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Abstract

Purpose: To assess the performance of a proton-specific knowledge based planning

(KBPP) model in creation of robustly optimized intensity-modulated proton therapy

(IMPT) plans for treatment of patients with prostate cancer.

Materials and Methods: Forty-five patients with localized prostate cancer, who had

previously been treated with volumetric modulated arc therapy, were selected and

replanned with robustly optimized IMPT. A KBPP model was generated from the results

of 30 of the patients, and the remaining 15 patient results were used for validation. The

KBPP model quality and accuracy were evaluated with the model-provided organ-at-risk

regression plots and metrics. The KBPP quality was also assessed through comparison

of expert and KBPP-generated IMPT plans for target coverage and organ-at-risk sparing.

Results: The resulting R2 (mean 6 SD, 0.87 6 0.07) between dosimetric and geometric

features, as well as the v2 test (1.17 6 0.07) between the original and estimated data,

showed the model had good quality. All the KBPP plans were clinically acceptable.

Compared with the expert plans, the KBPP plans had marginally higher dose-volume

indices for the rectum V65Gy (0.8% 6 2.94%), but delivered a lower dose to the bladder

(�1.06% 6 2.9% for bladder V65Gy). In addition, KBPP plans achieved lower hotspot

(�0.67Gy 6 2.17Gy) and lower integral dose (�0.09Gy 6 0.3Gy) than the expert plans

did. Moreover, the KBPP generated better plans that demonstrated slightly greater

clinical target volume V95 (0.1% 6 0.68%) and lower homogeneity index

(�1.13 6 2.34).

Conclusions: The results demonstrated that robustly optimized IMPT plans created by

the KBPP model are of high quality and are comparable to expert plans. Furthermore,

the KBPP model can generate more-robust and more-homogenous plans compared with

those of expert plans. More studies need to be done for the validation of the proton

KBPP model at more-complicated treatment sites.
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Introduction

Prostate cancer is the second most-frequent cause of cancer death among men in the

United States and the leading cause of cancer death among men in 46 countries [1].

http://theijpt.org



Intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT), and intensity-modulated proton

therapy (IMPT), which can deliver a highly conformal dose to the tumor and spare organs at risk (OARs), are advanced

radiation-therapy techniques commonly used for treatment of prostate cancer [2, 3]. Because of the physical property of proton

beams that can eliminate the ‘‘exit dose’’ beyond the Bragg peak, proton therapy has the potential to improve the target

coverage and provide better OAR sparing compared with photon-based radiation therapy. Several publications have shown

that IMPT can deliver superior dose distributions compared with IMRT/VMAT for the treatment of prostate cancer [4, 5]. Similar

to IMRT, IMPT uses inverse-planning optimization to achieve dosimetric objectives. However, the complexity of IMPT

planning, combined with differences in the experience and skill of the planners, may result in large variations in the quality of

treatment plans, leading to suboptimal dose distribution [6–8].

Knowledge-based planning (KBP) tools, which incorporate prior treatment planning experience, have the potential to

improve the quality and consistency of treatment plans [9–13]. Numerous studies have demonstrated that KBP models are

able to generate IMRT and VMAT plans comparable to, or even better than, expert plans for a range of treatment sites [14–19].

Recently, a proton-specific KBP (KBPP) was developed to accommodate the physical traits of protons (eg, no dose beyond

the Bragg Peak) into the dose-volume histogram (DVH) estimation model [20]. A few publications have explored the

usefulness of the KBPP. Delaney et al [21] originally illustrated the concept of applying the knowledge-based DVH estimation

model to select patients (before starting optimization) to help determine those that would benefit greatly from proton therapy,

as compared to VMAT photon therapy, for patients with head and neck cancer. Their later publication demonstrated that

clinically acceptable IMPT plans can be created using a KBPP system [20, 22]. A recently published study by Cozzi et al [23]

showed that the quality of the KBPP plans were at least equivalent to the manually generated expert plans for patients with

hepatocellular carcinoma. However, more studies are necessary to both evaluate and validate the KBPP for various treatment

sites at this early stage in its use. To our knowledge, there are no studies investigating the use of KBPP for IMPT planning of

prostate cancer. In this work, we assessed the performance of a KBPP model in the creation of robustly optimized IMPT plans

for patients with prostate cancer.

