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Excessive secretion of airway mucus and fluid accumulation are the common features of
many respiratory diseases, which, in turn, induce cell hypoxia in the airway epithelium,
resulting in epithelial–mesenchymal transition (EMT) and ultimately fibrosis. However, the
mechanisms of EMT induced by hypoxia in the airway are currently unclear. To mimic the
status of edematous fluid retention in the airway, we cultured primary mouse tracheal
epithelial cells (MTECs) in a liquid–liquid interface (LLI) mode after full differentiation in a
classic air–liquid interface (ALI) culture system. The cell hypoxia was verified by the physical
characteristics and lactate production in cultured medium as well as HIF expression in
MTECs cultured by LLI mode. EMT was evidenced and mainly mediated by basal cells,
supported by flow cytometry and immunofluorescence assay. The differently expressed
genes of basal and other airway epithelial cells were found to be enriched in the ribosome
by our analysis of an MTEC single-cell RNA sequencing data set and Myc, the global
regulator of ribosome biogenesis was identified to be highly expressed in basal cells. We
next separated basal cells from bulk MTECs by flow cytometry, and the real-time PCR
results showed that ribosome biogenesis was significantly upregulated in basal cells,
whereas the inhibition of ribosome biogenesis alleviated the phosphorylation of the
mammalian target of rapamycin/AKT and abrogated hypoxia-induced EMT in MTECs.
Collectively, these observations strongly suggest that basal cells in the airway epithelium
may mediate the process of hypoxia-induced EMT, partly through enhancing ribosome
biogenesis.
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INTRODUCTION

Oxygen is essential for human survival, deficiency in the supplement of which may lead to the injury
of cell, tissue, and organ, even organism death. Hypoxic conditions are involved in cancers, stroke,
and cardiovascular and chronic respiratory diseases (Semenza, 2011; Befani and Liakos, 2018).
Hypersecretion of mucus in asthma/cystic fibrosis and the untimely clearance of fluid in chronic
obstructive pulmonary disease can induce hypoxia in the airway epithelium (Place et al., 2017; Hou
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et al., 2020a). However, much is still not very clear about the
relative mechanisms of hypoxia on chronic respiratory diseases.

Researchers never stopped exploring the effect of hypoxia
on respiratory diseases, and various physical/chemical
hypoxia models were established. Lowering the oxygen
level in a CO2 incubator or chamber is the optimal
method to induce hypoxia, which has been widely used in
in vitro and in vivo experiments as an important physical
method for the decrease of oxygen concentration (Polosukhin
et al., 2011; Yee et al., 2016; Chen et al., 2020). According to
Fick’s First Law (F �D × ΔC/Δx), the diffusion velocity (F) of a
gas through a medium is positively correlated with the
concentration gradient of the gas on either side of the
medium (ΔC), and negatively correlated with the thickness
of the medium (Δx) (Place et al., 2017). As a replacement
method for the abovementioned hypoxia incubator in our
experiment, excessive culture medium can mimic the
retention of fluid in the airway under pathological
conditions, which also generates a hypoxic condition for
cells by increasing the thickness (Δx) of the medium and
ultimately decreasing the diffusion velocity (F) of oxygen
(Gerovac et al., 2014).

Epithelial–mesenchymal transition (EMT) is considered to be
a main driving force during fibrosis, a process that loses epithelial
cell identities and acquires mesenchymal cell features (Rout-Pitt
et al., 2018; Bakir et al., 2020). Hypoxia can induce EMT and
ultimately fibrosis formation in asthma, chronic obstructive
pulmonary disease, etc., seriously affecting the patients’
respiratory function (Broytman et al., 2015; Zhou et al., 2020).
Previous studies report that many pathways/factors are involved
in the process of EMT, including AKT, the mammalian target of
rapamycin (mTOR) signal pathway, transcription factors,
epigenetic modifications, microRNAs, long noncoding RNAs,
ribosomes, and so on (Karimi Roshan et al. 2019,
Georgakopoulos-Soares et al. 2020). Of note, ribosome is
composed of ribosome protein and RNA, and besides the
typical role of cellular protein synthesis, numerous recent
studies prove that ribosome proteins (S15a, S19, L14, and L22)
are necessary for the EMT process (Chen et al., 2018; Wang et al.,
2018; Feng et al., 2019; Liu et al., 2019; Prakash et al., 2019;
Dermit et al., 2020). Furthermore, studies show that the enhanced
ribosome biogenesis in the protrusions significantly strengthen
the migration of cells, whereas the role of ribosome biogenesis in
the airway hypoxia-induced EMT process is not fully understood
(Dermit et al., 2020).

