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Abstract: Secondary metabolites from plants and fungi are stimulating growing interest in consumers
and, consequently, in the food and supplement industries. The beneficial effects of these natural
compounds are being thoroughly studied and there are frequent updates about the biological
activities of old and new molecules isolated from plants and fungi. In this article, we present a review
of the most recent literature regarding the recent discovery of secondary metabolites through isolation
and structural elucidation, as well as the in vitro and/or in vivo evaluation of their biological effects.
In particular, the possibility of using these bioactive molecules in the prevention and/or treatment of
widely spread pathologies such as cardiovascular and neurodegenerative diseases is discussed.

Keywords: secondary metabolites; plants; fungi; food supplements; cardiovascular diseases; neu-
rodegenerative diseases; Alzheimer’s disease; metabolic syndrome

1. Introduction

Fungi and plants represent an important source of numerous bioactive compounds
and have historically been used for medicinal purposes by virtually all human cultures [1].

Plants produce various secondary metabolites (SMs) in order to defend themselves
from external attacks and as signals. These SMs show interesting biological and phar-
macological activities: for this reason, they are often isolated and used for therapeutic
purposes [2]. Plant-derived compounds are currently used in oncology therapy worldwide
because they are considered less toxic and thus better accepted by patients [3], even if
this consideration cannot be extended to all natural compounds and can be dangerous.
Taxanes, used for the treatment of patients with breast cancer, are an excellent example of
a valuable drug: paclitaxel is isolated from the bark of Taxus brevifolia (Pacific yew tree),
while docetaxel is extracted from the needles of Taxus baccata (European yew tree) [4].
Other anticancer treatments obtained from plants are the vinca alkaloids vincristine and
vinblastine, derived from the periwinkle plant Catharanthus roseus [5].

Polyphenols are another remarkable class of plant-derived SM, endowed with pro-
tective effects against pathologies such as cancer, cardiovascular diseases, diabetes, and
neurodegenerative disorders [6]. These are classified into phenolic acids, flavonoids, stil-
benes, coumarins, lignins, and tannins. Coumarins are found in a variety of plants such as
tonka bean (Dipteryx odorata), sweet woodruff (Galium odoratum), sweet grass (Hierochloe
odorata), deer-tongue (Dichanthelium clandestinum), vanilla grass (Anthoxanthum odoratum),
mullein (Verbascum spp.), and sweet-clover (Melilotus sp.) [7]. Resveratrol, a stilbenoid
present in many fresh fruits and plants such as Polygonum cuspidatum, Arachis hypogea,
Cassia sp., Eucalyptus, Morus rubra, and Vitis vinifera, has been reported to have numer-
ous biological properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-aging,
anti-obesity, anti-diabetes, cardioprotective and neuroprotective effects [8].
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In recent years, the interest on the medicinal properties of compounds from Cannabis
species has been steadily growing. More than 100 phyto-cannabinoids have been identified
from C. sativa; among them, the most potent psychoactive activity is displayed by trans-
∆9-tetrahydrocannabinol (THC). According to several studies, cannabis derivatives can be
useful in conditions such as pain, anorexia-cachexia, skin pathologies, neurodegenerative
diseases, epilepsy, sleep disorders and infections. However, legislation regarding these
compounds is still ambiguous, insufficient, and plagued by controversies linked to their
adverse effects and their consumption as recreational drugs [9,10].

Fungi also produce bioactive natural products that are exploited for pharmaceutical
purposes. Fungal metabolites with clinical use include beta lactams, e.g., penicillins G and
V, statins, cholesterol-lowering blockbuster drugs, the immunosuppressant cyclosporin and
the anti-migraine ergotamine [11]. Beta-lactams are the most widely used class of antibiotics
that, with the discovery of penicillin, produced by the fungus Penicillium notatum, early
in the twentieth century, marked a new era for the treatment of bacterial infections [12].
Cyclosporin is employed for the treatment of autoimmune diseases such as psoriasis; it is a
peptide isolated from Tolypocladium inflatum [13].

Many natural compounds from fungi and plants are extensively used as food sup-
plements for the treatment and prevention of neurodegenerative and cardiovascular dis-
eases [14], showing the growing interest in this field of research. Among the best-selling
products, monacolin K, a component of red yeast rice fermented with several patented
Monascus purpureus strains, is a widely discussed case. Considering its chemical struc-
ture and biological activity [15], the use of the food supplement containing this bioactive
compound should be more strictly regulated. This review focuses on another important
aspect of research regarding natural compounds: the isolation of secondary metabolites
of fungi and plants and their biological evaluation as potential useful compounds for
neurodegenerative and cardiovascular disorders.

2. Natural Compounds and Neurodegenerative Diseases

The prevention and treatment of neurodegenerative diseases (NDs), such as Parkin-
son’s disease (PD) and Alzheimer’s disease (AD), is an important avenue of research due
to the increasing occurrence of these pathologies in the rapidly aging world population.
Their multifactorial nature complicates their diagnostic and therapeutic profile and only
few drugs are available [16–18]. Lifestyle factors, including dietary habits, influence the
development of NDs, further cementing the role of food-derived compounds such as plant
SMs in the long-term physiological balance of the nervous system [19]. Table 1 summarizes
the body of literature regarding plant and fungal SMs with potential activity toward NDs.

Table 1. Natural compounds and neurodegenerative diseases.

Source Bioactive Compounds Effects Main Activities Ref.

Cetraria islandica L.
Ach Furmarprotocetraric acid Neuroprotective and

antioxidant activities

Oxygen radical
absorbance capacity

(ORAC)
5.07 ± 0.43 µmol TE/mg

[20]

Spongionella sp. Gracilin A, H, K, J, L, and
tetrahydroaplysulphurin-1 Neuroprotective activity (Caspase 3 inh.)

