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Abstract: When the original echo data of SAR are saturated for quantization, the performance of the
commonly used block adaptive quantization (BAQ) algorithm will be degraded, which will degrade
the imaging quality. This article proposes an improved Llody-Max codec method, which only needs
to change the codec look-up table to get better quantization performance when the original echo is
saturated. The simulation results show that the proposed method can reduce the quantization power
loss, improve the echo signal-to-noise ratio (SNR), and reduce the influence of quantization saturation
on the scattering mechanism of polarized SAR data, which have good practical application value.

Keywords: synthetic aperture radar (SAR); raw data compression; block adaptive quantization
(BAQ); anti-saturation; signal-to-noise ratio (SNR)

1. Introduction

Synthetic aperture radar (SAR) system technology has been developing towards high resolution,
wide swaths, high revisit frequency, multi-frequency, multi-polarization, and so on. The application of
SAR has turned from qualitative applications to quantitative applications. Therefore, the improvement
of SAR quantitative accuracy has become one of the key aspects in development. The quality of SAR
raw echo data is a prerequisite for good SAR image quality. Due to a large amount of SAR raw echo
data and the limitation of transmission bandwidth, data rate, and so on, the SAR raw data are usually
compressed [1–3]. Therefore, quantization and compression will affect the quality of echo and further
the SAR images.

There have been quite a lot of studies on SAR raw data compression algorithms [4–6]. Considering
the complexity of the algorithm, compression time, hardware conditions, and other factors, the block
adaptive quantization (BAQ) algorithm is mainly adopted in SAR satellites for its simplicity and
efficiency. For example, it has been used in the American Magellan SAR [7], ESA’s Sentinel-1 [8],
Canada’s Radarsat-2 [9], Germany’s TanDEM-X [10], Chinese GF-3 SAR [11], and so on. The BAQ
algorithm can adaptively quantify the echo with variant power intensity, and get the best quantization
SNR for the Gauss distributed echo. However, when the echo is saturated the performance of BAQ
will be degraded.

To enhance the performance, and also to reduce the data rate, many improved BAQ methods
have been proposed. For example, the flexible dynamic block adaptive quantizer algorithm used by
Sentinel-1 is proposed in the literature [8], which is a data compression algorithm that automatically
selects a BAQ quantizer out of a set of five quantizers, based on an estimation of the local SNR estimated
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blocks on the acquired data. In these two methods, the overall performances are improved under
limited data rate, but the performance of the saturated data cannot be improved. The literature [10]
describes a novel azimuth-switched quantization (ASQ) technique, which provides the capability of
synthesizing fractional quantization rates without impacting the complexity and computational load of
the quantization scheme. The method has been carried out in the frame of the TanDEM-X mission, and it
is shown that performance and resources can be dynamically scaled with a very fine discretization.
Zhao et al., in the literature [12], propose a method for selecting a quantization strategy based on the
judgment of echo data saturation. In the case of low saturation, the traditional BAQ compression [7]
is used, and in the case of high saturation, the saturation data is coded and decoded separately.
This method can get better quantization SNR for the saturated data, but it has to increase the saturation
judgment, which will increase the amount of computation on the system. Qiu et al. propose a method
in the literature [13], which obtains the variance of the input signal by calculating the quantization
output power, and then dynamically changes the quantized boundary code value. So, it can improve
the performance when the data is saturated, but the improvement is not as significant because it is
limited by the coding system. Qi et al. propose a quantization method, based on the optimal nonlinear
scalar quantizer and a power compensation decoder, in the literature [14]. The method is based on
the relationship between signal saturation, uniform quantified peaks, standard deviation (before and
after) uniform quantization, and signal amplitude mean, and they designed a new look-up table and a
power compensator. Our studies on this method found that the encoding and decoding methods can
be further optimized, and the quantization performance can be further improved.

