatory response that destroys the skin tissue and
frontiersin.org
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TABLE 1 Overview of the reviewed sources.

Disease Particulate System Encapsulated
Cargo/Adminis-
tration route

Activity/Application Results Ref

Leishmaniasis Liposomes Amphotericin B (iv) Parasiticidal
(drug delivery)
Post-Kala-Azar Dermal
leishmaniasis

•the combination of AmpB-loaded liposomes
and Miltefosine cured 100% of infected
humans
•reduced time of treatment prevented relapses
•no signals of toxicity

(Ramesh et al., 2020)

Liposomes Amphotericin B (iv) Parasiticidal
(drug delivery)Visceral
leishmaniasis(L. donovani)

•acute stage: up to 90% of splenic and hepatic
parasitemia suppression
•chronic stage: up to 62% hepatic parasite
burden reduction; lower AmpB concentrations
in plasma, liver, and spleen
•hepatic and splenic inflammation prevented
the AmpB accumulation in the liver and
spleen

(Voak et al., 2017)

Hyaluronic acid-coated
liposomes

Quinoxaline
derivative (topical)

Parasiticidal
(drug delivery)
Cutaneousleishmaniasis(L.
amazonensis)

•liposome accumulation in liver, spleen, and
infected lesion
•limited skin permeation

(de Oliveira et al.,
2020)

Chitosan nanoparticles Amphotericin B (iv
and topical)

Parasiticidal
(drug delivery)
Cutaneous leishmaniasis
(L. major)

•slow drug release in a pH-sensitive manner
•up to 99% of lesion size and parasite load
reduction
•similar antileishmanial activity to AmBisome
•limited skin permeation

(Riezk et al., 2020)

Chitosan nanoparticles S-nitrosothiol
(topical)

Parasiticidal
(immunomodulation)
Cutaneous leishmaniasis
(L. amazonensis)

•sustained NO release
•parasite load reduction of ~49% in the first 5
days after one topical application

(Cabral et al., 2021)

Copper nanoparticles Copper
(topical)

Parasiticidal
(oxidative stress)
Cutaneous leishmaniasis
(L. major)

•CuNPs combined with intralesional
meglumine antimoniate promoted 100%
recovery of infected mice
•the parasiticidal mechanism is based on the
Cu ability to trigger the production of NO

(Albalawi et al., 2021)

Mannosylated thiolated
chitosan nanoparticles

Meglumine
antimoniate (p.o.)

Parasiticidal
(drug delivery)Visceral
leishmaniasis(L. donovani)

•increased intestinal permeation and drug
bioavailability
•targeted macrophages
•suppressed the parasite burden in spleen and
liver compared to the standard treatment

(Shoaib Sarwar et al.,
2020)

Liposomes Fullerol (ip) Parasiticidal and
inflammation control
(immunomodulation)
Acute visceral
leishmaniasis (L.
amazonensis)

•elimination of hepatic parasites in 100% of
animals suppressed splenic infection
•increased Th-1 and Th-2 response

(Ramos et al., 2021)

Yeast cell wall particles Thiophene (p.o.) Parasiticidal (drug delivery
and tissue targeting)
Immunomodulation
Visceral leishmaniasis
(L. infantum)

•reduction of splenic and hepatic parasite
burden
•increased of Th-1 response

(Scariot et al., 2019b)

Lipid nanoparticles Diselenide (p.o.) Parasiticidal
(drug delivery)
Visceral leishmaniasis (L.
infantum)

•efficient oral drug delivery: enhanced
intestinal permeability and bioavailability
•95% of parasite burden reduction after 5
doses

(Etxebeste-
Mitxeltorena et al.,
2021)

Carboxymethyl chitosan
liposomes

Amphotericin B (p.o.) Parasiticidal
(drug delivery)
Visceral leishmaniasis (L.
donovani)

•93.5% of hepatic parasite burden reduction
with no toxicity
•sustained drug release, elevated stability and
bioavailability.

(Singh et al., 2022)

Amphotericin B
(transdermal)

Skin penetration
(drug delivery)

(Zare et al., 2021)

(Continued)
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TABLE 1 Continued

Disease Particulate System Encapsulated
Cargo/Adminis-
tration route

Activity/Application Results Ref

Carboxymethyl cellulose/
polyvinylpyrrolidone
microneedles

Cutaneous leishmaniasis
(L. major)

•sustained drug release through the skin
•microneedles were able to deliver the drug in
the epidermis and dermis layers

Solid lipid nanoparticles
modified with b-
cyclodextrin

Melatonin plus
Amphotericin B (p.o.)

Parasiticidal
(drug delivery)
Visceral leishmaniasis (L.
donovani)

•inhibition of hepatic parasitic burden
•parasiticidal effect was potentialized by
melatonin

(Parvez et al., 2021)

Lipid nanocarriers Ursolic acid Parasiticidal and
Immunomodulation
(drug delivery)
Visceral leishmaniasis (L.
infantum)

•no toxicity and controlled inflammatory
response
•reduction of splenic and hepatic parasitism

(Jesus et al., 2021)

Maghemite/
polyethylenebyimine
nanoparticles (Nano-
Leish-IL)

No drug (topical) Parasiticidal
Cutaneous leishmaniasis
(L. major)

•cutaneous lesion volumes and the parasitic
burden were reduced by Nano-Leish-IL
treatment
•polyethylenimine promoted a cytolytic effect
on the parasites

(Kannan et al., 2021)

Poly-l-lactide
-nanocapsules

Meglumine
Antimoniate (ip)

Parasiticidal
(drug delivery)
Visceral leishmaniasis (L.
infantum)

•reduction of parasite number in liver, spleen,
and kidneys especially after 45 days of
treatment
•lower renal accumulation of meglumine
antimoniate and a significant increase of its
plasmatic half-life

(Cosco et al., 2021)

Chagas
Disease

Hydrogel nano-porous
particles Chunap

No drug Diagnosis •Chunap was able to concentrate T. cruzi
antigens from urine of infected infants
showing higher sensitivity than PCR
•Chunap detected T. cruzi antigens in the
urine of T. cruzi/HIV co-infected patients

(Castro-Sesquen et
al., 2014; Castro-
Sesquen et al., 2016)

Indium Phosphide (InP)
nanowires

No drug Diagnosis of chronic CD •detection of low levels of anti-T. cruzi
antibodies in non-purified serum

(Janissen et al., 2017)

Gold nanoparticles
conjugated to
silsesquioxanes

No drug Diagnosis •successful detection of anti-T. cruzi antibodies
in the serum
•hemocompatible and not toxic

(Lima et al., 2022)

PEG-b-PPS
polymersomes

Benznidazole
(iv)