As a ribosome-associated unit, mTOR complex 2 (mTORC2)
belongs to the mTOR kinase family and is composed of mTOR,
mLST8, and rictor (Fu and Hall, 2020). It is reported that
ribosome binds and activates mTORC2 by the association of
rictor and/or mSIN1 binding to the 60S subunit of the ribosome
(Zinzalla et al., 2011). Meanwhile, it is reported that the activation
of mTORC2 is predominantly achieved by mTOR
phosphorylated in Ser2481 (Copp et al., 2009). Recent studies
show that ribosome biogenesis fuels EMT by increasing the
recruitment of rictor to nucleus and the consequently activated
mTORC2 phosphorylated the AKT at Ser473 (Zong et al., 2014;
Prakash et al., 2019).

Primary cultured mouse tracheal epithelial cells (MTECs)
originate from the proximal trachea and are composed of
basal, goblet, club, ciliated, tuft, KRT13/4+, pulmonary
neuroendocrine epithelial cells and ionocytes (Montoro et al.,
2018). Due to the consistency with the morphology, physiology,
transcriptional character, and cell types with tracheal epithelium
in vivo, MTECs are widely applied in toxicity, viruses, and
pharmacology-related experiments (Davidson et al., 2000;
Horani et al., 2013; Hou et al., 2019; Ruiz Garcia et al., 2019;
Carraro et al., 2021). In this study, we explore the mechanism of
the hypoxia-induced EMT process by analyzing the single-cell
sequencing data set of MTECs and culturing them in a
liquid–liquid interface (LLI) mode to mimic the pathological
status of respiratory diseases. Our data demonstrate that EMT
occurs mainly in basal cells and is partly attributed to ribosome
biogenesis under hypoxia, which provides a novel insight into
hypoxia-related fibrosis of chronic respiratory diseases.

METHODS AND MATERIALS

Cell Culture and Hypoxia Model
All experiments involving animals were performed in accordance
with the guidelines and regulations of the Animal Care and Use
Ethics Committee, China Medical University. The experimental
protocols were approved by China Medical University, and the
certificate number is SYXK (Liao) 2018-0008. Isolation and
culture of MTECs have been described previously (Hou et al.,
2019; Hou et al., 2020b). Briefly, we isolated the trachea from
diazepam (17.5 mg kg−1 intraperitoneally) followed 6 min later by
ketamine (450 mg kg−1 intraperitoneally) anesthetized mice and
digested it with 0.1% protease ⅩⅣ and 0.01% DNase I (Sigma, St.
Louis, MO, United States) in high-glucose DMEM containing 1%
FBS (Gibco, New York, NY, United States) at 4°C on a horizontal
rotator for 24 h. Cells were collected by the centrifugation of
supernatant after the tracheal bones were sucked out and seeded
at a density at 3.0 × 105/cm2 on a collagen I (Gibco, New York,
NY, United States) precoated transwell insert (3413, Corning-
Costar, Lowell, MA, United States). The basolateral culture
medium was changed every other day, and the apical culture
medium was discarded to establish the air–liquid interface (ALI)
culture mode after the transmembrane resistance was higher than
1000Ω*cm2 measured by an epithelial voltohmmeter (WPI,
Sarasota, FL, United States). After being cultured in this mode
for another 13–15 days, MTECs in the LLI groups were treated by
administration of 150 μl culture medium to the apical side for
hypoxia cell model establishment. Ribosome biogenesis was
inhibited by administration of 100 nM CX-5461 (Adooq,
Irvine, CA, United States).