Materials and Methods

Patient Cohort and IMPT Planning

Forty-five patients with localized prostate cancer who were previously treated with VMAT and were enrolled on a prospective

institutional review board protocol were included in this study. Patients were scanned for treatment planning in supine position

with 1.5-mm-slice thickness and had both a full bladder and an empty rectum per local protocol [24]. For all patients, the

prostate gross tumor volume, clinical target volume (CTV), bladder, rectum, and femoral heads were delineated on the

planning computed tomography (CT) scan by a radiation oncologist. The CTV consisted of prostate and proximal seminal

vesicles.

Before the planning CT scan, patients were prepared with bladder and rectal preparation protocol to comfortably fill the

bladder and release the gas inside the rectum. If gas was still detected inside the rectum in the planning CT, it was overridden

to water-equivalent density. Streaking artifacts produced by gold fiducials were also overridden to the surrounding soft-tissue

density for proton planning. Thirty IMPT plans were generated by an experienced proton dosimetrist for model configuration.

These IMPT plans employed 2 opposed lateral fields with a multifield optimization (MFO) technique using the nonlinear

universal proton optimizer (NUPO version 15.6, Eclipse, Varian Medical Systems, Palo Alto, California). Dose calculation was

performed using the proton convolution superposition algorithm (PCS version 15.6, Eclipse, Varian). A relative biological

effectiveness (RBE) of 1.1 is used for representation of the RBE-weighted dose. The prescription dose to the CTV was 78 to

80 Gy (RBE) in 38 to 40 fractions. Plans were robustly optimized using 6 5-mm setup uncertainty (in cardinal directions),

along with 6 3% proton-range uncertainty. The dose constraints for CTV were V100 (relative volume receiving more than the

prescription dose) . 99.99% and Dmax (maximum relative dose delivered to the structure) , 115%. The dose constraints for

the rectum were V40Gy (relative volume of the structure receiving . 40 Gy) , 35%, V65Gy (relative volume of the structure

receiving . 65 Gy) , 17%, and V80Gy (relative volume of the structure receiving . 80 Gy) , 10%, whereas for the bladder,

the constraints were V40Gy , 50%, V65Gy , 25%, and V80Gy , 10%. The dosimetrist made an effort to keep OAR doses

(bladder and rectum) as low as possible. The plan evaluations were then performed for the finalized plans by simulating the

6 3% proton-range uncertainty with 6 5-mm translational error in 6 directions, resulting in 12 uncertainty scenarios. In the

robust evaluation, the worst-case scenario was required to achieve V95 . 95% (� 95% of the volume receiving . 95% of the

prescription dose) for CTV.
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KBP Model Configuration

A KBPP-optimization tool (RapidPlanPT, version 16.1, Varian) was used to create the KBP library. RapidPlanPT

consists of 2 phases for model configuration: the data-extraction phase and the model-training phase. In the data-

extraction phase, the geometric and dosimetric features of selected structures are parameterized for use in model

training. During the model-training phase, the DVH-estimation algorithm is applied to create a DVH-estimation model.

Individual structure objectives and priorities may be set or generated based on the training set and their principal

components. As described in Delaney et al [20], RapidPlanPT incorporates a simplified spread-out Bragg peak into the

model and uses the geometry-based expected dose metric to estimate the distance of the different voxels in each

structure from the target surfaces. Delaney et al [20] have described RapidPlanPT modeling in greater detail as well as

the differences between the photon-based model and the proton-based model in their work, so these details will not be

included in this work.

In our study, 30 IMPT plans created using the MFO technique for patients with prostate cancer were included in the proton

RapidPlan model library. A defined objective list was implemented in the model after initial model training. The priority for each

objective was set to automatically generate optimization for prospective patients. The model quality was assessed using

model-generated plots, such as DVH plots, and regression and residual plots, based on the principal-component analysis, as

well as some additional metrics to identify potential geometric and dosimetric outliers [25]. Coefficient of determination (R2)

and average Chi-square (v2) tests were applied to measure the goodness of fit of the model for each trained OAR, where the

R2 indicated the correlation between dosimetric and geometric features, whereas v2 represented the difference between the

original and the estimated data [25].