Parasiticidal
(drug delivery)
Acute CD
(Y strain)

•loaded polymersomes were as effective as free
BNZ using a dosage 466-fold lower than daily
free BNZ
•suppressed cardiac inflammation, heart and
blood parasite burden
•no signals of toxicity

(Li et al., 2021)

Self-nanoemulsifying
system

Ravuconazole (p.o.) Parasiticidal
(drug delivery)
Acute CD
(Y strain/Colombiana
strain)

•increased dissolution rate of ravuconazole
•increased cure rates after short-term
treatment (30 days)
•clearance of parasites after long-term
treatment (40 days)
•no signals of toxicity

(Spósito et al., 2017;
Spósito et al., 2021)

Nanoarchaeosomes Imiquimod (sc) Immunotherapy
(drug delivery)
Acute CD
(RA strain)

•100% survival
•promoted a protective T-helper response
•reduction of inflammation/pro-inflammatory
cytokines and fibrotic lesions in the cardiac
and skeletal muscles

(Parra et al., 2020)

PLGA-nanoparticles Curcumin (p.o.) Parasiticidal and
Anti-inflammatory
(drug delivery)
Chronic CD
(Brazil strain)

•the combination of curcumin-NPs and free
benznidazole avoided heart injuries
•downmodulation of cardiac inflammation and
fibrosis

(Hernandez et al.,
2021)

Poloxamer (P-188)
nanoparticles

Benznidazole (p.o.) Parasiticidal
(drug delivery)

•lower levels of anti-T. cruzi antibody than
free BNZ treatment

(Rial et al., 2017)

(Continued)
Frontiers in Ce
llular and Infection Micr
obiology
 04
 frontiersin.org

https://doi.org/10.3389/fcimb.2022.1000972
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Scariot et al. 10.3389/fcimb.2022.1000972
throat mucosa (Figueiredo et al., 2020; Kato et al., 2021).

Disability, disfiguring scars causing social stigma and

psychological consequences contribute to the current

economic burden and overall impact of leishmaniasis (Okwor

and Uzonna, 2016). Controlling the transmission cycle of

Leishmania is challenging since many sylvatic animals, such as

rodents, marsupials and bats, are natural reservoirs of this

parasite (Roque and Jansen, 2014). Additionally, climate

change has contributed to spreading the insect vector to

extend the endemic area of leishmaniasis. Geographic areas

experiencing war and terrorism are likely to develop

leishmaniasis outbreaks as a result of social and healthcare

system collapse promoted by these conflicts (Al-Salem et al.,

2016; Al-Bajalan et al., 2018). No vaccine exists for human

leishmaniasis, although there are three vaccines available to

prevent leishmaniasis in dogs, the primary domestic

Leishmania reservoir (Velez and Gállego, 2020).

Leishmania present a complex life cycle, alternating between

invertebrate host –phlebotomine sandflies – and vertebrate

mammal hosts, such as humans, sylvatic and domestic animals

(Figure 1). Female sandflies inject elongated flagellated

promastigotes of Leishmania into the mammalian host while

they take a bloodmeal. After being phagocyted by mononuclear

phagocytes, especially macrophages, promastigotes reside inside

the phagosomes/parasitophorous vacuole. The mammalian host
Frontiers in Cellular and Infection Microbiology 05
temperature and the acidic pH typical of parasitophorous

vacuoles induce the promastigotes to differentiate into non-

motile rounded amastigotes. These conditions also stimulate

intense exocytosis of parasite signaling molecules, such as NF-ĸb
and gp63, to prevent the nitric oxide (NO) synthesis needed for

typical macrophage parasiticidal activity. Therefore, by

modulating the macrophage immunologic response,

Leishmania survives inside host cells as an obligate

intracellular parasite (Hassani et al., 2011; Burza et al., 2019).

Since the early 1990s, first-line drugs to treat leishmaniasis

have been limited to two pentavalent antimonials – sodium

stibogluconate and N-methyl glucamine antimoniate (Pund and

Joshi, 2017). Both drugs are toxic and long-term treatment may

be suspended to avoid life-threatening side effects, such as

cardiac and hepatic dysfunction. The required parenteral

administration impairs the treatment access given that

healthcare infrastructure is unavailable in the most endemic

remote areas. Originally developed as an antineoplasic,

Miltefosine has been used as an alternative treatment for

antimonial-resistant Leishmania strains in some countries,

such as India, Nepal, and Bangladesh. The main advantage of

Miltefosine over other leishmanicidal drugs is the convenient

oral administration. Considered potentially teratogenic,

subtherapeutic levels of Miltefosine resulting from the long

elimination half-life leads to a selective pressure and
TABLE 1 Continued

Disease Particulate System Encapsulated
Cargo/Adminis-
tration route

Activity/Application Results Ref

Acute CD (Nicaragua
strain)

•reduction in the Chagas disease reactivation
after immunosuppression
•decrease of heart inflammation and damage

Poloxamer (P-188)
nanoparticles

Benznidazole
(p.o.)

Parasiticidal
(drug delivery)
Chronic CD
(Nicaragua strain)

•elimination of parasitemia and Chagas
reactivation
•intermittent administration is more efficient
than continuous administration
•lower levels of IFN-g and heart fibrosis

(Rial et al., 2020)

Eudragit microparticles Benznidazole (p.o.) Parasiticidal and
Antiinflammatory
(drug delivery)
Acute CD (Nicaragua
strain)

•reduction in the parasite burden and anti-T.
cruzi antibodies level
•no heart damages
•treatment prevented the progression to the
chronic stage

(Rial et al., 2021)

Multiparticulate
polymeric system:
Eudragit EPO-Eudragit
L100

Benznidazole (p.o.) Parasiticidal
(drug delivery)
Chronic CD (Tulahuen
strain)

•higher efficacy than free benznidazole against
cardiac parasites
•lower cardiac and hepatic damage than free
benznidazole
•controlled release of BNZ and lower host
oxidative stress

(Garcia et al., 2021)

PLA-PEG nanocapsules Lychnopholide
(sesquiterpene
lactone) (p.o.)

Parasiticidal
(drug delivery)
Acute and chronic CD
(VL-10 strain)

•acute stage: suppressed blood parasitemia and
cure rate of up 75%; reduction of cardiac
inflammation and fibrosis
•chronic stage: cure rate of up 87.5%;
reduction of heart fibrosis and absence of heart
inflammation

(Branquinho et al.,
2020)
p.o., “per os”/by mouth; iv: intravenous; sc: subcutaneous; ip, intraperitoneal.
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emergence of Miltefosine-resistant Leishmania strains (Dorlo et

al., 2012; Ponte-Sucre et al., 2017). As second-line treatments,

amphotericin B (AmpB), pentamidine, paromomycin, and

azoles show variable antileishmania efficacy, drug-resistant

strains have been reported for all available leishmanicidal

drugs. Drug combinations have been clinically applied to

improve antileishmanial efficacy, as well as to delay the

development of drug resistance and decrease side effects

(Sundar and Chakravarty, 2015; Sundar and Singh, 2018).