3.88–4.04 × 103 RFU [21]

Lepidium meyenii

N-(3-
methoxybenzyl)oleamide,

(N-(3-
methoxybenzyl)linolenamide,

N-(3-
methoxybenzyl)linolenamide

Neuroprotective activity,
peroxisome

proliferator-activated
receptor (PPAR) γ

interaction, inhibition of
fatty acid amide

hydrolase (FAAH)

(PPARγ act., EC50)
20.4–22.6 µM [22]
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Table 1. Cont.

Source Bioactive Compounds Effects Main Activities Ref.

Aspergillus terreus
Y10

Asperteretal F, G1, G2, H and
others

Inhibition of Tumor
Necrosis Factor α

(TNFα)

(TNFα inh., IC50)
7.6 9.9 µM [23]

Sarcophyton glaucum Sarcophytolide Antimicrobic and
cytoprotective activities

(MIC)
0.13–0.22 µg/mL [24]

Hericius erinaceus and
Hericius flagellum

Erinacine A, B, C, E, F, and
others Neurotrophic activity

(increased NGF
expression)

0.8–12 µg/mL
[25]

Narcissus tazetta L.

(−)-9-O-
methylpseudolycorine,

(−)-narcissidine,
(−)-pancratinine-C,

(+)-9-O-demethyl-2-a-
hydroxyhomolycorine

Inhibition of
acetylcholine esterase

AChE and
butyrylcholine esterase

(BChE)

(AChE inh, IC50)
0.67–32.51 µM [26]

Embelia ribes and
others Embelin and others

Inhibition of AChE,
BChE and Beta-secretase
1 (BACE-1); induction of
P-glycoprotein 1 (P-gp)

(AChE inh, IC50)
2.50–6.98 µM [27]

Rumex abyssinicus Helminthosporin, emodin,
chryso-phanol, physcion

Inhibition of AChE
and BChE

(AChE inh, IC50)
2.63–33.7 µM [28]

Oxalis corniculate L. Flavonoids 1-9
Inhibition of AChE,
BChE and carbonic

anhydrases II (CA-II)

(AChE inh, IC50)
49.52–109.55 µg/mL [29]

Lichens
Atranorin, perlatolic acid,
physodic acid, usnic acid

and others

Neurotrophic activity
and AChE inhibition

(AChE inh, IC50)
6.8–27.1 µM [30]

Fungi and plants

Tenuazonic acid,
epi-racidinol, mycophenolic
acid, radicinin, visoltricin,

6-methoxymellein

Inhibition of AChE,
BChE and

Aβ-aggregation;
antioxidant activity,

metal chelation

(AChE inh, IC50)
6.86–11.4 µM [31]

S. flavescens (−)-maackian and others
Inhibition of

monoamine oxidases
(MAOs)

(MAO-B inh, IC50)
0.68–52.3 µM [32]

Renealmia Alpinia Desmethoxyangonin
and others Inhibition of MAOs (MAO-B inh, Ki)

31–110 nM [33]

Ginkgo biloba Ginkgolic acid and
anacardic acid

Decreased accumulation
of α-synuclein (αSN)

aggregates

(αSN aggr inh)
10–100 µM [34]

Ampelopsis
grossedentata Dihydromyricetin

Neuroprotective activity
and inhibition of αSN

fibril formation

(αSN aggr inh)
50–100 µM [35]

Oxidative stress and neuroinflammation are considered two of the causes of
NDs [19,36]. For this reason, neuroprotective agents targeting these pathological fac-
tors can be useful for the prevention and treatment of these disorders [36]. In recent years,
several natural compounds have been explored for their neuroprotective and antioxidant
activity. For example, polyphenols, which are secondary metabolites of plants present in
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various food and drinks, have shown important antioxidant properties [37]. However,
numerous studies in the recent past have been focused on different and more original
matrices.

Cetraria islandica L. Ach (or Iceland moss), as an example, is the most famous cetrar-
ioid lichen species. It has been used for the treatment of various inflammatory diseases,
and recently the neuroprotective properties of its major metabolite, fumarprotocetraric
acid (FUM) were evaluated on neuron-like SH-SY5Y cells and glial U373-MG cells. FUM
revealed different activities, acting as a scavenger of peroxyl radicals, decreasing reac-
tive oxygen species (ROS) production, reducing GSH depletion and increasing the ratio
of reduced glutathioneto oxidized glutathione (GSH/GSSG ratio). Moreover, FUM de-
creased mitochondrial Ca2+ levels, protected the mitochondrial membrane against H2O2-
induced damage, suppressed H2O2-induced expression of protease caspase-3, decreased
pro-apoptotic factor Bax levels and increased the anti-apoptotic Bcl-2 levels [20].

Another interesting research is the in vitro screening of the antioxidant action of
six diterpene derivatives, named Gracilin A, H, K, J, L, and tetrahydroaplysulphurin-1,
isolated from Spongionella sp., a marine sponge. The two parameters for the evaluation
of antioxidant activity were MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay and LDH levels: the first is correlated with mitochondrial function, the
second is a cytoplasmic enzyme released in the culture medium following cell membrane
damage. The tested compounds showed significant neuroprotective activity, interacting
with targets such as mitochondrial oxidative phosphorylation and kinases involved in
apoptosis [21].