This article proposes an improved BAQ encoding and decoding method for improving the
signal-to-noise ratio of SAR raw data. Through the analysis of uniform quantization and coding
processes, this article redesigns the standard deviation and the amplitude mean value look-up table
of the uniform quantized signal. The decoding method is redesigned according to the principle of
minimum-quantization noise loss. This method significantly improves compression performance,
compared with the traditional BAQ compression algorithm [7] and other methods [12–14]. This method
does not need to make any changes to the quantization hardware system, and only needs to replace the
look-up table. There is no increment in the complexity and computation of the algorithm. The rest of
the article is arranged as follows: In Section 2, the improved BAQ compression algorithm is described.
Section 3 gives the performance analysis results, through simulation and practical experiments to
verify the effectiveness of the method. Section 4 concludes the article.

2. The Improved BAQ Encoding and Decoding Method

The traditional BAQ method first divides the input signal into blocks, then uniformly quantizes,
normalizes, and non-uniformly quantizes the data for each block, and then decodes it to get the
output signal, as shown in Figure 1. When N bit non-uniform quantization was performed on
the original SAR echo, the quantitative dynamic range was [−2N−1, 2N−1], and all values larger
than (2N−1 − 1) and smaller than (−2N−1 + 1) were quantified as (2N−1 − 0.5) and (−2N−1 + 0.5),
respectively. So, when the absolute value of the signal is greater than 2N−1, quantization saturation
occurs. Quantization saturation results in a truncation effect, leading to the loss of effective quantization
intervals, which ultimately leads to power loss and affects the quality of the image.
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As the Lloyd-Max quantizer (adopted by the traditional BAQ method) requires the quantization
signal to conform to the standard Gaussian distribution, it is necessary to normalize the signal
after uniform quantization. In the actual system, in order to reduce the amount of computation,
a pre-designed mean standard deviation look-up table is adopted, to find the standard deviation
according to the mean value and then realize normalization. Quantization saturation can lead to a
mismatch of the mapping relationship between the mean value and standard deviation of signal
amplitude in traditional BAQ methods, as shown in Figure 2. If the original variance is used
for normalization, although the unsaturated part still satisfies the standard Gaussian distribution,
the absence of effective quantization interval will be caused, due to the truncation effect. Therefore,
the standard deviation adopted by the traditional method can no longer be used in the case of
quantitative saturation, but should be solved again according to the truncated signal [14], as shown by
the red curve in Figure 2.
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before and after uniform quantization.

In the case of non-uniform quantization, taking 8:3 BAQ as an example, when the signal after 8 bit
uniform quantization is not saturated, the normalized peak data will fall in the eighth quantization
interval, so that all quantization intervals are effective, as shown in Figure 3a. When the signal after
8 bit uniform quantization is saturated, the data will be truncated. If normalized by the standard
deviation in the traditional method, it will cause the normalized peak data to fall into a certain
quantization interval, resulting in an invalid part of the quantization interval. As shown in Figure 3b,
the peak value falls into the seventh interval after normalization, resulting in the invalidation of the
first and eighth quantization intervals. Then, if the original method is also adopted for encoding and
decoding, it will inevitably lead to large quantization noise and cannot achieve a good quantization
effect. Therefore, it is necessary to recalculate the standard deviation for normalization, as well as the
threshold and quantization level of each quantization interval.
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In order to achieve a better compression effect, this article makes two improvements: First,
we redesign the mean standard deviation look-up table for normalization; Second, we improve the
threshold and quantization level of the individual quantization intervals for the Lloyd-Max quantizer,
which is the core of BAQ.

The improved method for the mean standard deviation look-up table is as follows: In practice,
satellite coding is based on the average, to find the corresponding standard deviation and quantization
threshold of the table for normalization. For convenience, this article improves the original
normalization method. The signals without saturation (after uniform quantization) are still normalized
with the original standard deviation, and the signals with saturation (after uniform quantization)
are normalized with the standard deviation described by the red curve in Figure 2. When decoding,
the unsaturated case can be decoded according to the original mode, and the saturated case can be
decoded, according to the corresponding table when encoding.