In terms of nanotechnology, current leishmaniasis treatment

relies on LAmpB/AmBisome formulations to reduce the side

effects of AmpB deoxycholate such as nephrotoxicity and

hematotoxicity. Specific types of leishmaniasis, such as post-

visceral dermal kala-azar, may show limited susceptibility to

LAmpB (Moulik et al., 2018). A clinical study revealed that a

combination of LAmpB and miltefosine promoted regression of

lesions and cure after 45 days of treatment, with no relapses or

significant toxicity. On the contrary, 25% of patients treated with

Miltefosine monotherapy for 90 days relapsed and developed

mild gastrointestinal side effects (Ramesh et al., 2020).

Measuring less than 100 nm, LAmpB is efficiently taken up by

and accumulates within phagocytes from the liver and spleen.

Liver and spleen inflammation is a classical symptom of chronic

VL that can promote an erratic drug metabolism,

biodistribution, and elimination. Voak et al. demonstrated that

LAmpB is more effective if administered in the early stage of

infection (before 21 days post-infection/dpi), since chronic

leishmaniasis promotes physiological changes in the liver and

spleen that interfere with LAmpB biodistribution. Plasma

concentrations of AmpB, however, remain unaffected
Frontiers in Cellular and Infection Microbiology 06
regardless whether the treatment is administered during the

early or late stage of infection (Voak et al., 2017). These findings

suggest the importance of evaluating biodistribution,

pharmacokinetics, and pharmacodynamic parameters in

Leishmania-infected animals, since drug and nanoparticle

metabolism may be affected by the physiologic and metabolic

disturbances caused by the infection itself.

Although LAmpB is readily available in developed countries,

affordable drugs are sorely needed in low-income countries,

where the tropical temperatures and lack of health care

infrastructure require stable drug formulations for distribution,

long-term storage and oral administration. Considering that

drug bioavailability and efficacy depend on drug solubility,

poorly soluble compounds have been discarded as potential

drugs for oral administration (Sharma et al., 2016; De Rycker

et al., 2018; Alqahtani et al., 2021).

Nanostructured lipid nanocarriers are more stable in

gastrointestinal physiological conditions than liposomal

systems, encouraging the investigation of their potential to

deliver hydrophobic drugs by the oral route. As an example,

selenocompounds showing low intestinal permeability and

solubility in water show improved intestinal absorption,

clearance, and bioavailability after oral administration when

encapsulated in nanostructured lipid nanocarriers. Without

causing any genotoxicity in healthy animals, five oral

administrations of encapsulated selenocompound were

sufficient to reduce the L. infantum burden in infected animals

by up to 99.9%, which is similar to the effect of the standard

Fungizone treatment after 10 i.v. administrations. Although

there are no data regarding the accumulation of these
FIGURE 1

Life cycle of Leishmania spp. The life cycle of Leishmania spp. alternates between phlebotomine sandfly and mammalian hosts, e.g. sylvatic/
domestic animals and human beings. Leishmania promastigotes are phagocytosed by mononuclear phagocytic cells, differentiating into
amastigotes and multiplying by binary fission as an obligate intracellular parasite. The presence of a high number of intracellular parasites
promotes the host cell disruption, releasing parasites able to infect other cells/tissues. Infected phagocytes can also reach lymphoid organs,
disseminating the disease. Phlebotomine sandflies ingest Leishmania-infected cells while taking a bloodmeal and transmit leishmaniasis by biting
man or other mammals. Created with Biorender.com.
frontiersin.org
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nanocarriers in the primary organs targeted by visceral

leishmaniasis (e.g. liver, spleen, and bone marrow), only

selenocompunds that reached plasma selenium concentrations

higher than the in vitro intramacrophage IC50 index showed

significant antileishmania activity in infected animals

(Etxebeste-Mitxeltorena et al., 2021). Singh et al. also

developed a biocompatible and stable AmpB lipid-based

nanocarrier for oral administration by grafting carboxymethyl

chitosan (CMC) on the surface of lipid nanoparticles (CMC-

AmpB-LV) (Singh et al., 2022). CMC grafting promoted a

controlled release of AmpB and protected the nanovesicles

against enzymatic degradation typically found in the

gastrointestinal tract, with no significant drug release. CMC

also increased the hydrophilicity of AmpB nanovesicles and

prolonged their residence time on the intestinal mucosa by

improving mucoadhesion, suggesting that CMC-AmpB-LV

enhances the bioavailability of oral AmpB. In vitro assays

confirmed that macrophages internalize the particles through

clathrin-mediated endocytosis without damaging the cell

membrane. The oral administration of CMC-AmpB-LV

inhibited around 90% of the hepatic parasite burden of L.

donovani-infected mice and no toxicity was detected,

indicating that CMC nano-based formulations are a promising

alternative for oral delivery of AmpB (Singh et al., 2022).

Solid lipid nanoparticles can also deliver more than one

bioactive molecule simultaneously, which has considerable

advantages for drug therapy. Melatonin and AmpB, an

immunomodulator and a chemotherapeutic agent, respectively,

were encapsulated into solid lipid nanoparticles surface-

decorated with b-cyclodextrin (b-CD) and evaluated to treat

murine visceral leishmaniasis through oral administration. A

better bioavailability was expected from b-CD -decorated

nanoparticles by enhancing water solubility and intestinal

permeability. Data show that the Melatonin-AmpB association

and the b-CD conjugation as well were crucial for the significant

reduction in hepatic parasite burden. No evidence of renal and

hepatic toxicity were observed (Parvez et al., 2021).

Natural molecules can also be encapsulated in lipid

nanoparticles to improve water solubility and to reduce

toxicity. Jesus et al. reported hepatic toxicity of the

antileishmanial agent ursolic acid in a dose-dependent manner

in golden hamsters. Toxicity was eliminated by encapsulation of

ursolic acid in solid lipid nanoparticles. Additionally, ursolic

acid-loaded nanoparticles measuring around 260 nm were able

to reduce the hepatic and splenic parasite burden more

efficiently than the standard AmpB treatment and free ursolic

acid, promoting normalization of aspartate aminotransferase

and creatinine levels normally elevated by infection. The

efficient delivery of ursolic acid from lipid nanoparticles

stimulated expression of IFN-g and iNOS, and boosted the

production of leishmania-specific IgG antibodies. Although no

comparison was made with LAmpB treatment, it is clear that the

encapsulation of ursolic acid offers a superior drug formulation
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with reduced toxicity and increased parasiticidal effect (Jesus et

al., 2021).