The H441 cell line was derived from human Clara cells found
in the bronchiolar epithelium and grown in a six-well plate with
2 ml medium containing 10% FBS and 1% penicillin/
streptomycin, whereas 8 ml medium or CoCl2 (300 μM), a
chemical inducer of hypoxia by replacing the Fe2+ with Co2+

in the catalytic center of prolyl hydroxylase domain proteins
(Muñoz-Sánchez and Chánez-Cárdenas, 2019), was
administrated after the H441 cells reached 80% confluence.
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The H441 cell line was purchased from American type culture
collection and passaged fewer than 30 times.

Determination of Lactic Acid
The MTEC culture medium was collected on 0, 2, 4, and 8 days
after the LLI culture, respectively. The lactate concentration was
determined by a lactic content assay kit (Solarbio, Beijing, China),
according to the manufacturer’s manual. Lactate production was
normalized with the cell number.

Morphology Studies
MTECs were fixed in 4% paraformaldehyde, dehydrated in 30%
sucrose, embedded in optimal cutting temperature compound, and
cut into 8 μm slices. HE staining was performed by the HE staining kit
(Solarbio, Beijing, China) according to the manufacturer’s instructions.

For the immunofluorescence assay, Triton-100 (0.1%) was
employed to permeabilize the cell membrane. To visualize the
cells, we first incubated MTECs with Vimentin and Krt5 primary
antibody at 4°C overnight and then with secondary antibodies for
90 min at room temperature. The nucleus was stained by DAPI,
and all processes were done in a dark humidifying box.

Western Blot Assay
Equivalent protein extracted fromMTECs by RIPAwas separated on
SDS-page after the concentration was determined by a BCA kit
(Solarbio, Beijing, China) and transblotted onto 0.45 μm PVDF
membranes (Invitrogen, Waltham, MA, United States), which
were blocked by 5% BSA for 1 h at room temperature and
incubated with primary antibodies overnight at 4°C. Before and
after the incubation with secondary antibodies, membranes were
washed three times with TBST for 10-min intervals. The sources and
dilution of all antibodies are listed in Supplementary Table S1. The
images were developed by the ECL kit (Tanon, Shanghai, China) and
analyzed with Image J software.

Real-Time PCR Experiment
RNA was extracted by TRIzol reagent (Invitrogen, Waltham, MA,
United States), and 500 ng RNA was used as a template for reverse
transcription using the PrimeScript RT reagent Kit with gDNA Eraser
(TaKaRa, Kusatsu, Shiga, Japan) after the concentration was
determined by spectrophotometry at 260 nm. Reaction for all
primers was performed using a single cycle of 95°C for 0.5min,
followed by 40 cycles of 95°C for 5 s, and 60°C for 34 s in the ABI
7500 real-time PCR System. SpecificmRNA primers were validated by
PrimerBank (https://pga.mgh.harvard.edu/primerbank/index.html),
and to test the specificity of rRNA primers, products after real-time
PCR were also loaded onto 1.2% agarose gel and visualized under
ultraviolet light (Supplementary Figure S1). All primers are listed in
Supplementary Table S2. Relative expression of RNA was calculated
by 2−ΔΔCT, and Actb (β-actin) was used as an internal reference.

Bioinformatics Analysis
The MTEC data set (GSE103354) consisted of airway epithelial cells
from six healthy mice and was downloaded from the Gene Expression
Omnibus database. Suerat v3was used to analyze single-cell sequencing
data, which were filtered by number of detected genes (50 < ngenes <
3200) and mitochondrial percentage (mito. pc < 5%). The filtered

gene–barcode matrix was first normalized using the “LogNormalize”
methods in Seurat v.3 with default parameters, and the top 1500
variable genes were then identified using the “vst” method in Seurat
FindVariableFeatures function. Principal component analysis (PCA)
was performed using the top 20 principal components, and the
resolution was set to 0.15 to obtain a finer result in FindCluster
process. The cells were annotated by classical markers of different cell
types and visualized by t-distributed stochastic neighbor embedding
(t-SNE) (Supplementary Figure S2). Differentiation of gene
expression levels in MTECs between basal and other cells were
achieved by using Student’s t-test (FindAllMarkers function),
whereas the min. pct was set to 0.01. KEGG was employed to
analyze the enrichment of basal cell–specific expressed genes with
default parameters. It was considered significant if Bonferroni adjusted
P (p. adj) was less than .05.