The improved method for the Lloyd-Max quantizer is as follows: The probability distribution of
the signal after uniform quantization can be expressed as:

f1(x) = (
∫ −∞
−M f2(µ)dµ)·δ(x); x ≤ −M

f2(x) = 1√
2πσ

exp
{
− x2

2σ2

}
;−M < x < M

f3(x) = (
∫ ∞

M f2(µ)dµ)·δ(x); x ≥ M

, (1)

where σ is the standard deviation of the signal after uniform quantization, M is the value at the
saturation threshold, and δ(x) is the impulse function, which represents the probability value at the
“truncated” point, and is equal to the probability that the unsaturated signal goes from truncation to
positive infinity. According to the definition, the distortion of the quantized signal is:

D =
N

∑
i=1

∫ xi+1

xi

(x− yi)
2 f (x)dx, (2)

where xi is the threshold level, yi is the quantization level, and xN+1 is defined as positive infinity.
By calculating the partial derivatives of xi and yi in the Equation (2), the minimum value of the
quantized signal distortion can be obtained.

xi =
yi + yi−1

2
, i = 2, · · · , N (3)

∫ xi+1

xi

(x− yi) f (x)dx = 0, i = 1, · · · , N (4)

To further consider the impact of saturation, we need to re-solve the required xi to get the
minimum quantization loss yi

′, corresponding to xi. Equation (4) is shifted and sorted:

yi
′ =

∫ xi+1
xi

x f (x)dx∫ xi+1
xi

f (x)dx
, i = 1, · · · , N. (5)

According to the above recursion, we can get xi and yi
′ with the smallest quantization loss in the

saturation case. Taking the 8:3 BAQ as an example, the specific solution steps for the threshold level xi
and quantization level yi

′ of the improved Lloyd-Max quantizer are as follows:

(1) For the 8:3 BAQ, N equals 4 and we need to set x1 and y1, where x1 is zero and the range of y1 is
known to be between 0.1 and 0.3, based on prior knowledge. We perform iterative calculations
according to Equations (3) and (4) to obtain x2, x3, x4, y2, y3, and y4, corresponding to different
values of y1.

(2) Calculate the corresponding y1
′, y2

′, y3
′, and y4

′, according to Formula (5), for each group x1, x2,
x3, and x4.



Sensors 2018, 18, 4221 5 of 12

(3) According to Formula (2), the quantization distortion is calculated for each group x1, x2, x3, x4,
y1
′, y2

′, y3
′, and y4

′. Then, select the set of solutions corresponding to the smallest quantization
distortion: Namely, the optimal threshold level and the optimal quantization level.

(4) For the different input signals, repeat the above steps to obtain different optimal threshold levels
and optimal quantization levels, under different f (x).

The flowchart is as follows (Figure 4):
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The overall method of this article is as follows:

(1) Divide a pulse of the SAR raw echo into blocks. Take M sampling points of one block (M is
generally taken as 1024 or 512).

(2) The SAR raw echo is sampled and N bit uniformly quantized, where N is generally 8;
(3) The average absolute amplitude of the I and Q signals in each block is calculated, respectively,

denoted as A. According to the value of A, find the corresponding standard deviation in the new
standard deviation look-up table for normalization;

(4) For the normalized data, non-uniform quantization coding is performed, according to the optimal
threshold level corresponding to each standard deviation obtained by the method in this article;

(5) During decoding, according to the corresponding standard deviation, the corresponding decoding
method is adopted, so as to achieve the purpose of data recovery.

The flowchart is as follows (Figure 5):
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3. Analysis and Results

In order to prove the effectiveness of this method, this article compares the results of the proposed
method and the existing methods, from the aspects of echo quantized signal-to-noise ratio, quantization
power loss, and polarization scattering mechanism retention ability.
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3.1. Quantization Loss and Quantization SNR

First, we simulate Gaussian-distributed data at different input powers and then uniformly
quantize the data. Next, we average the uniformly quantized data and find the look-up table (described
in Section 2), to get the standard deviation corresponding to the average value to normalize. Then,
we encode and decode the normalized data as described in Section 2. Finally, we find and compare the
SNR and quantized power loss of the processed data. Compared with the original BAQ [7] and several
existing anti-saturation methods [13,14], the results are shown in Figures 6 and 7.
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Figure 7. (a) Comparison of input power and SNR; (b) comparison of saturation and SNR.