Given the therapeutical benefits and the regulatory approval

of LAmpB formulations, liposomes have been extensively

employed for cell-targeting studies. De Oliveira et al.

discovered that liposomes functionalized with hyaluronic acid

(HA) enhanced drug accumulation by targeting infected cells.

Activated/inflammatory macrophages overexpress the surface

glycoprotein CD44 that specifically binds to HA. Biodistribution

assays showed abundant hepatic and splenic HA-liposome

accumulation after 24 h from i.v. injection of healthy and

infected animals. HA-liposomes were also detected in the

infected paws of BALB/c mice, which was a result of intense

macrophage recruitment associated with the extensive

inflammation in the infected tissue. when applied topically,

HA-liposomes were able to cross the stratum corneum and

reach the epidermis of healthy pig skin (de Oliveira et al., 2020).

Leishmania-specific drugs for topical application such as

cream of paromomycin sulfate—Leshcutan—have shown a

limited efficacy to treat cutaneous leishmaniasis. In fact, the

stratum corneum is the main barrier to topical and transdermal

drug delivery. Also, biomacromolecules, such as AmpB, were not

able to cross the stratum corneum given their poor tissue

permeability. Hypodermic injection of drugs is recommended

in specific cases of CL, particularly for non-ulcerating wounds

during acute infection (Minodier and Parola, 2007). The pain

associated with injection, in addition to the side and toxic effects

of the drug, reduces patient compliance. As an alternative,

dissolvable carboxymethylcellulose/polyvinylpyrrolidone

microneedles have been studied to deliver AmpB to the

epidermis/dermis of CL lesions. Pyramidal microneedles

measuring around 600 µm are able to pierce rat skin without

bending or fracturing, and are almost entirely dissolved by the

interstitial fluid after 30 min. Moreover, micropores created by

microneedles were completely resealed after 30 min, without

causing any detectable irritation reaction like erythema and

swelling. The application of topical AmpB after pre-treating the

skin using unloaded microneedles did not offer any quantitative

advantage over drug delivered by loaded microneedles. By

delivering around 87% of the AmpB contained in the

microneedles, up to 3 daily administrations would be necessary

to reach an intralesional AmpB concentration similar to that

provided by standard AmpB treatment (Zare et al., 2021).

Chitosan (CHI) nanoparticles have also been evaluated for

the treatment of leishmaniasis, especially after the FDA

approved the use of wound dressings containing CHI.

Although AmpB-loaded chitosan nanoparticles (AmpB-CHI)

were shown to be safer and more effective than standard

LAmpB treatment, neither AmpB-CHI nor LAmpB were able

to penetrate the skin to deliver AmpB. The accumulation of

phagocytes from inflammation in infected tissues may have

contributed to the increased nanoparticle uptake observed in

infected tissues after topical administration. On the contrary,
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intravenous administration of AmpB-CHI increased the

intralesional concentration of AmpB and decreased parasite

burden in comparison to LAmpB treatment (Riezk et al., 2020).

Topical treatment was also investigated by Kannan et al.,

who proposed an innovative in vitro method to evaluate the

parasite-repellent power of Fe2O3 nanoparticles coated or not

with polyethyleneimine (PEI) and incorporated in cream and gel

formulations. In an agar plate assay, the authors observed that

only coated nanoparticles were able to arrest the parasite

migration by killing them. They also reported that PEI worked

as a proton sponge in the lysosome compartment, increasing

osmotic pressure and causing mitochondrial damage. Only

trypanosomatids present a single lysosome-like structure, also

known as a multivesicular tube in promastigotes and a

megasome in amastigotes (Besteiro et al., 2007; Ueda-

Nakamura et al., 2007). The rupture of this organelle releases

hydrolytic enzymes that degrade the entire parasite in a few

minutes. The active nano-based formulation, also called Nano-

Leish-IL, showed a comparable antileishmania effect of

Leishcutan in a murine model of acute leishmaniasis, as

revealed by qPCR analysis. Dermoscopic imaging showed

wound shrinkage after treatment with Nano-Leish-IL when

compared to lesion volumes of untreated mice. In addition,

Nano-Leish-IL was able to prevent the development of lesions

when administered immediately after infection. As

paromomycin-resistant Leishmania has been reported, the

authors stated that the primary advantage of Nano-Leish-IL

over the available paromomycin cream is the lack of evidence

about resistance mechanisms induced by nano-drugs (Kannan et

al., 2021). However, considering that the emergence of drug-

resistant microorganisms typically occurs after an extended

period of treatment, this finding must be interpreted

with caution.

Although the topical administration of antileishmanial drugs

is still controversial due to the limited ability to penetrate the

deepest epithelial layers, the mechanism of action of the loaded

drug can help to overcome typical permeability issues. Topical

administration of CHI nanoparticles loaded with a NO donor

promoted significant reduction in lesion thickness and parasite

burden, without macroscopic signals of inflammation. CHI

nanoparticles protected the encapsulated NO from degradation

in addition to allowing controlled release for up to 21 days after

only one administration. NO plays a central role in microbicidal

macrophage activity, but increased microvascular permeability

promoted by NO may have contributed to the success of NO-

loaded CHI-nanoparticles (Cabral et al., 2021). Considering that

parasites are not restricted to the lesion in chronic CL, additional

studies should evaluate the potential of NO-donor CHI-

nanoparticles in combination with systemic therapies.

Increased NO production was also considered the primary

mechanism for the successful topical administration of copper

nanoparticles (CuNPs) in a murine model of cutaneous

leishmaniasis. The reduction in parasite burden was
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potentialized by combining topical CuNPs and intralesional

administration of free meglumine antimoniate (Glucantime), a

first-line drug to treat cutaneous leishmaniasis (Albalawi et

al., 2021).

CHI nanoparticles have also been developed as a drug carrier

for the oral delivery of antileishmanial drugs. Sarwar et al.

developed thiolated CHI (Thi-CHI) to enhance its

mucoadhesion and permeation. Thiolated polymers also act by

inhibiting the trypanothione-reductase system (TR) that

prevents the accumulation of antimonial drugs. To target

infected macrophages, Thi-CHI was also grafted with mannose

residues since mannose receptors are increased in Leishmania-

infected macrophages. The Glucantime (Glu)-loaded thiolated

nanocarriers (Glu-Thi-CHI) improved penetration into the

intestinal barrier in comparison to the same dose of oral Glu.

The increased hepatic and serum concentration of

stibogluconate after Glu-Thi-CHI treatment reduced the

hepatic and splenic parasite burden more efficiently than the

standard intraperitoneal treatment (Shoaib Sarwar et al., 2020).