Looking at innovative targets, a recent paper describes Macamides, a group of sec-
ondary metabolites isolated from the plant Lepidium meyenii (Maca). These compounds are
benzylamides of fatty acids, active as analogues of the endocannabinoid anandamide (AEA)
and studies have demonstrated that they inhibit fatty acid amide hydrolase (FAAH), block-
ing AEA hydrolysis. Gugnani et al. demonstrated a neuroprotective role of macamides
in vitro and in vivo. Macamides reduced Mn-induced mitochondrial toxicity in glioblas-
toma U-87 MG cells, probably by binding the CB1 receptor, and it could thus be useful in
the treatment of neurodegenerative diseases, especially Alzheimer’s Disease. Like AEA,
macamides can interact with PPARγ, regulating inflammation, energetic metabolism and
glucose homeostasis, all important factors for the prevention of AD [22,38].

Other interesting bioactive secondary metabolites are butenolides, from the fungus As-
pergillus terreus. The chemical structures of these compounds were recently elucidated and
their effects against the expression of TNFα in lipopolysaccharide (LPS)-activated BV2 mi-
croglia cells were tested. The most promising compound was asperteretal F, which inhibited
the expression of TNFα in a dose-dependent mode, making it an anti-neuroinflammatory
candidate for the treatment of NDs [23].

Sarcophytolide, instead, is a lacton cembrane diterpene derived from soft coral Sarco-
phyton glaucum that was recently shown to possess antimicrobic activity towards Staphylo-
coccus aureus, Pseudomonas aeruginosa, and Saccharomyces cerevisiae. Moreover, pretreatment
of primary cortical cells with sarcophytolide had a strong cytoprotective effect against
glutamate-induced neurotoxicity and increased the expression of Bcl-2. This mechanism
confirmed by evidence that sarcophytolide showed a cytoprotective activity only if added
before and not after the exposure of neuronal cells to glutamate [24].

Meanwhile, Rupcic et al. discovered two new metabolites of the medicinal mushrooms
Hericius erinaceus and Hericius flagellum (a rare species). They determined the chemical
structures of these new compounds and of other metabolites previously isolated from
the two species through Nuclear Magnetic Resonance (NMR) and High-Resolution Mass
Spectroscopy (HRMS), identifying them as cyathane diterpenes. All these compounds
were tested in vitro on PC12 cells for their neurotrophic activity, showing that, although
none of them was endowed with intrinsic neurotrophic properties, all of them promoted
the production of neurotrophins NGF (Nerve Growth Factor) and BDNF (Brain-Derived
Neurotrophic Factor) in astrocytic cells [25].
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2.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common neurodegenerative disorder, charac-
terized by several cognitive and behavioral disfunctions, and it affects mainly old people,
although rare early onset of this disease is also known [39,40]. Several hypotheses have
been formulated regarding its pathogenesis, including deposition of amyloid β (Aβ),
damaged cholinergic transmission, oxidative stress and hyperphosphorylated Tau aggrega-
tion [41,42].

According to the so-called “cholinergic hypothesis”, AD is linked to decreased levels
of acetylcholine (ACh) accompanied by a loss of cholinergic neurons in the central nervous
system. In order to raise the concentration of this neurotransmitter, inhibitors of acetyl-
choline esterase (AChE), the main enzyme responsible for the degradation of ACh, have
found use in clinical practice, improving functional autonomy and cognitive functions in
AD patients [43]. Among these drugs are natural compounds such as galantamine, the
most important Amaryllidaceae alkaloid [44]. For this reason, the potential use in AD of
other Amaryllidaceae alkaloids, isolated from Narcissus tazetta L., was recently evaluated.
Their structures were determined by NMR and mass spectroscopy, while in vıtro AChE and
butyrylcholinesterase (BChE) inhibitory activity was evaluated using Ellman’s colorimetric
method, with galantamine as reference. (+)-11-Hydroxygalanthine had the highest selective
inhibitory activity on AChE, and narcissidine also inhibited AChE rather than BChE; while
(−)-pancratinine-C was a selective BChE inhibitor. Docking studies confirmed bioactivity
results [26].

The screening of libraries of natural compounds has also proven to be a promis-
ing strategy to identify multi-target compounds for the treatment of AD. Embelin, a
1,4-benzoquinone isolated from Embelia ribes fruits, recently emerged from one such screen-
ing, showing inhibitory activity towards AChE, BChE and beta-secretase 1 (BACE-1, in-
volved in the deposition of Aβ). Another two natural products present in the library,
L-tetrahydropalmatine and papaverine, exhibited a good inhibition of AChE. Moreover,
embelin, in LS-180 cells, acted as an inductor of P-gp, an ATP-dependent efflux pump situ-
ated in the blood-brain barrier (BBB) whose decreased levels can lead to the accumulation
of Aβ plaques [27].

Anti-AChE activity was exhibited also by four secondary metabolites (helminthosporin,
emodin, chrysophanol, and physcion) of the African medicinal plant Rumex Abyssinias.
These compounds, sharing an anthraquinone structure, were isolated and showed signifi-
cant AChE inhibitory activity. Helminthosporin also displayed activity as a non-competitive
BChE inhibitor, while the other compounds were only weakly active against this target.
Moreover, the tricyclic flat structure makes helminthosporin lipophilic enough to cross the
BBB, balancing its low LogP value [28].

Biologically active secondary metabolites such as phenols, alkaloids flavonoids, ter-
penes, sterols, and tannins from the ethanolic extract of Oxalis corniculata L. are endowed
with carbonic anhydrase and cholinesterase inhibitory activity, with potential uses against
epilepsy and Alzheimer’s disease, respectively. Moreover, nine flavonoids were isolated
from chloroform and ethyl acetate fractions, displaying ChEs and carbonic anhydrase II
(CA-II) inhibitory activity [29].

