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Malaria and tuberculosis (Tb) are two of the main causes of death from infectious
diseases globally. The pathogenic agents, Plasmodium parasites and Mycobacterium
tuberculosis, are co-endemic in many regions in the world, however, compared to other
co-infections like HIV/Tb or helminth/Tb, malaria/Tb has been given less attention both
in clinical and immunological studies. Due to the lack of sufficient human data, the
impact of malaria on Tb and vice versa is difficult to estimate but co-infections are
likely to occur very frequently. Due to its immunomodulatory properties malaria might
be an underestimated risk factor for latent or active Tb patients particularly in high-
endemic malaria settings were people experience reinfections very frequently. In the
present study, we used the non-lethal strain of Plasmodium yoelii to investigate, how one
episode of self-resolving malaria impact on a chronic M. tuberculosis infection. P. yoelii
co-infection resulted in exacerbation of Tb disease as demonstrated by increased
pathology and cellular infiltration of the lungs which coincided with elevated levels of
pro- and anti-inflammatory mediators. T cell responses were not impaired in co-infected
mice but enhanced and likely contributed to increased cytokine production. We found
a slight but statistically significant increase in M. tuberculosis burden in co-infected
animals and increased lung CFU was positively correlated with elevated levels of TNFα

but not IL-10. Infection with P. yoelii induced the recruitment of a CD11c+ population into
lungs and spleens of M. tuberculosis infected mice. CD11c+ cells isolated from P. yoelii
infected spleens promoted survival and growth of M. tuberculosis in vitro. 170 days after
P. yoelii infection changes in immunopathology and cellular immune responses were no
longer apparent while M. tuberculosis numbers were still slightly higher in lungs, but
not in spleens of co-infected mice. In conclusion, one episode of P. yoelii co-infection
transiently exacerbated disease severity but had no long-term consequences on disease
progression and survival of M. tuberculosis infected mice.
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INTRODUCTION

Tuberculosis (Tb) and malaria are the most prevalent bacterial
and parasitic infections in humans, respectively, and continue
to be major causes of morbidity and mortality in impoverished
regions in the tropics. The causative agent of Tb,Mycobacterium
tuberculosis is carried by an estimated 2–3 billion people globally,
but in most cases it lies dormant and the immune system is
able to prevent it from spreading in the body (WHO, 2015).
A relatively small proportion (5–15%) ofM. tuberculosis-infected
people will develop active disease during their lifetime. However,
the immune system fails to achieve sterile eradication of the
tubercle bacillus. The enormous reservoir of latent Tb patients
constantly leads to new active Tb cases and transmission of
the disease, thus perpetuating the epidemic. The reasons why
some people develop active Tb, while others contain the infection
remain enigmatic. Reactivation can occur after years or decades
of clinical latency, and the risk of reactivation increases with
conditions that modulate the immune status of the host such
as disease (most prominent HIV/AIDS), drug treatment, age, or
malnutrition (O’Garra et al., 2013).

Malaria is highly prevalent in populations where
M. tuberculosis is endemic. 3.3 billion people are at risk of
being infected with the causative agent, protozoan parasites
of the genus Plasmodium. In 2013, approximately 200 million
cases of malaria led to 600,000 deaths, predominately in young
children under the age of 5 and pregnant women in sub-Saharan
Africa (Murray et al., 2012). In malaria-endemic areas, immunity
slowly develops over time, which does not prevent reinfection
but limits parasite density and symptoms. Consequently,
the majority of Plasmodium infections in adults are mild or
asymptomatic (Bousema et al., 2014). However, the public health
impact of malaria goes beyond the direct burden of the disease.
Both symptomatic and asymptomatic malarial infections can
cause immune modulation, which has long been discussed
to account for constant malaria reinfections, reduced vaccine
efficacy as well as for an increased susceptibility to secondary
infections (including bacteria such as Salmonella or viruses such
as Herpes virus and Epstein-Barr virus; Greenwood et al., 1972;
Bomford and Wedderburn, 1973; Warren and Weidanz, 1976;
Williamson and Greenwood, 1978; Correa et al., 1980; Brasseur
et al., 1983; Whittle et al., 1984; Cook, 1985; Mabey et al.,
1987; Hviid et al., 1991; Cunnington and Riley, 2010; Walther
et al., 2012). Epidemiological studies showed that death rates in
adults and children declined considerably when the incidence of
malaria was reduced, while the entire reduction in death rates
could not be directly attributed to malaria (Enwere et al., 1999;
Kleinschmidt et al., 2009; Cunnington and Riley, 2010). This
was already noted back in the 19th century, where post-mortem
examinations revealed that deaths secondary to malaria were at
least as great as mortality directly attributed to malaria infection
and correlated with co-endemic infectious diseases such as Tb,
pneumonia and diarrhea (Shanks et al., 2008). In line with
this is a more recent clinical study in Guinea-Bissau, which
reported improved clinical outcome and reduced mortality
among severely ill Tb patients after malaria prevention had been
carried out (Colombatti et al., 2011).