Considering the renal toxicity caused by Glu, Cosco et al.

developed biocompatible Glu-loaded aqueous-core polylactic

acid (PLA) nanocapsules in an attempt to reduce kidney

tox i c i t y . G lu - l oaded PLA nanocapsu l e s in j e c t ed

intraperitoneally in healthy mice readily accumulated in the

reticuloendothelial system, showing a lower accumulation in

kidneys resulting in a higher plasma half-life. When

administered to L infantum-infected mice, Glu-loaded

nanocapsules promoted significant reduction in parasite

burden in the liver and kidneys when compared with standard

Glu, but failed to improve the leishmanicidal activity in the

spleen. However, by using lower a lower dose of Glu in the

nanostructured formulations, the authors suggest that the Glu

dosing could be revisited if delivered by a nano-based

formulation, such as the aqueous-core PLA nanocapsules, in

order to prevent the typical treatment toxicity (Cosco et al.).

Microparticles of b-1,3-glucan, an inexpensive raw material

in Saccharomyces cerevisiae yeast cell walls, were tested as oral

carriers for hydrophobic drugs against L. infantum-infected

macrophages (Volpato et al., 2018; Scariot et al., 2019a). b-1,3-
glucan is recognized by the dectin-1 receptor on the cell

membrane of phagocytic mononuclear cells, promoting the

internalization of those carriers by endocytosis. L. infantum-

infected animals were treated with particles consisting of a

bioactive thiophene encapsulated in glucan derived from yeast

cell walls (YCWP). In the intestine, glucan from YCWP is

recognized by dectin-1 receptors on microfold cells residing in

Peyer’s patches. Microfold cells transferred the particles to

lymphoid organs (e.g. bone marrow, spleen, lymph nodes),

which are the organs targeted by Leishmania. The intense

proinflammatory response triggered by the thiophene-loaded

YCWP treatment in the spleen and liver promoted a significant

reduction in parasite burden in both organs. No toxicity was

reported in healthy animals (Scariot et al., 2019b).
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Nanostructures may also exert antileishmanial activity in the

absence of anti le ishmanial drugs by triggering an

immunomodulatory response. Ramos et al. reported that

spherical carbon nanostructures (fullerol) were able to control

hepatic parasite growth by generating a pro-inflammatory

response in a murine model of visceral leishmaniasis. To

improve the delivery of fullerol in the liver and spleen, the

nanostructure was encapsulated in unilamellar liposomes,

intensifying the fullerol potential in reducing the hepatic

parasite load. The detection of increased levels of IL-1b in the

serum suggested that fullerol-loaded liposomes potentiated the

macrophage activation, resulting in stronger activity of inducible

nitric oxide synthase and parasiticidal effect (Ramos et al., 2021).
American trypanosomiasis:
Chagas disease

American trypanosomiasis or Chagas disease (CD) is a

vector-borne disease caused by the protozoan Trypanosoma

cruzi. Although originally endemic to the Americas, CD has

spread to disparate regions of the globe through the migration of

infected individuals, with 8 million people infected worldwide.

Up to 12,000 infected people die annually of cardiac

complications caused by the chronic T. cruzi infection

(PAHO, 2022). It is estimated that about 300,000 people in the

United States harbor this parasite, most having unknowingly

acquired the infection in South and Central America with a

small number via autochthonous infection. T. cruzi is also found

in a large number of wild mammals throughout the Americas

(Montgomery et al., 2016). T. cruzi is typically transmitted

through contaminated feces of an insect vector called

triatomines or “kissing bugs,” but oral transmission through

ingestion of food contaminated with Triatomine feces, blood

transfusions, and vertical transmission have also contributed.

During the bloodmeal, male and female triatomines release feces

containing flagellated parasites called trypomastigotes, which

penetrate the body through the bite wound or through mucous

membranes (Martıń-Escolano et al., 2022). As an obligate

intracellular parasite, T. cruzi invades cells at the inoculum site

(e.g. macrophages, fibroblasts, epithelial cells), starting the acute

infection. Within the host cell, parasites escape the

parasitophorous vacuole to the cytoplasm, differentiate to

nonflagellated amastigotes and divide by binary fission

(Figure,32] ?> 2). Approximately 30% of infected individuals

develop chronic symptoms of CD, including dilated

cardiomyopathy, arrhythmias, thromboembolic events, and

digestive disorders like megaesophagus and megacolon

syndromes (Tanowitz et al., 2015; Pérez-Molina and Molina,

2018), resulting from decades of gradual organ injury, parasite

persistence and parasite- and host-directed immunity and

inflammation. Currently, there is no approved vaccine for T.

cruzi. The autoimmunity associated with the development of
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chronic chagas cardiomyopathy (De Bona et al., 2018) has

hindered the development of attenuated or killed parasite

vaccines for T. cruzi. Several T. cruzi proteins are able to

promote cardiac damage in the absence of live parasites by

inducing autoimmunity in animal models (Cunha-Neto et al.,

1996; Bonney et al., 2011). Fortunately, a number of other

recombinant T. cruzi proteins as well as attenuated T. cruzi

parasites are emerging as potentially safe strategies for the

development of a CD vaccine (Sánchez-Valdéz et al., 2015;

Rios et al., 2019; da Costa et al., 2021; Rodrigues da Cunha et

al., 2021). Researchers are also testing mRNA vaccines after their

successful use in COVID-19 (Diaz-Hernandez et al., 2022;

Maldonado et al., 2022).

The early detection of CD is critical for treatment success. If

administered during acute T. cruzi infection, antichagasic drugs

are up to 80% effective in clearing the parasite. (Meymandi et al.,

2018). Although acute T. cruzi infection can be easily detected by

direct observation of the parasite in the peripheral blood, acute

CD is rarely diagnosed due to the nonspecific symptoms and

autoresolution in 4 to 8 weeks (Ribeiro et al., 2012). The

diagnosis of infection during chronic CD is typically done by

detection of T. cruzi-specific antibodies (Angheben et al., 2019).

Stable, more convenient and less expensive diagnostic methods

having high sensitivity and specificity, such as rapid antibody

tests, would be extremely helpful for detection of CD.

Nanotechnology has been applied to the development of

innovative techniques to detect T. cruzi infection (Morilla and

Romero, 2015). A highly-publicized nano-based test called

Chunap (Chagas urine nanoparticle test) composed of

hydrogel nano-porous particles functionalized with Trypan

Blue sequesters and concentrates T. cruzi antigens in urine.