Flow Cytometry and Cell Sorting
MTECs were digested by trypsin-EDTA after being washed by PBS
twice. Isolated MTECs were fixed with 4% paraformaldehyde for
15min, permeabilized with Triton-100, blocked with 5% BSA in PBS
before being incubated with primary and secondary antibodies, and
the cell ratio was tested. For cell sorting, isolated MTECs were fixed
and permeabilized with methanol, blocked with 5% BSA in PBS,
incubated with Krt5, and sorted in flow cytometry (BD Arial Ⅱ).
Antibodies are also listed in Supplementary Table S1.

Statistical Analysis
Data are presented as the mean ± SE. We evaluated the power of the
sample size first tomeet p < .05. The differences between groups were
tested by Student’s t-test or one-way analysis of variance (ANOVA)
followed by Bonferroni’s test for all the groups of the experiment after
the data passed the normality (Shapiro-Wilk) and homoscedasticity
(Levene) tests. If the data did not pass the normality and
homoscedasticity tests, a nonparametric t-test (Mann–Whitney
U-test) was used to compare the differences between groups.
Statistical analysis was performed with Origin 8.0.

RESULTS

Hypoxia Model Establishment
To protect the airway from pathogens, the thin surface liquid layer
lining on the mammalian epithelium of the airway is necessary for
ciliumbeating and contaminant clearance, which also exists inMTECs.
Due to various pathological causes in chronic respiratory diseases, the
fluid retention in the airway/MTECs may result in epithelium hypoxia
(Place et al., 2017; Hou et al., 2020a). In this experiment, we established
a hypoxia model in vitro to mimic the abovementioned
pathophysiology status. According to Fick’s first law, the velocity of
the oxygen supplement was reduced by about 300 times after the
culture mode of MTECs was changed from ALI to LLI (Figure 1A)
and equal to that in a hypoxia incubator at 0.07% oxygen
concentration, just between 0% and 1% oxygen concentration that
was often employed in in vitro hypoxia-related respiratory studies
(Planès et al., 1997; Polosukhin et al., 2011; Gerovac et al., 2014).

To further identify the hypoxia of MTECs, we observed the
physical characteristics and lactate production of culture medium.
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As shown in Figure 1B, the color ofmedium in LLImodewas yellow,
which showed pink in ALI mode, consistent with the pH
manifestation in both conditions (Figure 1C). To quantify the
difference in physical characteristics, the lactate production was
measured, which showed higher in LLI groups (2, 4, and 8 days)
than that in the ALI group (0 days, Figure 1D). As the indicator of
hypoxia, HIF1α significantly increased within several hours after the
MTEC culture mode was changed from ALI to LLI, whereas it
decreased after being cultured for another several days. As for HIF2α,
a prolonged increase happened on 2 and 4 days of LLI culture
(Figures 1E–H). Meanwhile, excessive culture medium for
submerged cells may be another theoretical hypoxia model
in vitro according to Fick’s first law. As expected, HIF1α
significantly increased in H441 cells submerged with 8ml (6ml
redundant) of medium in a six-well plate with CoCl2 (300 μM, a
chemical inducer of HIF1α) as the positive control (Supplementary
Figure S3).

Hypoxia Induces EMT in MTECs
To confirm the hypoxia induces EMT in respiratory epithelial cells, we
applied amorphology assay and found that the typeofMTECsclose to the
basolateral side was converted from cubic in ALI mode to spindle after
4 days’ LLI culture (Figure 2A). Additionally, the decreased/increased
protein expression levels of epithelial/mesenchymal cell markers indicated
the occurrence of EMT under hypoxia, which were also supported by the
data from transcription level (Figures 2B–E,2G–I).