Lichens have also been used as a source of natural compounds for the treatment of AD.
During a recent study conducted on murine neuroblastoma Neuro2A cells, lichen-derived
secondary metabolites (atranorin, perlatolic acid, physodic acid and usnic acid) displayed
an important increase in neurite outgrowth, with perlatolic acid achieving better results
than reference compound resveratrol. MTT assays revealed that only usnic acid showed
cytotoxicity at neurotrophic doses. The molecular mediators of these effects are NGF,
which is upregulated by atranorin, perlatolic acid and physodic acid, and BDNF, which is
upregulated by atranorin and physodic acid. Only perlatolic acid had a potential inhibitory
activity on AChE, at a concentration that was comparable with galantamine and lower
than biroquinone, another lichen metabolite reported as AChE inhibitor [30].
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Detailed knowledge of the structure of plant and fungal secondary metabolites has
also proven useful directing screening activities. Due to their similarity to existing nuclei
used in AChE inhibitors and metal chelators, fungal secondary metabolites tenuazonic acid
(TA), epi-radicinol (ROH), mycophenolic acid (MA), radicinin (RAD), visoltricin/fungerin
(FU) and plant metabolite 6-methoxymellein (6-MM) were screened for various activities
such as inhibition of AChE, BChE and Aβ-aggregation, antioxidant effect and Cu and Zn
interaction. A preliminary UV spectrophotometry test for metal chelation of Cu (II) and
Zn (II) at physiological pH revealed that TA, MA and 6-MM probably interacted with Cu
(II). TA and ROH exhibited a significant selective AChE inhibitory activity, while FU was
the only compound that inhibited BChE. 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical
scavenging activity assay suggested that TA and MA behaved as antioxidants. Moreover,
all molecules were inhibitors of Aβ1–40 aggregation, as demonstrated by spectrofluorimetric
assays, with ROH being the most active compound [31].

2.2. Parkinson’s Disease

Parkinson’s disease (PD) is a very common neurodegenerative disease characterized
by motor symptoms, such as rigidity, bradykinesia and tremor, and non-motor symptoms,
including sleep disorders and cognitive abnormalities [45]. The principal causes of this
pathology are the depletion of dopamine in nerve terminals to the striatum and the pro-
gressive degeneration of dopaminergic neurons in the substantia nigra [46]. The therapy
involves the use of levodopa associated with an inhibitor of the peripheral metabolism of
levodopa, for example carbidopa. Additionally, other drugs can be administrated, such as
dopaminergic agonists, monoamine oxidase-B inhibitors and catechol O-methyltransferase
inhibitors [47].

Monoamine oxidases (MAOs) are enzymes responsible for the oxidative deamination
of both xenobiotic and endogenous neurotransmitters. Both MAO isoforms (MAO-A and
MAO-B) are involved in the degradation of dopamine; however, MAO-B is the predominant
isoform in the human brain. For this reason, MAO-B selective inhibitors, like selegiline and
rasagiline, are used for the treatment of PD, raising striatal dopaminergic activity through
the inhibition of dopamine metabolism [48–50].

In recent years, many natural inhibitors of MAO-B have been discovered and charac-
terized, representing a powerful source of inspiration for further drug development [51].

MAO-A and MAO-B inhibitory activities of seven compounds isolated from the extract
of S.flavescens were recently investigated, highlighting (−)-maackian as a potent inhibitor
of MAO-B and as a candidate for the development of drugs for Parkinson’s disease. The
structurally related compound (−)-4-hydroxy-3-methoxy-8,9-methylenedioxypterocarpan
was a non-selective inhibitor of both isoforms, as well as formononetin and genistein.
Sophora-flavanone B weakly inhibited MAO-A, but not MAO-B, while kushenol F showed
a good inhibitory activity on MAO-A and a weak one on MAO-B [32].

A dichloromethane extract of Renealmia Alpinia, was recently shown to possess a potent
inhibitory activity towards both MAO-A and MAO-B. From this extract, desmethoxyango-
nin, a kavalactone, was isolated. It exhibited a potent, selective and competitive inhibition
of MAO-B rather than MAO-A, confirmed by molecular modeling studies, leading to its
selection as a candidate for further drug development. Other isolated molecules from the
extract displayed moderate inhibition of both isoforms [33].

The aggregation of α-synuclein (αSN) in cytoplasmic inclusions called Lewy bodies
is another important pathogenetic mechanism involved in PD. The formation of αSN
fibrils leads to the disruption of synaptic homeostasis and neurodegeneration. While the
exact mechanism is not clear, αSN is an interesting target for natural and synthetic drugs
alike [52,53].

A natural compound extracted from Ginkgo biloba leaves, ginkgolic acid (GA), and its
related molecule anacardic acid (AA) were screened for their influence on αSN aggregates.
The treatment of KCl-depolarized SH-SY5Y neuroblastoma cells with GA and AA led
to a progressive and relevant decrease in αSN-positive aggregates, probably also due to
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increased activation of macro-autophagy, that resulted in increased survival of the neural
cells [34]. It should be noted that extracts from this plant, containing as low as 5 mg/kg
GA, still showed potential to improve cognitive function in mild dementia patients after
>24 weeks administration at a dosage of 240 mg/day [54]. Dihydromyricetin (DHM)
is a flavonoid isolated from Ampelopsis grossedentata, a herb used in traditional Chinese
medicine. Previous studies demonstrated that this compound played a neuroprotective
role, and DHM, as proved by MTT assays on PC12 cells, blocked αSN fibrillo-genesis and
its cytotoxicity. Moreover, DHM also disassembled preformed αSN fibrils, making it a
potential molecule for the therapy of PD [35].