Most of the experimental studies on co-infection between
mycobacteria and Plasmodium focus on the unspecific protective
effects of mycobacterial infections against malaria (Clark et al.,
1976; Murphy, 1981; Matsumoto et al., 2000; Page et al., 2005;
Mueller et al., 2012). The majority of such studies addressed
the question as to whether the widely used Tb vaccine strain
M. bovis Bacille Calmette Guerin (BCG) confers non-specific
protection against subsequent Plasmodium infection (Clark et al.,
1976; Smrkovski and Strickland, 1978; Matsumoto et al., 2000;
Leisewitz et al., 2008; Parra et al., 2013) since BCG has been
associated with reduced child mortality from causes other than
Tb (Roth et al., 2005, 2006a,b; Shann 2010, 2011). In contrast,
only two experimental studies including our own investigated
the outcome of virulent M. tuberculosis infection in the context
of malaria co-infection in the mouse model and indeed found
the control of M. tuberculosis to be impaired in the presence
of different rodent malaria parasites (Scott et al., 2004; Mueller
et al., 2012). In our previous study, we reported that co-infection
with P. berghei NK65, a lethal strain causing malaria-associated
acute respiratory distress syndrome in C57BL/6 mice (Van den
Steen et al., 2010), was associated with enhanced inflammatory
immune responses and tissue pathology, hypercytokinemia and
altered T-cell responses which resulted in impaired control of
chronicM. tuberculosis infection (Mueller et al., 2012). Similarly,
co-infection with the non-lethal strain of P. yoelii interfered with
the containment of M. tuberculosis although to a lesser extent
(Scott et al., 2004). The immunological mechanisms have not
been studied in detail.

MATERIALS AND METHODS

Ethics Statement
Animal experiments were approved by the Ethics Committee
for Animal Experiments of the Ministry for Agriculture,
Environment, and Rural Areas of the State of Schleswig-Holstein
(Kommission für Tierversuche/Ethik-Kommission des Landes
Schleswig-Holstein) under the license 33–3/10 (“Die Auswirkung
von Tuberkulose auf die Pathogenese und Immunantwort bei
Malaria im Rahmen einer Koinfektion in der Maus”/“The impact
of tuberculosis on pathogenesis and immune responses tomalaria
in an experimental co-infection mouse model”).

Mice, Bacterial Infection, and Colony
Forming Units
For all in vivo experiments female C57BL/6 mice aged between
6 and 8 weeks were used, which were obtained from Charles
River Laboratories. Mice were maintained under specific barrier
conditions in BSL 3 facilities. For all in vitro experiments female
and male C57BL/6 wild-type and female transgenic OT2 mice
aged between 8 and 20 weekswere used, bred in the animal facility
of the Research Center Borstel.

Mycobacterium tuberculosis H37Rv was grown in
Middlebrook 7H9 broth (BD Biosciences) supplemented
with 10% v/v OADC (Oleic acid, Albumin, Dextrose, Catalase)
enrichment medium (BD Biosciences). Bacterial cultures were
harvested, resuspended in PBS/10% glycerol, and aliquots were
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frozen at –80◦C until later use. Viable cell counts in thawed
aliquots were determined by plating serial dilutions onto
Middlebrook 7H11 agar plates supplemented with 10% v/v
heat-inactivated bovine serum, 0.1% w/v asparagine and 0.5%
v/v glycerol followed by incubation at 37◦C.

For infection of experimental animals, M. tuberculosis stocks
were diluted in sterile distilled water at a concentration providing
an uptake of 200 viable bacilli per lung. Infection was performed
via the respiratory route by using an aerosol chamber (Glas-Col,
Terre-Haute, IN, USA). Animals were exposed for 40 min to
an aerosol generated by nebulizing the prepared M. tuberculosis
suspension. The inoculum size was quantified 24 h after infection
by determining bacterial loads in the lungs of infected mice.
Bacterial loads in lung, liver, and spleen were evaluated at
different time points after aerosol infection by mechanical
disruption of the organs in 0.05% v/v Tween 20 in PBS
containing a proteinase inhibitor cocktail (Roche) prepared
according to the manufacturer’s instructions. Tenfold serial
dilutions of organ homogenates in sterile water/1% v/v Tween
80/1% w/v albumin were plated onto Middlebrook 7H11 agar
plates and incubated at 37◦C. Colonies were enumerated after
3–4 weeks.

Parasitic Infection
Plasmodium yoelii 17NL (non-lethal) was maintained by regular
passage in NMRImice. For cryopreservation, blood was collected
from highly parasitemic mice, and aliquots were stored in liquid
nitrogen in a solution of 0.9% NaCl, 4.6% sorbitol, and 35%
glycerol. Experimental naïve mice or animals pre-infected for
30 days withM. tuberculosis were infected intraperitoneally (i.p.)
with 1× 105 P. yoelii-infected RBCs obtained from a homologous
donor, which had been infected from frozen stock. Parasitemia
was determined on Giemsa-stained blood smears from tail blood
every 2 to 3 days. Moreover, mice were checked for P. yoelii-
induced anemia based on the hemoglobin concentration in
the blood. For this, tail vein blood was collected and diluted
in Drabkin’s Solution supplemented with Brij L23 Solution
(Sigma–Aldrich). Optical density of hemoglobin was measured
at 540 nm.