Antigens enter the particles depending on their tertiary structure

and molecular weight and the concentrated antigens are

identified by western blotting, showing similar sensitivity to

PCR. The particles also protect T. cruzi antigens in urine against

enzymatic degradation. The non-invasive and convenience of

urine collection is one of the advantages of Chunap over serology

or PCR from blood, especially for infants (Castro-Sesquen et al.,

2014; Castro-Sesquen et al., 2016).

During the chronic stage of CD, variable levels of anti-T.

cruzi antibodies are present in the serum. To improve the

sensitivity and specificity of diagnostic methods for chronic

CD, indium phosphide (InP) nanowire biosensors were

developed based on field-effect transistors. In this system,

changes in conductivity can be detected after a biomarker, e.g.

a T. cruzi antigen, binds to a specific bioreceptor placed on the

nanoscale biosensor. InP nanowires were first prepared by

surface biofunctionalization with ethanolamine and poly

(ethyleneglycol) (PEG). Next, IBMP-8.1, a specific biomarker

found in the serum of T. cruzi-infected humans, was covalently

bound to the PEG-functionalized nanowires. Nanowires

suspended in isopropanol were put over a metal electrode

based on Ni/Ge/Au alloy. Nanowires were able to detect anti-
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IBMP-8.1 antibodies present in serum at concentrations as low

as 6 fM, with excellent specificity. By comparison, standard

diagnostic methods, such as ELISA and PCR, have sensitivity in

the nanomolar range. The significant alteration in the electrical

properties of the InP nanowire sensor after anti-IBMP-8.1

antibody attachment was the endpoint of this method

(Janissen et al., 2017). More recently, Lima et al. conjugated

gold nanoparticles to a silicon-based material (water-soluble

charged silsesquioxanes) to be applied as nanotransducers in

an electrochemical biosensor for the immunodetection of T.

cruzi infection. The gold nanoparticles were covered by

erythrocytes sensitized with T. cruzi antigens. When in contact

with anti-T. cruzi antibodies in serum, the formation of an

immunocomplex inhibits the redox reaction on the probe,

resulting in lower electric current. Importantly, the developed

biosensor did not show toxicity against red and white blood cells,

and is therefore potentially safe for intravenous application.

Regarding the applicability of this diagnostic tool in endemic

areas of low-income countries, the electrochemical biosensor

developed by Lima et al. could be easily adapted to portable

devices. Additionally, because there is no need for complex

sample preparation, the cost of this method should be lower

than that estimated for most diagnostic approaches based on

nanostructured materials (Lima et al., 2022).
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Only two hydrophobic nitroimidazole prodrugs have been

available to treat T. cruzi-infected patients since the 1970s —

nifurtimox (NFX) and benznidazole (BNZ) (Bern, 2011).

Although both drugs can effectively clear the acute T. cruzi

infection, BNZ is the first-line treatment against chronic CD,

being better tolerated than NFX. Nevertheless, the severe side

effects, such as hepatic and renal damage, anorexia,

immunosuppression, teratogenicity, neuropathy, dermatitis, etc.,

require cessation of treatment in up to 30% of patients (Coura

and Castro, 2002; Castro et al., 2006; Ndayishimiye et al., 2021).

BNZ toxicity results from the required administration of high oral

doses of drug that are required to achieve a therapeutic plasma

dose; this is largely due to the drug’s high hydrophobicity.

Improvements in BNZ formulation have been achieved

(Davanco et al., 2016; Bezerra et al., 2020; Amaral et al., 2021;

Ndayishimiye et al., 2021) and micro- and nano-carriers have

emerged as a strategy to decrease BNZ toxicity by overcoming

poor aqueous solubility, increasing BNZ bioavailability and

increasing concentration inside T. cruzi infected cells (Quezada

et al., 2019; Seremeta et al., 2019; Pandian et al., 2021).

We found that BNZ- loaded poly(ethylene glycol)-block-poly

(propylene sulfide) (PEG-b-PPS) polymersomes are effective at

treating acute T. cruzi infection at BNZ doses 466-fold lower than

with free BNZ. In vitro analysis revealed the cytoplasmic
FIGURE 2

Life cycle of Trypanosoma cruzi. The life cycle of T. cruzi alternates between the insect vector – Triatomines or “kissing bugs” – and the
mammalian host. Metacyclic trypomastigotes are found in insect feces released during the bloodmeal. The parasite reaches the bloodstream
through the bite wound or conjunctiva. Once in the bloodstream, T. cruzi can invade any nucleated cells. After invasion, the parasite
differentiates into amastigote and multiplies in the host cell cytoplasm. After some cycles of multiplication, intracellular parasites differentiate
into trypomastigotes. Trypomastigotes are released in the bloodstream after the host cell disruption being ingested by triatomines while taking a
bloodmeal from an infected mammalian host. In the insect gut, different developmental stages of parasites can be found, including
epimastigotes and metacyclic trypomastigotes. Created with Biorender.com.
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colocalization of PEG-b-PPS nanocarriers and parasites inside

cardiomyocytes, consistent with previous reports that sulfide

moieties of PPS can be oxidized by endolysosomal enzymes

and migrate to the cytoplasm (Scott et al., 2012). In a murine

CD model, standard BNZ and BNZ-loaded PEG-b-PPS

polymersomes reduced T. cruzi infection; however, only the

BNZ-loaded PEG-b-PPS polymersomes promoted a significant

reduction of heart inflammation in comparison to untreated

controls (Li et al., 2021). High daily doses of BNZ are required

to reach effective plasma drug concentrations, which cause

various types of toxicity. The low BNZ dose delivered by a

weekly iv injection of BNZ-PEG-b-PPS polymersomes did not

cause the weight loss and hepatotoxicity observed in mice treated

with free BNZ. Similarly, microparticles of Eudragit, a copolymer

derived from esters of acrylic and methacrylic acids, delivering 50

mg/kg/day of BNZ by the oral route, obtained by the spraying-

drying method, were able to clear acute heart parasitosis, as well

as decrease T. cruzi-specific antibody levels and heart

inflammation. In contrast, treatment with free BNZ at the same

dose only reduced parasitemia by 50%, with development of

cardiac inflammation. BNZ Eudragit microparticles show a faster

dissolution rate and BNZ release than the raw BNZ. The

advantage of BNZ Eudragit microparticles over free BNZ may

be due to the improvement in the pharmacokinetic properties,

thus improving BNZ intestinal absorption, resulting in a more

effective trypanocidal activity (Rial et al., 2021). The same

research group also reported that 71% of T. cruzi-infected mice

treated with oral poloxamer (P-188) nanoformulations of BNZ at

a dose as low as 25 mg/kg/day did not show parasites in the blood

based on PCR results; after immunosuppression, no parasitemia

were detected in 40% of the animals when compared with the

treatment using free BNZ at the same dose and route of

administration. BNZ nanoformulation treatment was also able

to reduce significantly the anti-T. cruzi antibody levels and the

cardiac inflammation as well when compared to the same dose of

free BNZ (Rial et al., 2017). Reduction in antibody production

almost certainly results from suppressed parasitemia and

therefore low antigen availability to stimulate T. cruzi-specific

antibody production.