It can be seen from Figure 6 that, with the increase of input power, the quantitative power loss of
the method in this article is always minimal, and the advantage of this method is more obvious when
the input power is 40–60 db. From Figure 7a, we intuitively see that, after the echo data saturation in
this method, the quantized SNR is optimal, which is 3–4 dB higher than the average of the original
method [7]. Compared with Qiu’s method [14], it has an average of 2–3 dB improvement. Compared
with Qi’s method, it has an average of 1–2 dB improvement. When the SNR is greater than 12 dB,
the input power range of this method is 8–41.7 dB, and 8–37.1 dB for the other methods, nearly 4 dB
more for this method. In order to more intuitively embody the anti-saturation function of the proposed
method, the data saturation and quantization signal-to-noise ratio are statistically analyzed. As shown
in Figure 7b, we can see that the SNR of the proposed method is greater than or equal to the existing
anti-saturation method at different saturations. Saturation refers to the ratio of the number of data
points exceeding the range of [−2N−1, 2N−1] to the total, in the process of uniform quantization.
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From Figure 8, we obtain the effective quantization interval, threshold, and quantization level of
the four methods when the input power is 45 dB. There are only four effective quantization intervals for
the original method and Qiu’s method, six effective quantization intervals for Qi’s method, and eight
effective quantization intervals for our method.
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In summary, according to the simulation results, this result is consistent with the previous analysis.
This method has better anti-saturation performance.

3.2. Influence on Polarization Scattering Mechanism

SAR raw data compression can reduce on-board downlink data rate effectively. However,
SAR raw data compression induces distortions on polarimetric information of quad-polarimetric
SAR data. In order to analyze the influence of different quantization compression methods on the
characteristics of polarimetric SAR, we selected the unsaturated polarization data of GF-3 in the San
Francisco area and added quadratic phase to simulate the echo. We controlled the saturation of the data
by controlling the input power, and then made quantization compression with the traditional BAQ
method, Qi’s method, Qiu’s method, and the method in this article, and analyzed their polarization
characteristics. The images after the quantization compression processing and power loss difference
are shown in Figures 9 and 10.
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Figure 9. Imaging effect of three 8:3 BAQ quantization compression methods: (a,e) Original image;
(b,f) Qi’s method; (c,g) Qiu’s method; (d,h) our method.
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Figure 10. Power loss of three 8:3 BAQ quantization compression methods: (a) Qi’s method; (b) Qiu’s
method; (c) our method.

It can be seen intuitively, in Figure 10, that the power loss of the Qi’s quantization compression
method is large, and the image relative brightness appears obviously reduced. By adopting Qiu’s
quantization compression method, the power loss is reduced and the visual effect of the image is
relatively improved. With the quantization compression method in this article, the power loss is
minimized and the visual effect of the image is closer to the original image. It can be seen, in Figure 10,
that the power gain of our method also has relatively good results.

This article then compares the target scattering characteristics of three quantitative compression
methods, including sea, forest, and building area, as shown in Figure 9a. In the H-alpha plane,
alpha represents the scattering angle, and H represents the scattering entropy. We can classify the
target based on its position in the H-alpha plane. The H-alpha plane graph and the interval histogram
of the three methods are shown in Figures 11–13.
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Figure 11. Sea area scattering characteristics under three quantitative compression methods:
(a,e) Original image; (b,f) Qi’s method; (c,g) Qiu’s method; (d,h) our method.
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Figure 12. Forest scattering characteristics under three quantitative compression methods:
(a,e) Original image; (b,f) Qi’s method; (c,g) Qiu’s method; (d,h) our method.
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Figure 13. Building area scattering characteristics under three quantitative compression methods:
(a,e) Original image; (b,f) Qi’s method; (c,g) Qiu’s method; (d,h) our method.

From the scattering characteristics of the target, the scattering characteristics of the proposed
method are superior to the other two methods in the sea, forest, and building areas, and closer to the
target scattering characteristics of the original image. In summary, this method is superior to the other
two methods, in both visual effect and target scattering characteristics, for saturated data processing.
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4. Conclusions

This article proposes an anti-saturation coding and decoding method for BAQ, commonly used in
satellite-borne SAR. The simulation data and actual data show that the performance of this method is
better than that of the traditional and existing anti-saturation methods, and this method does not need
to modify the hardware system on the satellite, which can play a good role in correcting the saturation
echo. It reduces the quantization power loss, improves the image SNR, and has important engineering
application value.
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