Basal Cells Contribute to EMT Under
Hypoxia
The hyperplasia of basal cells after hypoxia was observed in our study
(Figures 2B,F,J), implying the involvement of basal cells in hypoxia-
induced EMT. Consequently, our flow cytometry result identified that
the Krt5 and Vimentin (basal and mesenchymal marker, respectively)
positive cells both increased in LLI mode, and most of the Vimentin

FIGURE 1 |Hypoxia model of MTECs established. (A) A schematic diagram highlighting the distance of oxygen diffusion (Δx) was different in ALI and LLI mode. The
thickness of airway surface liquid was about 8 μm in ALI mode and 4550 μm in LLI mode. (B–D) Color, pH, and lactate production of MTEC medium after 0, 2, 4, and
8 days’ LLI culture. ***p < .001, compared with the 0 day group, n � 3–6. One-way ANOVA followed by Bonferroni’s test was used to analyze the difference of the means
for significance. (E) Representative graph of hypoxia-inducible factors (HIFs) after different time intervals in LLI mode. (F–H) The statistical data of HIF1α and HIF 2α
in the mode of LLI culture. *p < .05, **p < .01, ***p < .001, compared with ALI mode (0 h/d), n � 3–4. Mann–Whitney U test was used to analyze the difference of the
means for significance in (F) and (G), One-way ANOVA followed by Bonferroni’s test was used to analyze the difference of the means for significance in (H).
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positive cells also expressed Krt5 (Figures 3A–C), indicating that the
mesenchymal cells may be mainly originated from basal cells. The
direct image from the immunofluorescence assay showed that the
Vimentin-positive cells obviously increased after 4 days’ LLI culture,
which were mostly Krt5 positive (Figure 3D). To affirm the role of
basal cells in hypoxia-inducedEMT,we separated basal fromother cells
in MTECs by flow cytometry, and as expected, the E-cadherin
(epithelial cell marker) mRNA decreased while the Vimentin and
α-SMA (mesenchymal cell markers) mRNA increased more
significantly in basal cells compared with the other cells in the LLI
group (Figure 3E, p< .001, n� 3), indicating that basal cells inMTECs
contribute to EMT occurrence under hypoxia.

Ribosome Genes are Highly Expressed in
Basal Cells
More and more evidence proves the basal cell as the main cell type
that contributes to EMT in different tissues, but the reason was still
unclear (Liu et al., 2016; Xu et al., 2016; Zhang et al., 2016; Xu et al.,
2017). To find the possible explanation of basal cell but not other cell

types in hypoxia-induced EMT, we analyzed the single-cell
sequencing data set of MTECs and found that the differently
expressed genes between basal and other cells were enriched in
ribosome, fluid shear stress and atherosclerosis, spliceosome, and
so on (Figure 4A).

The most enriched ribosome was reported to be closely associated
with EMT in breast cancer (Prakash et al., 2019; Dermit et al., 2020),
whereas its role in hypoxia-related respiratory diseases still needs
further exploration. The heatmap shows the top 40 ribosome protein
genes ranked by the decreased fold change of expression, and the red
marks represent the known EMT-related genes in previous
publications (Figure 4B). As the global regulator of ribosome
biogenesis, Myc was significantly highly expressed in basal cells as
shown in the violin plot (Figure 4C, p. adj <.001) and proved to be
enriched in separated basal cells (Figure 4D, p< .001, versus the other
cells, n � 3). Whereas in the mode of LLI culture, the expression of
Myc increased significantly in basal cells compared with that in ALI
mode (Figure 4D, p < .01, n � 3). Identical with the result of
separated cells, Myc expression in bulk MTECs were significantly
increased in LLI mode at mRNA and protein levels (Figures 4E–G,

FIGURE 2 |MTECs underwent EMT in the mode of LLI culture. (A)HE staining of MTECs after 0, 2, 4, and 8 days’ (d) LLI culture with the arrowheads indicating the
representative cells in each panel. Scale bar � 10 μm. (B)Representative graph of EMTmarkers (E-cadherin, Vimentin, and α-SMA) and Krt5 after 0, 2, 4, and 8 days’ LLI
culture. (C–F) The statistical data of EMTmarkers and Krt5 in the mode of LLI culture. *p < .05, compared with ALI group (0 days), n � 4. (G–J) Real-time PCR results for
EMTmarker and Krt5 mRNAs, and β-actin was used as internal reference. *p < .05, compared with ALI (0 days), n � 4–5. Mann–Whitney U test was used to analyze
the difference of the means for significance.
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p < .001–.05, versus ALI, n � 4), supporting that ribosome may be
involved in hypoxia-induced EMT in basal cells.