Likewise, increasing the drug solubility and intestinal

absorption was the goal of Spósito et al. (2017), who developed

self-emulsifying nanoformulations for oral drug delivery. The

nanoformulations contained ravuconazole, a lipophilic drug

possessing a short plasma half-life and strong trypanocidal

activity. Self-emulsifying drug delivery systems are a mixture of

oil, surfactant, and drug that form micelles of 100-250 nm under

gentle agitation. Small droplets are formed in the gastrointestinal

tract, improving dissolution, intestinal absorption, and

bioavailability of the loaded drug. The potential toxicity of

nanoemulsions containing ravuconazole was measured by the

weight loss of infected and uninfected animals. Although

Labrasol formulations were found to be toxic to healthy mice,

their nanoemulsion containing an optimal concentration of
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Labrasol combined with ethanol as emulsifiers did not promote

any weight loss (Spósito et al., 2017). Regarding infected animals,

all treatments, including free ravuconazole, prevented the severe

weight loss caused by the infection. Treatment efficacy was time-

dependent: all drug treatments (free benznidazole, free

ravuconazole, ravuconazole-loaded nanoemulsion) cleared the

infection after 40 days. A short-term treatment (30 days)

revealed the superiority of ravuconazole-loaded nanoemulsions

over treatment with free ravuconazole. Although additional

toxicological analysis could further show the benefits of self-

emulsifying drug delivery systems, the Spósito et al. investigation

indicates that a self-nanoemulsifying system can overcome many

limitations intrinsic to orally-administered lipophilic drugs

(Spósito et al., 2021).

Immunomodulators, such as imiquimod (IMQ), have also

been investigated against acute CD. Parra et al. showed that

subcutaneous treatment of infected mice with IMQ incorporated

in nanoarchaeosomas (NCH), oligolamellar nanovesicles

produced with lipids isolated from archaebacteria, induces a

protective Th-1 response against acute T. cruzi infection,

promoting a significantly lower mortality rate and parasitemia

than subcutaneous free IMQ treatment or no treatment. As

IMQ-NCH caused less muscle inflammation and fibrosis than

oral free BNZ, the combination of IMQ with trypanocidal drugs

may reduce parasitemia/parasitosis and also reduce tissue

inflammation in chronic CD (Parra et al., 2020).

BNZ treatment is recommended for chronic CD by many

clinicians, but it remains controversial due to limited ability of

the treatment to eliminate parasites entirely, together with the

potential for severe side effects of the drug. The BENEFIT

(Benznidazole Evaluation for Interrupting Trypanosomiasis)

trial concluded that treatment of chronic CD patients does not

prevent the progression of cardiomyopathy (Bonney and

Engman, 2015; Morillo et al., 2015; Santos et al., 2020a).

However, a long-term follow-up study revealed that BNZ

treatment was associated with a lower incidence of the cardiac

form of CD in patients treated from the indeterminate stage,

suggesting that BNZ treatment can prevent the development of

cardiovascular events if administered in patients without

electrocardiographic abnormalities (Hasslocher-Moreno et al.,

2021). Chronic chagasic cardiomyopathy is the primary concern

for chronic patients and, for that reason, effective treatment

should achieve a decline of cardiac inflammation in addition to

the reduction of parasitosis as endpoints. The potential anti-

inflammatory activity of natural molecules, such as curcumin

(CUR), has been explored for treatment of chronic chagasic

myocarditis. Hernandez et al. found that CUR encapsulated in

poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) reduced

chronic chagasic inflammation caused by T. cruzi and optimized

the antiparasitic effect of suboptimal doses of BNZ after oral

administration in infected mice. CUR-PLGA-NP monotherapy

downregulated proinflammatory cytokine levels but failed to

reduce cardiac parasitosis while free BNZ significantly reduced
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parasitemia without promoting an anti-inflammatory response.

The co-administration of CUR-PLGA-NPs and free BNZ

resulted in improved trypanocidal activity and a decrease in

the pro-inflammatory response, reducing heart fibrosis and

cardiac hypertrophy. These findings revealed that molecules

that suppress the release of inflammatory mediators should be

explored in combination with antiparasitic drugs to treat

chagasic inflammation and chronic parasitosis simultaneously

(Hernandez et al., 2021).

In another study using the poloxamer (P-188) nano-based

platform, Rial et al. compared the effect of continuous and

intermittent oral administration of reduced doses of free BNZ

and BNZ P-188-NPs in chronically infected mice. Intermittent

administration of BNZ P-188-NPs achieved a similar efficacy to

free BNZ using a 15% lower BNZ dose. The authors

hypothesized that the superior efficacy of a sustained release of

lower doses administered intermittently was a consequence of a

longer treatment period. This allowed for BNZ activity against

the dormant amastigote stage of T. cruzi that dominates the

chronic stage. These findings suggest that high BNZ doses and

BNZ accumulation are not needed to have a trypanocidal effect,

preventing the typical severe side effects of BNZ treatment (Rial

et al., 2020). Similarly, Garcıá et al. found that daily doses of oral

BNZ are not required to promote the trypanocidal effect in

animals. The authors also developed a multiparticulate drug

delivery system (MDDS) to improve the release of BNZ by oral

administration. In general, the MDDS aims to control or modify

the drug release based on coating drug particles or free drug in a

matrix of one or more oppositely charged polymeric carriers,

which by electrostatic interaction with the aqueous

environment, creates soluble or insoluble complexes able to

modulate their dissolution rate and release of drug. The

incorporation of BNZ in Eudragit EPO-Eudragit L100, an

MDDS employing two oppositely charged polyelectrolytes with

different degradation rates, enhanced BNZ activity. This was

given orally and achieved a sustained BNZ concentration,

resulting in nearly undetectable cardiac parasite burden in

mice at 150 dpi, even after immunosuppression. Additionally,

by avoiding the high plasma concentration of BNZ and

exacerbated oxidative stress in uninfected mice, the controlled

release of BNZ helped reduce systemic inflammation and did not

cause hepatotoxicity typically found in mice treated with free

BNZ (Garcia et al., 2021).