Model Validation

The remaining 15 patients who were not included in the model training served as the model-validation group. For each patient

used for model validation, both MFO-based expert and KBPP-generated plans were created. The KBPP plans used the same

beam arrangement as the corresponding expert plans. For comparison purposes, the expert plans, with single-field

optimization (SFO) technique for 10 validation cases, were also created and compared with the corresponding KBPP-

generated plans using the same technique.

The KBPP plans were assessed and compared with the expert plans using the same clinical dose volume constraints for

CTV, bladder, and rectum. In addition, we assessed the integral dose deposited in the structure, which removed the CTV

volume extending 1 cm outside from the external volume contour (External � [CTV þ 1 cm]). The homogeneity index (HI) was

also evaluated for KBP-based IMPT plans and compared with that of the expert plans. In this work, the HI was defined as

follows [26]:(1)

HI ¼ D2% � D98%

Dp
3 100

where D2% is the dose to 2% of the CTV, D98% is the dose to 98% of the CTV, and Dp is the prescription dose for the CTV. The

closer the HI value is to zero, the more homogenous the plan is. Both expert- and KBP-generated IMPT plans were

normalized, such that 99.99% of the CTV volume was covered by the 100% prescription dose. To analyze the robustness of

the IMPT plan, all uncertainty scenarios and nominal plan generated from both expert and KBP plans were included for the

comparison. The comparison of the dosimetric indices between KBPP and expert plans was performed with a 2-sided paired t

test. P , .05 was considered statistically significant.

Results

Model-Training Results

Rectum, bladder, bowel, left and right femoral heads, penile bulb, and urethra were included in the model training. The R2

(mean 6 SD, 0.87 6 0.07, range, 0.79–0.99) and v2 (1.17 6 0.07, 1.09-1.29) for each OAR indicates good quality of the

model. Two potential outliers for the rectum and 3 potential outliers for the bladder were identified according to metrics in the

final model report. Figure 1 shows the regression plots and residual plots for the rectum and bladder. The regression plots

indicate the correlation between the most-important geometric-regression parameter and the main DVH parameter, which can

be used for potential geometric-outlier identification. The residual plots evaluate how the original DVH of a structure differ from
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the estimated DVH, and they were used as a more-realistic evaluation of potential influential points that can significantly affect

the outcome of the DVH-estimation model. Although some of the points are greater than the confidence interval in the residual

plots, we think none of these points is a significant influential point because no point deviated greatly from the fitting line

isolated by itself. In the case of the isolated points (arrowed in the plots) indicated in Figure 1, the rectum was extremely large

and a greater percentage of volume was on the proton path compared with that of other cases, which was deemed an

acceptable geometric outlier in the context of the data. Based on the resulting R2, v2, and visual verification of the plots, we

decided not to exclude any other outliers. This finding is consistent with previous studies, which also showed that the removal

of outliers from a good-quality KBP model library with a sufficient population does not have a significant effect on the quality of

the plans [15, 27]

Comparison between KBPP Plans and Expert Plans

All plans generated by the KBPP were clinically acceptable, and most plans met the dose-volume constraints, except for 1

case with very small bladder, which will be discussed later. The Table shows the comparison of dosimetric indices between

the KBPP-generated and the expert plans, based on both the MFO and SFO techniques. For MFO-based plans, KBPP plans

had marginally higher dose-volume indices for the rectum V65Gy (0.8% 6 2.94%) but had lower values for all clinical bladder

dose volume indices (�1.06% 6 2.9% for bladder V65Gy). In addition, the KBPP plans achieved lower hot spots

(�0.67 6 2.17 Gy) and lower integral doses (�0.09 6 0.3 Gy) than the expert plans did. Moreover, the better KBPP-generated

plans demonstrated slightly greater CTV V95 (0.1% 6 0.68%) and lower HI (�1.13 6 2.34). For SFO-based plans, there is no

statistically significant difference for CTV coverage and HI. Nevertheless, KBPP plans based on SFO had better rectum

sparing than the expert plan had, but they had higher bladder dose-volume indices and higher hot spots. The Dmax, in the

structure External � (CTV þ 1 cm), of KBPP plans was hotter than that of the expert plans. Because the purpose of this work

was to compare KBPP plans against the expert plans, hereafter, we focus only on the results using the MFO technique

because the model was configured with all MFO-based plans.