Ribosome Biogenesis is IncreasedMainly in
Basal Cells Under Hypoxia
To test whether ribosome increased in airway hypoxia, we
measured the expression of ribosome-related RNAs
(including rRNA and mRNA) in bulk and separated
MTECs, respectively. Both mRNA and rRNA increased
significantly in LLI mode (Figures 5A,B, p < .001–.05,
versus ALI, n � 4), indicating that ribosome biogenesis
increased under hypoxia in airway epithelium. The data

were also proved in separated basal cells (Figures 5C,D,
p < .001, versus the other cells, n � 3) cultured in LLI
mode, which implies the aforementioned hypoxia increased
ribosome biogenesis mainly occurred in basal cells.

Inhibition of Ribosome Biogenesis
Abrogates the EMT Process
Ribosome biogenesis was increased under hypoxia, but whether it
facilitated the EMT process was still unknown. CX-5461, a specific
RNA polymerase Ⅰ inhibitor that blocks ribosome biogenesis,
significant decreased the transcription of rRNAs in LLI mode
(Figure 6A, p < .05, n � 5) and almost offset the corresponding

FIGURE 3 | EMT induced by hypoxia was mediated by basal cells. (A) Representative data of flow cytometry in the ALI and LLI groups and the cell ratios were
labeled in the corresponding gates. (B) Vimentin and Krt5 positive cell ratios in the mode of LLI culture. *p < .05, compared with ALI group, n � 3–4. (C) Krt5 positive cell
ratio in Vimentin expressed cells. ***p < .001, compared with Krt5+Vimentin− cells in LLI group, ##p < .01 compared with KRT5+Vimentin+ cells in ALI group, n � 3–5. (D)
Co-expression of Krt5 (red) and Vimentin (green) in MTECs after LLI culture. Scale bar � 20 μm. (E) Heterogeneously expressed EMT markers in different airway
epithelial cell types after LLI culture. *p < .05, **p < .01, ***p < .001, compared with the same cell type, ##p < .01, ###p < .001, compared with the other cells in ALI/LLI
group. n � 3. One-way ANOVA followed by Bonferroni’s test was used to analyze the difference of the means for significance.
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change of EMTmarkers at both the mRNA and protein levels in LLI
mode (Figures 6B–D, p < .001–.05, n � 3–4). Consistently, the HE
staining result showed that CX-5461 mitigated the morphology
changes of MTECs, and most of them were still cubic in the
mode of LLI culture (Figure 6E). In Figure 6F, Vimentin-positive
cells increased in LLI mode, and were significantly reduced by
administration of CX-5461. Based on the above, we suppose that
the occurrence of EMT under hypoxia in basal cells was mainly
mediated by increased ribosome biogenesis.

mTORC2 and AKT are Involved in Hypoxia
Induced EMT in MTECs
To explore the mechanism involved in ribosome-mediated EMT, we
measured the phosphorylation of mTOR (Ser2481), which was a
component of EMT closely associatedmTORC2 and activated by the
binding of ribosome (Copp et al., 2009; Karimi Roshan et al., 2019).
As shown in Figures 7A,C, CX-5461 significantly alleviated the
mTOR phosphorylation in LLI mode (p < .001, n � 4). Similarly, the