3. Metabolic Syndrome and Cardiovascular Risk

Metabolic syndrome (MS) is an increasingly prevalent condition that comprises a
variety of pathological states, ranging from type 2 diabetes mellitus (T2DM) to obesity,
hyperlipidemia and hypertension [55]. Obesity and hyperlipidemia are known causes of
hyperinflammatory states, leading to the expression of pro-inflammatory cytokines and to
reduced levels of nitric oxide (NO, which regulates endothelial homeostasis). Moreover,
insulin-resistance leads to a blocking of the vasodilating effects of insulin itself, causing
endothelial dysfunction. All these factors increase cardiovascular risk [56] and contribute
significantly to the morbidity and mortality of cardiovascular diseases (CVD), the most
prevalent cause of death worldwide.

Unfortunately, available drugs for the treatment of metabolic disorders are few and
sometimes expensive: for this reason, researchers are focusing on the discovery of new and
effective drugs [57,58]. In the last decade, it has become clear that an approach covering
all underlying pathological conditions is required for the therapy of metabolic syndrome.
Although the first step in such a therapeutic regime consists of increased physical exercise
and dietary intervention, in many cases pharmacological action is necessary [59].

Over the years, the different aspects of metabolic syndrome have been thoroughly
studied, and a number of potential molecular targets have been identified and character-
ized. Peroxisome Proliferator-Activated Receptors (PPARs), a family of nuclear receptors
involved in all aspects of energetic metabolism, have attracted much interest as targets for
therapy, considering their important role in the recent past in the treatment of both dyslipi-
demic and glucose-related pathologies [60,61]. Three PPAR receptor subtypes have been
identified to date, respectively PPARα, PPARγ and PPARδ, each of which binds different
endogenous ligands and is selectively expressed in different organs and tissues [62–64].
Their differential expression and ligand specificity mirror their different physiological roles:
PPARα and PPARδ are mostly responsible for catabolic functions such as lipid oxygenation
and glucose consumption, while PPARγ regulates glucose uptake and anabolic functions,
particularly lipid storage and adipose tissue formation [65].

An enhanced understanding of the pharmacological profile of PPAR agonists has led
to increased interest in their development, focusing particularly on obtaining a selective
modulation of their subtypes, in order to maximize their beneficial effects and to minimize
adverse reactions [66–69]. This focus on PPAR agonists is, however, not exclusive to
medicinal chemists, and PPAR agonism or related activities have been reported for various
secondary metabolites derived from plant and fungal extracts.

Table 2 summarizes the body of literature regarding plant and fungal SMs with
potential activity toward MS and CVD.
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Table 2. Natural compounds with potential use in the therapy of metabolic syndrome and/or with additional effects for the
reduction of cardiovascular risk.

Source Bioactive Compounds Effects Main Activities Ref.

Acalypha fluticosa

2-methyl-5,7-
dihydroxychromone

5-O-b-D-glucopyranosid,
acalyphin, apigenin, and

Kaempferol 3-O-rutinoside
and an acetylated derivate of

chromone glucoside

Agonism of PPARα
and PPARγ;

anti-inflammatory
properties

(PPARα act., FI)
1.16–2.25 at 50 µM [70]

Talisia nervosa Radlk

(–)-catechin, methyl gallate,
ethyl gallate, and

β-D-glucopyranose,1,4,6-
tris(3,4,5-

trihydroxybenzoate)

Agonism of PPARα,
PPARγ and liver X

receptor (LXR); reduction
of NO production

(PPARγ act., FI)
1.85–3.02 at 50 µM [71]

Penicillium
chrysogenum J08NF-4

A new bile acid
trifluoroacetate

Agonism of PPARγ,
anti-inflammatory

properties

(PPARγ act., FI)
2.0 at 50 µM [72]

Cyanobium sp.
LEGE 07,175 and

Nodosilinea sp.
LEGE 06001

132-hydroxy-pheopytin a and
132-hydroxy-pheofarnesin a

Increase of PPARγ
mRNA expression

(Lipid-reducing
Activity, EC50)

8.9–15.5 µM
[73]

Penicillium expansum
Y32

Communesin A, B, I,
fumiquinazoline Q,

protuboxepin A, B, E, and
others

Mitigation of bradycardia,
vasculo-genetic effect

(Acid
sphingomyelinase

mitigation)
20–100 µM

[58]

Lichens
Thirty-seven secondary

metabolites and
semisynthetic derivates

Anti-AGE activity,
vasodilation

(Pentosidine-like
AGEs formation,

IC50)
0.08–0.70 mM

[74]

Schisandra chinensis Acidic polysaccharide
(SCAP)

Anti-diabetic and
anti-apoptotic role

(H2O2-induced
apoptosis inh)
15.6–62.5 µM

[75]

Sesbania grandiflora
Quercetin, kaempferol,

vomifoliol, loliolide
and others

Inhibition of α-amylase
and α-glucosidase;
antioxidant activity

(α-Glucosidase inh,
IC50)

17.45–388.48 µM
[76]

Cassia bakeriana craib
Kaempeferol-3-O-
rhamnoside and

kaempferol

Inhibition of α-amylase
and antioxidant activity

(α-Glucosidase inh,
IC50)

0.36–0.61 mg/mL
[77]

Ocimum
campechianum Mill.

Methyl rosmarinate,
rosmarinic acid, 5-demethyl

nobiletin, 5-demethyl
sinensetin, luteolin

Inhibition of
α-glucosidase,

antihyperglycemic action

(α-Glucosidase inh)
12.86–82.77% at

0.75 mM
[78]

Aspergillus terreus
MC751

Butyrolactone I and II, three
acetylated derivates of

butyrolactone I

Inhibition of
α-glucosidase,

antioxidant activity

(α-Glucosidase inh,
IC50)

52.17–175.18 µM
[79]

Ganoderma australe Stella-steroid

Inhibition of
α-glucosidase and

Dipeptidyl peptidase 4
(DPP-4)

(α-Glucosidase inh,
IC50)

314.54 µM
[80]
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Table 2. Cont.