Figure 2 shows the scatter plots of selected dose-volume indices of the nominal (red squares) and uncertainty-scenario

(gray dots) plans represented for the rectum and bladder. The dose-volume indices for rectum and bladder from KBPP plans

shows good correlation with those achieved by the expert plans. The regression coefficients for V80Gy of rectum and bladder

are relatively smaller (0.914 and 0.767, respectively), which is due to the small value of the V80Gy.

Figure 1. Regression plots and residual plot for rectum and bladder
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Figure 3a and 3b shows box plots of the same dose-volume indices for the rectum and bladder, which further confirms that

KBP and expert plans are comparable in rectum and bladder sparing. Figure 3c is the box plot for CTV V95, demonstrating

that KBPP plans are slightly more robust than the expert plans in CTV coverage.

Figure 4a shows the average DVH of nominal plans, whereas Figure 4b consists of the average DVH, including all 13

scenarios (1 nominal plan plus 12 uncertainty scenarios). Almost no difference was observed between the KBPP and expert

plans in the CTV DVH in Figure 4a. However, when all scenarios were included, it was obvious that the CTV curve from the

KBPP plans had a sharper shoulder, reflecting that the KBPP generated more-homogenous plans.

Figure 5 is an example of both the KBPP and the expert plans failing to meet the dose constraints for the bladder because

of its extremely small volume. The expert plan exhibited slightly better dose distribution at low dose levels (Figure 5a and 5b).

Nevertheless, the KBPP plan, overall, accomplishes better bladder sparing. Figure 5c is a difference map of the KBPP and

expert plan dose distributions. This image reveals that there is a 10 to 15 Gy dose difference between the 2 plans for the

bladder region. A similar DVH curve for the rectum can be seen in Figure 5d. Comparable CTV coverage is achieved by KBPP

and expert nominal plans, but the KBPP plan is more robust when assessing the V95 from the worst-case scenarios (CTV

V95 ¼ 98.23% versus 97.41% for KBPP and expert plans, respectively).

Discussion
To our knowledge, this was the first study to explore the performance of the KBPP for robustly optimized IMPT in the treatment

of prostate cancer. This work demonstrates that the IMPT plans generated by a KBPP model were able to achieve comparable

plan quality to that of the IMPT plans generated by experts. This is consistent with the previous results on the use of the KBPP

model for IMPT planning for head and neck cancers and hepatocellular carcinoma [20, 22, 23]. One of the benefits of

employing the KBPP system for plan generation is its high efficiency. On average, each expert plan required 45 minutes to

complete iterative optimization and dose calculation. In comparison, it took about 10 minutes for KBPP plan generation. Most

KBPP plans were generated with a single optimization, whereas a subsequent ‘‘continue optimization’’ was performed for 2

cases, which took an additional 3 minutes. With respect to dosimetric indices, although the differences between the expert-

and KBPP-generated plans were statistically significant for the dose volume indices for rectum V65Gy (0.8% 6 2.94%), it is

likely that these differences are not clinically relevant because the magnitude of the differences was small. Statistically

significant lower dose-volume indices for bladder were found in the KBPP plans compared with the expert plans. For an

extreme case, for example, and extremely small bladder, the KBPP plan may produce better OAR sparing. The analysis that

Table. Comparison between KBPP and expert plans for both MFO- and SFO-based plans. All uncertainty scenarios and the nominal plan were included

for the dose mean and standard deviation calculations. The same scenarios were compared with the differences calculated. Note that MFO plans were

generated for validation with 15 patients, whereas SFO plans were generated for 10 patients.