FIGURE 4 |Myc and ribosome proteins were enriched in basal cells. (A) Top 10 enriched pathways of specifically expressed genes in basal cells. Numbers in x-axis
represent the genes enriched in the corresponding pathway. P adjust (p. adj) varies from .01 to 0.05. (B) Top 40 ribosome proteins among different cell types. The red
and bold font marked genes were closely associated with EMT. (C)Myc in different airway epithelial cells. ***p. adj <.001. (D) Heterogeneously expressed Myc mRNA in
different airway epithelial cell types after LLI culture. ***p < .001 compared with the other cells in corresponding group. ###p < .001, compared with ALI group within
the same cell type. n � 3. One-way ANOVA followed by Bonferroni’s test was used to analyze the difference of the means for significance. (E) Expression of Myc mRNA in
ALI and LLI group. ***p < .001, compared with ALI group, n � 3. Student’s t-test was used to analyze the difference of the means. (F–G) Representative and statistical
data of c-Myc. **p < .01, compared with ALI group, n � 4. Mann–Whitney U test was used to analyze the difference of the means for significance.
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phosphorylation of AKT at Ser473, a downstream effector of
mTORC2, was significantly increased in LLI mode, which could
be suppressed by CX-5461 (Figures 7B,D, p < .01, n � 3). These data
indicate that hypoxia-induced EMT in basal cells was mainly
mediated by ribosome-mTORC2-AKT axis (Figure 8).

DISCUSSION

In this study, we first established a hypoxia model by culturing
MTECs in LLI mode, whichmimicked the retention of fluid in the
airway under pathological conditions of many chronic
respiratory diseases. Hypoxia was verified with the color, pH,
and lactic concentration of culture medium as well as HIF1α and
HIF2α expression in MTECs. Compared with the hypoxic
incubator, which decreases the concentration gradient of the
oxygen on either side of the medium (ΔC in Fick’s first law),
LLI culture mode increases the thickness (Δx) of the medium,
both of which belong to the physical method to induce hypoxia.
Consistent with previous studies that HIF1 and HIF2 governed
acute and prolonged hypoxia in the human endothelium,
respectively, we found that HIF1α was upregulated within
several hours, whereas it was decreased in a prolonged airway
epithelium hypoxia. Meanwhile, the expression of HIF2 increased

after 4 days’ LLI culture, reflecting the switch from HIF1 to HIF2
signaling in adapting the epithelium to prolonged hypoxia
(Torres-Capelli et al., 2016; Serocki et al., 2018).

Hypoxia can influence the composition of cell types, tight
junctions, and ion channels in respiratory diseases (Jimenez et al.,
2016; Torres-Capelli et al., 2016; Bartoszewska et al., 2017). Hypoxia
can promote the differentiation of basal cells to goblet cells, and
excessive mucus secreted by the latter aggravates airway hypoxia and
affects the differentiation process of basal cells (Polosukhin et al.,
2011). A previous study shows that hypoxia-induced airway fibrosis
mainly occurs in proximal, medium tracheal, whereas the distal
trachea may have a synergistic effect on matrix collagen
degradation (Broytman et al., 2015). Although the generations and
spatial heterogeneity of cells in the airway are different between mice
and humans, the cell types, differentiation characteristics, and
morphology in the airway epithelium of mice are basically
identical with that of human, and studies of the respiratory
fibrosis in mice remain the most clinically relevant model for the
preclinical study of human respiratory fibrosis at present.
Accordingly, MTECs may be a selectable appropriate cell model
to study the mechanisms of hypoxia-induced EMT (Hogan et al.,
2014; Tashiro et al., 2017; Basil and Morrisey, 2020).

Here, we report that hypoxia induces EMT in MTECs, which
play a key role in cystic fibrosis, asthma, and other airway

FIGURE 5 | Ribosome biogenesis was enhanced in the mode of the LLI culture. (A–B) Real-time PCR results of ribosome biogenesis–related RNAs (Rps15a,
Rps19, Rpl14, and Rpl22 as well as 45, 28, 18, and 5.8S rRNA). *p < .05, **p < .01, ***p < .001, compared with ALI group, n � 3. Student’s t-test was used to analyze the
difference of the means. (C–D) Ribosome biogenesis–related RNAs were significantly upregulated in basal cells in the mode of LLI culture. *p < .05, **p < .01, ***p < .001
compared with ALI group within same cell type, #p < .05, ###p < .001, compared with the other cells in corresponding group. n � 3. One-way ANOVA followed by
Bonferroni’s test was used to analyze the difference of the means for significance.
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diseases. Meanwhile, we found the ratio of basal cells increased
under the hypoxia condition, and these were regarded as the
progenitor cells for the other airway epithelial cells and the culprit
of EMT in human fibrotic diseases. However, the effect of hypoxia
on ionocytes, tuft, KRT13/4+, and pulmonary neuroendocrine
epithelial cells still needs further study (Kuroishi et al., 2009; Xu
et al., 2016; Bankova et al., 2018; Montoro et al., 2018; Sui et al.,
2018).