Source Bioactive Compounds Effects Main Activities Ref.

Aspergillus sydowii Asperentin B
Inhibition of

Protein-tyrosine
phosphatase 1B (PTP1B)

(PTP1B inh, IC50)
2.05 µM [81]

Moringa oleifera Two sulfur-contained
compounds Anti-adipogenic activity

(Lipid accumulation,
inh, IC50)
29.6 µM

[82]

Allium sativum L.
Three eugenol diglycosides

and three β-carboline
alkaloids

Inhibition of adipogenesis
and lipid accumulation

(Lipid accumulation,
inh)

active at 20 µM
[83]

Curcuma amada
Two natural labdane

diterpenes and one drimane
sesquiterpene

Inhibition of lipase and
α-glucosidase

(Lipase inh, IC50)
6.1–665.9 µM [84]

Magnolia spp. Honokiol

Inhibition of Histone
deacetylase (HDAC)-

mediated cystathionine
γ-lyase degradation

(HDAC6 inh)
active at 5 µM [85]

Panax spp. (Ginseng) Ginsenoside K Promotion of macrophage
and foam cell apoptosis

(Reduction of foam
cell formation)

1.25 µg/mL
[86]

Unspecified Lupeol

Promotion of macrophage
development into the M2

anti-inflammatory
phenotype

(Proinflammatory
cytokine secretion,

inh)
active at 50 µM

[87]

Tripterygium Wilfordi Cerastrol Action as leptin sensitizer (Leptin sensitization)
active at 150 µg/kg [88]

Acalypha fluticosa extracts were recently screened for PPAR agonism and anti-inflam-
matory properties. Following a preliminary screening, four compounds were isolated from
the methanol extract, namely 2-methyl-5,7-dihydroxychromone-5-O-b-D-glucopyranosid,
acalyphin, apigenin, and kaempferol-3-O-rutinoside. Moreover, an acetylated derivate of
chromone glucoside was synthesized and tested. In vitro on human hepatoma (HepG2)
cells, acalyphin exhibited a specific PPARγ agonist activity, while apigenin revealed a weak
PPARα agonism. Chromone glucoside displayed activity as a dual PPARα/γ agonist, while
its acetylated derivative showed increased activity towards PPARα. These molecules, in
particular acalyphin, also had anti-inflammatory properties, probably due to the inhibition
of NF-κB and/or iNOS. Importantly, tested extracts and compounds were not found to be
cytotoxic in vitro against human cells [70].

The ethanolic extract of stems of the Panamanian plant Talisia nervosa was also studied,
along with its isolated components, for potential use in metabolic disorders. The extract
displayed dual PPARα/γ agonism and also increased liver X receptor (LXR) activation.
Therefore, four secondary metabolites, namely (–)-catechin, methyl gallate, ethyl gallate,
and β-D-glucopyranose-1,4,6-tris(3,4,5-trihydroxybenzoate) were isolated and character-
ized. In vitro assays on HepG2 revealed that while (–)-catechin activated only PPARγ and
not PPARα, the other three compounds activated PPARα, PPARγ and LXR, with methyl
gallate being more potent than ethyl gallate on all three targets. The two gallates also
reduced nitric oxide (NO) production in mouse macrophages (RAW 264.7) cells [71].

Aside from five known bile acids, a new bile acid trifluoroacetate was isolated from
jellyfish-derived fungus Penicillium chrysogenum J08NF-4. Its chemical structure and mech-
anism of action were similar to those of synthetic steroid mifepristone, which is clinically
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used for the treatment of hypercholesterolemia and recently turned out to be a PPARγ
agonist. Docking studies confirmed that this new bile acid, like mifepristone, is capable of
binding the ligand binding domain (LBD) of PPARγ, thus suppressing the NF-kB pathway
and downregulating the pro-inflammatory mediators iNOS, TNF-α, and NO, with general-
ized anti-inflammatory effects, as confirmed by in vitro assay on LPS-induced RAW 264.7
macrophages [72].

Other than plants and fungi, marine cyanobacteria have been a promising source of
secondary metabolites with potential medicinal use. As an example, chlorophyll derivatives
132-hydroxy-pheopytin-a and the novel 132-hydroxy-pheofarnesin-a were recently isolated
from Cyanobium sp. LEGE 07,175 -and Nodosilinea sp. LEGE 06001, respectively. The
zebrafish Nile red fat metabolism assay confirmed a neutral lipid-reducing activity of both
compounds after 48 h of exposure, with no toxic effects. In order to explain the biological
mechanism behind this activity profile, 132-hydroxy-pheopytin-a was found to increase
PPARγ mRNA expression. In light of these data, the presence of this compound in several
foods, such as spinach, cabbage, Spirulina and Chlorella, makes it an important nutraceutical
agent [73].

3.1. Diabetes

Type 2 diabetes (T2DM, or non-insulin dependent diabetes mellitus) is the most
common form of diabetes. It is characterized by peripheric insulin resistance and hyper-
glycemia, leading to a loss of pancreatic β-cells which further exacerbates the pathology. No
cure is currently available for this disease, however, various drugs capable of ameliorating
the patients’ quality of life and useful to control the disease have been approved [89]. Stud-
ies confirmed that natural products can also be used for the prevention and/or treatment
of type 2 diabetes [90].