Dose-volume indices

MFO, n ¼ 15 SFO, n ¼ 10

Expert,

mean 6SD

KBPP,

mean 6SD

KBPP-expert,

mean 6SD P value

Expert,

mean 6SD

KBPP,

mean 6SD

KBPP-Expert,

mean 6SD P value

CTV V95, % 99.09 6 1.02 99.19 6 0.91 0.1 6 0.68 0.039 99.09 6 0.95 99.2 6 1.02 0.11 6 0.72 0.088

CTV D99, Gy 74.71 6 4.05 75.09 6 4 0.39 6 2.12 0.012 75.32 6 4.28 75.43 6 4.61 0.11 6 2.2 0.594

CTV HI 8.61 6 3.49 7.47 6 3.2 �1.13 6 2.34 ,0.001 6.2 6 3.27 6.22 6 3.78 0.02 6 2.2 0.93

Rectum V40Gy, % 13.82 6 9.02 14.29 6 9.44 0.47 6 4.47 0.142 12.89 6 9.17 11.45 6 7.2 �1.44 6 3.74 ,0.001

Rectum V65Gy, % 6.03 6 5.73 6.83 6 6.28 0.8 6 2.94 ,0.001 5.58 6 5.66 4.79 6 4.55 �0.78 6 2.34 ,0.001

Rectum V80Gy, % 1.19 6 2.18 1.22 6 2.28 0.04 6 1.16 0.641 0.86 6 1.92 0.88 6 1.94 0.02 6 0.32 0.534

Bladder V40Gy, % 15.65 6 13.89 13.81 6 12.52 �1.84 6 4.29 ,0.001 13.1 6 14.1 13.87 6 14.75 0.77 6 1.5 ,0.001

Bladder V65Gy, % 8.26 6 9.45 7.19 6 8.1 �1.06 6 2.9 ,0.001 6.76 6 8.93 7.55 6 9.99 0.79 6 1.64 ,0.001

Bladder V80Gy, % 1.62 6 3.27 1.56 6 3 �0.06 6 1.59 0.618 1.2 6 2.49 1.45 6 2.98 0.26 6 0.67 ,0.001

Dmax, Gy 85.45 6 2.88 84.79 6 3.01 �0.67 6 2.17 ,0.001 82.65 6 3.37 84.58 6 4.38 1.93 6 1.63 ,0.001

External � (CTV þ 1 cm),

Dmean, Gy

1.2 6 0.45 1.11 6 0.3 �0.09 6 0.3 ,0.001 1.09 6 0.3 1.09 6 0.31 0 6 0.04 0.077

External � (CTV þ 1 cm),

Dmax, Gy

78.67 6 5.15 77.99 6 4.6 �0.68 6 2.9 0.001 76.61 6 4.27 79.66 6 5.48 3.05 6 2.66 ,0.001

Abbreviations: KBPP, proton-specific knowledge-based planning; MFO, multifield optimization; SFO, single-field optimization; HI, homogeneity index; VxxGy, relative volume of the

structure receiving . xx Gy; Dmax, maximum relative dose delivered to the structure.

Note: Bolded values were considered statistically significant at P , .05.
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included all uncertainty scenarios indicated that the plans generated by the KBPP model were more robust and homogenous

than the plans generated by the experts. Because the KBPP models accounts for robustness parameters, that increase in

robustness was anticipated. When using this model for SFO-based plans generation, KBPP-generated plans also offered

comparable plan quality to that of the expert SFO plans. We noticed that the SFO technique can provide more-robust and

Figure 2. Dose-volume indices achieved by KBP versus expert for rectum and bladder for MFO-based plans. Red dots represent the dose-volume

indices from nominal plans while gray dots represent the ones from other uncertainty scenarios. The blue band represents the confidence interval.