To explore the possible mechanisms involved in basal cells
participating in EMT under hypoxia, we analyzed the single-cell
sequencing data set and found that basal cell–specific genes were
enriched in ribosome, which has been recently reported to be
related to EMT. As the components of ribosome, Rps15a, Rps19,
Rpl14, Rpl22 were preciously controlled by Myc and highly
expressed in cancer cells, which promoted the EMT process
(Chen et al., 2018; Wang et al., 2018; Feng et al., 2019; Liu
et al., 2019). Accordingly, besides its acting as the protein
synthesis machine, the role of ribosome in signal transduction
needs to be considered. Ribosome binds and activates mTORC2

at least by Rpl26, Rps16, which were also included in the top 40
enriched ribosome genes of basal cells, according to our single-
cell analysis (Zinzalla et al., 2011).

AKT downstream of mTORC2, can be activated during the
process of EMT. In our experiment, inhibition of ribosome
biogenesis suppressed the phosphorylation of both mTOR and
AKT, which may influence the protein expression level of EMT
transcription factors, matrix metalloproteinases, and numerous
EMT-related pathways (Gulhati et al., 2011; Karimi Roshan et al.,
2019; Fu and Hall, 2020). Our main finding in this study is that
basal cells participate in hypoxia-induced EMT mainly by the
ribosome-mTORC2-AKT axis, and there may be other reasons,
such as the enriched MAPK pathway, as well as highly expressed
genes including Snai2, Id1, Sparc, Tgfb1, and Rhoa visualized by
the nferX single-cell sequencing portal (https://academia.nferx.
com) in basal cells (Song et al., 2018; Ma et al., 2019; Sangaletti
et al., 2019; Zhao et al., 2020). We believe that our findings would
provide a new idea for future prevention and treatment in
hypoxia related fibrosis.

FIGURE 6 | CX-5461 abrogated hypoxia-induced EMT. (A) rRNA expression level after administration of 100 nM CX-5461 in the mode of LLI culture. **p < .01,
compared with ALI group, #p < .05 compared with LLI group, n � 5. Mann–Whitney U test was used to analyze the difference of the means for significance. (B)
Expression of E-cadherin, Vimentin, and α-SMA. *p < .05, ***p < .001, compared with ALI group, #p < .05, ##p < .01, ###p < .001, compared with LLI group, n � 3. (C–D)
Representative and statistical data of EMTmarkers. **p < .01, ***p < .001 compared with ALI group, ##p < .01, ###p < .001, compared with LLI group, n � 3–4. One-
way ANOVA followed by Bonferroni’s test was used to analyze the difference of the means for significance. (E) HE staining. The nether line of images was enlarged from
the upper original image. (F) Immunofluorescence of Vimentin (green). The nucleus was stained with DAPI (blue). Scale bar � 50 μm.
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FIGURE 7 | Effect of CX-5461 downstream of ribosome. (A, C) Representative and statistical data of mTOR phosphorylation at Ser2481 after CX-5461 treatment.
(B, D) Representative and statistical data of AKT phosphorylation at S473 after CX-5461 treatment. ***p < .001 compared with ALI group, ###p < .001, compared with
LLI group, n � 3–4. One-way ANOVA followed by Bonferroni’s test was used to analyze the difference of the means for significance.

FIGURE 8 | The schematic diagram of hypoxia-induced EMT in MTECs. Hypoxia enhanced the ribosome biogenesis by increasing the expression of Myc.
Subsequently, the phosphorylation of mTOR at Ser2481 was upregulated, and phosphorylation of AKT significantly increased, which promotes the occurrence of the
EMT process. CX-5461 suppressed hypoxia-induced EMT by inhibiting the ribosome biogenesis. The red line denotes the repression effects, and the blue line indicates
the facilitation effect.
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CONCLUSION

Hypoxia-induced EMT was mainly contributed by basal cells via
ribosome-mTORC2-AKT axis in MTECs.
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