The therapy of T2DM usually focuses on reducing postprandial glycemia, restoring
peripheric insulin sensitivity and improving β-cell survival. Other than the previously dis-
cussed PPARγ, molecular targets for the therapy of T2DM include intestinal α-glucosidase
and pancreatic α-amylase [91], which catalyze the hydrolysis of dietary carbohydrates
and whose inhibition leads to decrease of postprandial blood glucose levels, thanks to a
decreased digestion and uptake of carbohydrates [86]. Dipeptidyl peptidase-4 (DPP-4)
is another target for the treatment of this pathology: this enzyme metabolizes glucagon-
like peptide-1 (GLP-1), an incretin hormone which stimulates insulin secretion, inhibits
glucagon secretion and delays gastric emptying [92]. Moreover, recent studies have proven
the role of enzyme protein tyrosine phosphatase 1B (PTP1B) in the negative regulation of
insulin signaling, making it a novel target for the treatment of T2DM [93].

An acidic polysaccharide from Schisandra chinensis (SCAP) was recently evaluated as a
potential therapeutic agent in the streptozotocin-induced mouse model of diabetes. SCAP
led to increased levels of fasting blood insulin and superoxide dismutase and to decreased
levels of fasting blood glucose and malondialdehyde. This polysaccharide also prevented
apoptosis of pancreatic β-cells through the up-regulation of factors such as BAX and Bcl-2,
suggesting a possible mechanism for its antidiabetic activity. [75].

In another recent study, fourteen known compounds were isolated from S. grandiflora
crude extract and tested against α-amylase and α-glucosidase in vitro. Two flavonoids
(quercetin and kaempferol) and two terpenoids (vomifoliol and loliolide) showed inhibitory
activity toward these enzymes, which was justified through docking studies. Finally, all
bioactive molecules acted as antioxidants in the ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid) radical scavenging assay. Quantitative analysis highlighted high concentra-
tions of the most active compounds in the plant extract, suggesting a potential use of the
edible S. grandiflora for the control of postprandial blood glucose in diabetic patients [76].

Similarly, flavonoids kaempferol-3-O-rhamnoside and kaempferol, isolated from Cas-
sia bakeriana (pink cassia) extracts, were also recently studied for their antidiabetic activities.
While kaempferol was unambiguously able to inhibit α-amylase, the evaluation of the
antioxidant activities of these compounds led to somewhat contrasting results, with both



Foods 2021, 10, 29 11 of 17

being active when tested via oxygen radical absorbance capacity (ORAC) method, and
only kaempferol-3-O-rhamnoside being active in DPPH assay. It is worth noting that the
isolated compounds are less active than the whole extract, suggesting the importance of
synergic effects between the various components of the extract [77].

The leaf infusion of Ocimum campechianum (or wild basil) was reported to play an
antidiabetic role through α-glucosidase inhibition. Five poly-methoxylated flavones were
isolated and their structures were elucidated, with two of these compounds (methyl
rosmarinate and rosmarinic acid) displaying strong inhibition of α-glucosidase in vitro and
a marked decrease of blood glucose in vivo [78].

Natural compound stella-steroid was instead isolated from fungal plant pathogen
Ganoderma australe, and its structure was elucidated via NMR spectroscopy. This compound
showed inhibitory activity towards DPP-4 and α-glucosidase in silico and in vitro, with
higher activity toward the latter target [80].

Two natural compounds from Aspergillus terreus, known as butyrolactone I and II,
along with three synthetic acetylated derivatives of butyrolactone I, were also screened
in a different study for their activity as α-glucosidase inhibitors and as antioxidants.
Butyrolactone I showed both α-glucosidase inhibitory and antioxidant activities, while
butyrolactone II was the most potent antioxidant compound, but had a lower inhibitory
activity toward α-glucosidase. Synthetic derivatives were less active, probably because of
the acetylation of the hydroxyl groups of butyrolactone I [79].

Another fungus from the Aspergillus genus, Aspergillus sydowii, was found to produce
a compound with significant antidiabetic potential, asperentin B. In vitro, this compound
inhibited PTP1B six times more strongly than the positive control suramin. Interestingly, the
structurally related compound asperentin did not display any inhibitory activity towards
PTP1B. Future studies on structure-activity relationships and chemical modifications will
be necessary to explain and enhance the antidiabetic activity of asperentin B [81].

3.2. Obesity

Obesity and overweight, defined as excess body weight, affect a growing number of
adults, children and adolescents. Obesity in particular is often associated with the develop-
ment of other disorders such as T2DM, cardiovascular disease and nonalcoholic fatty liver
disease. Behavioral interventions, including dietary changes and increased physical exer-
cise, are important to prevent obesity and to induce weight loss, however pharmacological
treatment is often necessary in obese patients [94–96].

A viable strategy for the treatment of metabolic disorders like obesity is decreasing the
absorption of dietary components such as fats and carbohydrates through the inhibition
of metabolic enzymes, including lipase and, again, α-glucosidase [97]. On the other hand,
it is also necessary to act on signaling pathways that might be dysregulated as a result of
obesity. Leptin is a protein involved in one such pathway; it is expressed in the adipocytes
and it controls body weight and the mass of adipose tissue through the inhibition of food
intake and the stimulation of energy expenditure. Defects in leptin production cause severe
obesity [98].