Abbreviations: KBP, knowledge-based planning; MFO, multifield optimization.
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-homogenous plans in terms of CTV coverage compared with the MFO-based plans, but the MFO-based plans for localized

prostate cancer were able to achieve robust coverage of the CTV, despite extreme rotational and translational alignment errors

[28]. In SFO plans, we generally observed field-specific hot spots in the range of 55% to 60% of the total dose, and in the MFO

plans, a typical field-specific hot spot was in the range of 65% to 70%, always from a beamlet near a bone junction; however,

most of the dose distribution was evenly shared between beams. However, the MFO plans were able to provide greater

volumetric coverage of the seminal vesicles for some anatomies. Because the MFO plans were able to provide satisfactory

homogeneous coverage, we believe the extra degree of freedom in planning could be used for greater sparing in abnormal

anatomies.

This study included 30 cases for model training without any outlier removal in our study. Outliers identified by the KBP

system indicate that the plan has a statistically significant difference as compared with that for the entire population in the

model. However, earlier studies by Delaney et al [27] and Hussein el al [15] compared the quality of the plans generated by an

outlier-free model to a model without outlier removal, which demonstrated that the effect of a few outliers does not significantly

affect plan quality [15, 27]. Our previous [29] also showed that the differences between the refined KBP model generated by

eliminating the dosimetric outliers and the original KBP-generated plans were insignificant. It has been reported that, in the

KBPP model for prostate cancer treatment, the initial automated-model generation setting led to inferior target coverage to that

of the expert plans, indicating more refinement of the model was required [15, 30]. In our study, we implemented defined

objectives for structures and let the model create the priority values for each objective. The KBPP plans produced by our

Figure 3. Box plots of dose-volume indices with all scenarios included for (a) rectum, (b) bladder and (c) CTV for MFO based-plans. Abbreviations:

CTV, clinical target volume, MFO, multifield optimization.

Figure 4. DVHs averaged over all 10 plans for KBPP and expert plans for nominal plans (a) and plans including all uncertainty scenarios (b) for MFO-

based plans. Abbreviations: DVH, dose-volume histogram; KBPP, proton-specific knowledge-based planning; MFO, multifield optimization.
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model achieved high plan quality and even better CTV coverage compared with that of the expert plans. It was reported that in

VMAT model training, the size of the models (33 versus 66 versus 97) made no difference in the plan quality for prostate cases

[29]. In this work, a proton model that included 30 cases with all contours of bladder and rectum was reliable for the simple

prostate IMPT plans.

In this work, we employed parallel-opposed lateral fields for both expert and KBPP generated robustly optimized IMPT

plans. It has been shown that IMPT plans with 3 optimized beam angles may significantly improve rectum sparing compared

with the conventional approach [31]. Furthermore, the quality of IMPT plans is more dependent on beam arrangement than

photon plans are. It is worthwhile to explore the reliability of the KBPP model when plans with different beam arrangements are

included in the model training. Future work on the integration of an algorithm with automated beam-angle selection, which is

under investigation [32], to determine whether there can be further improvement in plan quality and efficiency.

Admittedly, the prostate is a quite-simple model to start such analyses and is good practice for the application of the KBPP

model for robustly optimized IMPT plan creation. One limitation of this study is that we only included 15 patients for model

validation, which may be insufficient to confirm the reliability of the model because such analyses are in an early stage for

KBPP exploration. That said, many publications on KBP models have included small numbers of plans for validation, and

vendor recommendations are 10 validation cases to prove the model is working sufficiently [20, 29]. Further work on more-

Figure 5. (a and b) Isodose distributions of KBPP and expert nominal plans using MFO technique for a prostate patient included in this study. (c) The

dose difference map between KBPP and expert plan. (d) DVH for the KBPP and expert nominal plans. Abbreviations: DVH, dose-volume histogram;

KBPP, proton-specific knowledge-based planning; MFO, multifield optimization.
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complicated cases should be performed, and it is necessary that the model be validated before it can be implemented for

clinical use.

Conclusions
This work explored the reliability of a KBPP model to generate robustly optimized IMPT plans for patients with localized

prostate cancer. The results demonstrated that the IMPT plans created by the model have high quality and are comparable the

ones generated by experts. Furthermore, a KBPP model was able to generate more-robust and -homogenous plans than

those of the expert plans. Use of the KBPP model for generation of IMPT plans has a potential to improve treatment-planning

efficiency. More studies need to be performed for validation of the KBPP model for more-complicated treatment sites.
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