Branquinho et al. developed and evaluated the efficacy of a

natural lipophilic sesquiterpene lactone, Lychnopholide (LYC),

encapsulated in biodegradable poly(ethylene glycol)-block-

polylactic acid (PEG-b-PLA) and polycaprolactone (PCL)

nanocapsules (NCs) against acute and chronic CD. PEG-b-

PLA-PCL NCs increase the plasma concentration of LYC by

preventing fast LYC degradation in plasma, avoiding the fast

clearance after intravenous and oral administration. LYC-PEG-

b-PLA-PCL NCs reduced parasitemia similarly to standard BNZ

treatment, resulting in 75% and 87.5% of animals being cured
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during acute and chronic infections, respectively. Inflammatory

processes and parasites were not detected in the hearts of

chronically infected mice treated with LYC- PEG-b-PLA-PCL

NCs at 12 mg/kg/day. Although biodistribution studies for LYC

are not currently available, Branquinho et al. suggested that the

enhanced permeability of LYC and LYC- PEG-b-PLA-PCL NCs

biodistribution may have been influenced by the chagasic

inflammation itself (Branquinho et al., 2020).
Discussion and conclusions

Many studies have illustrated the benefits of nanotechnology

to improve the delivery, toxicity, drug release, and

biodistribution of leishmanicidal and trypanocidal drugs. As

the spleen and liver are primary targets of VL, the accumulation

of nanoparticles in these organs may be considered an advantage

for leishmaniasis treatment. Not surprisingly, the employment

of different animal models and methods to test leishmanicidal

efficacy in terms of tissue-specific parasite burden does not allow

direct comparison of treatments across studies. A good

leishmaniasis prognosis is strictly dependent on a balanced

helper T cell protective immune response. In contrast,

damages caused by Leishmania infection in the vertebrate host

are a consequence of an exacerbated Th-1 response while an

exacerbated Th-2 response leads to a severe and untreatable

infection. Immunomodulation promoted by engineered

nanomaterials to restore the balance between Th-1 and Th-2

macrophage response has not been explored and thus affords an

opportunity for future study. Similarly, few studies have

investigated the potential and promising application of nano-

based drug delivery systems to target T. cruzi or Leishmania

antigens as well as infected cells specifically. This limitation may

be associated with the plasticity in immune evasion typical of

both parasites by downregulating antigen expression on the

surface of infected cells, hindering the recognition of specific

markers to be targeted by drug nanocarriers.

A large number of nano-based formulations have been

employed to enhance solubility, improve drug biodistribution,

and optimize the dose regimens of standard parasiticidal drugs. A

similar approach was previously applied for the development of

liposomal AmpB, used for decades to treat systemic fungal

infections and leishmaniasis. However, liposomal AmpB

systems have limited efficacy against intracellular T. cruzi

(Clemons et al., 2017; Cencig et al., 2011; Morilla and Romero,

2015; Pund and Joshi, 2017; Quijia Quezada et al., 2019) partially

because liposomes and T. cruzi do not reside in the same cellular

compartment; T. cruzi amastigotes reside in the cytoplasm, while

liposomes release AmpB inside the phagolysosome, where

Leishmania replicates. Additionally, the high hydrophobicity of

AmpB impairs its diffusion from the phagosome to the cytoplasm

(Romero and Morilla, 2010). The emergence of BNZ-resistant T.

cruzi strains and the high toxicity of available trypanocidal drugs
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justify the need for drug research and development in the

treatment of both acute and chronic T. cruzi infection.

Considering the heterogeneity of BNZ susceptibility observed

among different T. cruzi strains, the use of different strains and

animal models limits direct comparison of drugs and/or drug

delivery systems. Some studies fail to show the benefits of nano-

based formulations by ignoring the importance of adding an

animal group treated with the free drug at the same dose proposed

in the nanoformulation. Also, as recommended by the FDA,

biodistribution and pharmacokinetic studies should be conducted

in infected animals considering the significant physiologic

differences between healthy animals and infected animals in

both acute and chronic stages. For example, BNZ has a longer

elimination half-life in chronically infected humans, suggesting

that a lower BNZ dose may improve treatment tolerability

without compromising the antiparasitic effect (Soy et al., 2015).

Not surprisingly, the BENDITA clinical trial corroborates this

approach (Torrico et al., 2021). Moreover, the evaluation of anti-

inflammatory responses in chronic myocarditis and exploring

sustained drug release from nanomaterials can support

therapeutic development against chagasic cardiomyopathy.

Unlike BNZ, NFX has not been explored using nanotechnology

(Arrua et al., 2019). However, new studies are expected shortly

since NFX was recently approved by the FDA for the treatment of

CD in pediatric patients. Although the BERENICE consortium

(Benznidazole and triazole research group for nanomedicine and

innovation on CD) had developed and studied different nano-

based drug delivery systems for six years providing useful

information regarding BNZ properties, no tested formulation

was successfully applied in preclinical studies (CORDIS, 2022).

However, the interdisciplinary nature of nanotechnology research

has made this field extremely versatile and innovative. As new

knowledge and technology are being absorbed by this science,

advanced engineered nanoparticle systems have been developed

t o i n d u c e a w i d e r a n g e o f p h y s i o l o g i c a l a n d

immunological responses.

However, regulatory challenges and the high price of

innovative drug delivery systems are critical barriers for their

implementation in the medical field (Kirtane et al., 2021). The

market price of nano-based formulations is still higher than

those of conventional medicines. The research and development

of nanocarriers, as well as the technology applied on the

pharmaceutical manufacturing of this products, is still

considered expensive, discouraging translational research and

clinical trials focused on diseases that affect low- and middle-

income countries (Kumar et al., 2020). However, economic

studies have revealed that a deeper cost-benefit analysis should

be performed. One example is the use of LAmpB as a last-choice

treatment for leishmaniasis in Brazil, where the National Public

Health System database centralizes all information regarding

direct costs of all available treatments, such as hospitalization

period, medicine consumption, lab and imaging tests, medical

appointments, and professional fees. Those studies show that
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LAmpB treatment significantly minimizes indirect costs not

only by reducing the side effects and the loss of economic

productivity, but also by increasing the cure rate, preventing

relapsed leishmaniasis and future hospitalizations. The cost-

effectiveness analysis is clear about the economic and social

advantages of using LAmpB as the first-line treatment against

leishmaniasis in that country (Mistro et al., 2016; Mistro et al.,

2017; de Carvalho et al., 2020). Thus, additional cost-

effectiveness studies are needed to clarify the benefits of

nanotechnological medical advances in terms of budget for

different health conditions, including other NTDs.

In summary, the preliminary success of nano-based drug

delivery systems discussed here is expected to stimulate

translat ional research using innovative engineered

nanomaterials to treat leishmaniasis, acute and chronic CD.

However, breaking the paradigm of “high-priced technology” is

crucial to encourage investments in translational research and

clinical trials. Considering the progress made in the last few

decades in terms of academic research and development of

nanomaterials against Trypanosomatid infections, the potential

of nanotechnology against NTDs is high.
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