A growing body of literature demonstrates the potential anti-obesity action of natural
bioactive compounds, mostly derived from plants [99]. As an example, extracts from seeds
and leaves Moringa oleifera were recently tested for various properties such as antioxidant,
anti-inflammatory and anti-hyperlipidemic effects. Two sulfur-containing compounds
were isolated from these extracts and were evaluated for their anti-adipogenic activity
on pre-adipocyte 3T3-L1 cell line. One compound had no significant anti-adipogenic
activity, while the other one showed a significant inhibition of intracellular lipid accu-
mulation, probably due to the presence of an isothiocyanate group (ITC) in its structure.
For this reason, a series of ITC derivatives were prepared, and most of them also showed
anti-adipogenic activity [82]. Similarly, three eugenol diglycosides and three β-carboline
alkaloids isolated from Garlic (Allium sativum L.) were screened on 3T3-L1 cells for their
effects on adipogenesis and lipid metabolism. Among them, one β-carboline alkaloid inhib-
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ited adipogenesis and lipid accumulation through the regulation of adipogenic, lipogenic
and lipolytic genes [83].

In another recent study, two natural labdane diterpenes and a drimane sesquiterpene
were isolated from the hexane extract of Curcuma amada and they were tested for their
inhibitory activity against rat intestinal α-glucosidase and porcine pancreatic lipase. One
of the two diterpenes showed relevant inhibitory activity toward both enzymes. Therefore,
some semi-synthetic derivatives of this molecule were prepared and screened: a reduced
derivative maintained α-glucosidase inhibitory activity, while it lost lipase inhibition. At
the opposite end of the spectrum, oxidized and acetate derivatives acted as good lipase
inhibitors but had a weak α-glucosidase inhibitory activity [84].

Another terpene, specifically a pentacyclic triterpene from the roots of Tripterygium
Wilfordi, was recently discovered to be a leptin sensitizer. In hyperleptinemic diet-induced
obese (DIO) mice it led to effects such as a significant decrease of food intake, increased
hypothalamic leptin sensitivity, and weight loss, a promising profile for the treatment of
obesity [88].

3.3. Hypertension and Hyperinflammation-Managing Cardiovascular Risk in Metabolic Syndrome

Hypertension and hyperinflammation are another important component of MS which,
along with hypercholesterolemia, cause atherosclerosis and therefore significantly raise the
cardiovascular risk linked to this syndrome [55].

In this case, too, secondary metabolites of plants and fungi have shown promise as
preventative or therapeutic agents. As an example, honokiol, a natural compound from
magnolia plants, was very recently shown to ameliorate Angiotensin II-induced hyperten-
sion and endothelial dysfunction via inhibition of histone deacetylase 6 (HDAC6) [85].

A very promising way to prevent cardiovascular risk related to hyperinflammation
and atherosclerosis is to target the macrophages that accumulate in the site of the athero-
genic lesion and bind low density lipoprotein (LDL), transforming in foam cells and driving
inflammation further [100]. An aqueous bark extract from the plant Terminalia Arjuna, con-
taining a number of polyphenols including gallic acid, epigallocatechin gallate and ellagic
acid, displayed significant activity in stimulating apoptosis in macrophages and foam cells
during the early stages of atherogenesis, thereby driving back inflammation and poten-
tially reducing cardiovascular risk [101]. Similar effects were shown by ginseng-derived
compound ginsenoside K [86], while lupeol, a pentacyclic terpene which can be found in a
variety of fruits and vegetables, including mango, red grapes and tomato, was shown to be
capable of shunting macrophage development towards the anti-inflammatory, reparative
M2 phenotype (as opposed to the pro-inflammatory M1 phenotype) [87].

The formation of advanced-end glycation products (AGEs) is involved in several
pathologies such as atherosclerosis, arterial stiffness, but also Parkinson’s disease and
Alzheimer’s disease. In a recent study, a group of lichen secondary metabolites and
one semisynthetic derivative were shown to possess relevant inhibitory activity towards
AGE formation. Although some of these compounds were endowed with antioxidant
activity, it was not necessarily linked to the inhibition of AGE formation. Moreover, the
tested compounds proved to have vasodilative effects, potentially useful in alleviating
hypertension linked to atherosclerosis [74].

Finally, three new alkaloids (communesin I, fumoquinazoline Q and protuboxepin
E) and nine known alkaloids (communesin A and B, cottoquinazoline A, prelapatin B,
glyantrypine, protuboxepin A and B, chaetoglobosin C and penochalasin E) were recently
isolated from the marine-derived fungus Penicillium expansum Y32. All molecules were
screened in vivo on a zebrafish model for their cardiovascular effects. All of them exhibited
a mitigative activity on bradycardia induced by astemizole; moreover, all compounds,
except for communesin B, showed vasculo-genetic effects [58].
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4. Conclusions

The research reviewed in this paper confirms the rising importance of natural com-
pounds in the inspiration of new therapeutic protocols for the prevention and/or treatment
of chronic diseases.

However, the use of secondary metabolites requires in many cases a specific formula-
tion, when we consider that they are often insoluble in water, and the problems related to
the abuse of supplements containing bioactive molecules, while outside the scope of this
review, must still be carefully considered, taking into account the side effects of the active
ingredients themselves and the possibility of external contamination [102]. The already
mentioned case of Monacolin K, a blockbuster product which presents the same problems
as statins (being a statin itself) and a high possibility of contamination with citrinin (fer-
mented red rice with Monascus Purpureus strains is the only regulated matrix in EU for
this mycotoxin [103]), must be a wake-up call to the food supplement industry. Therefore,
future research must definitely focus on the analysis of natural contaminants such as ochra-
toxin A [104] and other mycotoxins, as well as residues of pesticides and heavy metals, if
these bioactive compounds are to be included in plant food supplements [105].

The design of new potential drugs starting from the structures of natural compounds
and the preparation of these molecules with a semi-synthetic or a total-synthetic approach
will be another significant challenge in future years. Several research groups are working
on this fascinating, though not always linear, route [72,82,106], and important results are
expected.
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