Cell Isolation and Purification from
Lungs and Spleens
Mice were sacrificed 51 or 200 days p.i. with M. tuberculosis
and perfused intracardially with 20 ml PBS to remove circulating
leukocytes from the tissue. Lungs were digested in 100 μg/ml
DNase I (Roche) and 50 μg/ml Liberase TL (Roche) in RPMI
for 90 min and passed through a 100 μm pore size cell strainer
to obtain a single cell suspension. Spleens were passed through
a 100 μm pore size cell strainer. Remaining erythrocytes in lung
and spleen cell suspensions were lysed (155 mM NH4Cl, 10 mM
KHCO3, 0.1 mM EDTA in H2O) and cells were resuspended in
RPMI 1640 supplemented with 2mM L-glutamine, 1% v/vHepes,
50 μM β-mercaptoethanol and 10% v/v heat-inactivated fetal
calf serum (complete RPMI 1640 medium). Cell numbers were
determined with the Vi-CELL Cell Viability Analyzer (Beckman
Coulter).

Flow Cytometry
For flow cytometric analysis of surface markers and intracellular
cytokines, single cell suspensions of lungs, spleens, or cell
cultures were stained with optimal concentrations of the
following specific antibodies: CD45-V450, CD4-V500, CD8-
V450, and CD62L-APC from BDBiosciences, CD3-PerCP-Cy5.5,
CD4-BV510, CD4-PE-Cy7, CD8a-FITC, CD44-FITC, CD19-
PE, CD80-AF488, CD86-APC, Ly6G-APC-Cy7, CD11c-PE-Cy7,
NK1.1-PE-Cy7, TNFα-Pacific Blue, IFNγ-PerCP-Cy5.5, IL-17A-
PerCP-Cy5.5, IL-2-PE-Cy7, and IL-10-PE from BioLegend and
CD90.2-eFluor780 from eBioscience. Data were acquired on a
FacsCantoII� flow cytometer (BD Biosciences) equipped with
a 405, 488, and 633 nm laser and analyzed with the FCS Express
software (DeNovoTM Software).

Intracellular Cytokine Staining
Single cell suspensions of lungs or spleens (1 × 106) were
stimulated 4.5 h with αCD3e/αCD28 (BioLegend; 5 μg/ml,
respectively) in the presence of GolgiPlugTM (BD Biosciences,
contains Brefeldin A). Non-specific antibody binding was
blocked by incubation with a cocktail containing anti-FcγRIII/II
mAb (BioLegend), mouse, hamster and rat serum. Subsequently,
cells were stained with directly labeled anti-CD90.2, anti-CD44,
anti-CD4, and anti-CD8a antibodies for 20 min at 4◦C. After
washing, cells were fixed and permeabilized over night with
Cytofix/CytopermTM (BD Biosciences). Cells were washed with
Perm/Wash bufferTM (BD Biosciences) and stained with directly
labeled anti-IFNγ, anti-IL-10, anti-IL-17A, anti-IL-2, and anti-
TNFα antibodies for 45 min at 4◦C.

Histology
Superior lobes of lungs from infected mice were fixed with
4% w/v PFA for 24 h and embedded in paraffin. Sections
(4 μm) were rehydrated by running through xylenes, alcohols
of decreasing concentrations and finally water. Sections were
stained with hematoxylin and eosin (Merck) and/or carbol
fuchsin (Merck) followed by decolorization with acid-alcohol to
visualize mycobacteria in the lungs and analyzed with a BX41
light microscope and cellˆB software. Histological sections of
infected lungs were scored in a blinded manner. Affected lung
area was quantified in relation to whole lung area using cellˆB
area measurement.

RNA Isolation, cDNA-Synthesis, and
Quantitative Real-Time PCR
Total RNA from lung tissue was extracted using TRIzol� reagent
(Invitrogen) and the Direct-zolTM RNA MiniPrep Kit (Zymo
Research) as recommended by themanufacturer. For quantitative
real-time PCR, 400 ng of total RNA were reverse transcribed
using Maxima First Strand cDNA Synthesis Kit for RT-qPCR
(Life Technologies) according to the manufacturer’s instruction
at 25◦C for 10 min, 55◦C for 30 min, 85◦C for 3 min. Real-time
quantitative PCR reactions were performed using LightCycler�
480 SYBR Green I Master (Roche). PCR amplifications were
performed in duplicates in a total volume of 10 μl, containing
1 μl cDNA sample, 0.2 μl of primer pairs (10 μM), 5 μl
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SYBR green mix, and 3.8 μl RNase/DNase-free water. Data
analysis was performed using the LightCycler� 480 instrument.
The PCR cycling conditions used were as follows: (I) Pre-
incubation/denaturation: 95◦C for 10 min; (II) Amplification:
45 cycles of 95◦C for 10 s, 63◦C for 10 s, 72◦C for 8 s, and 72◦C
for 1 s (acquisition step). (III) Melt curve analysis: 95◦C for 10 s,
65◦C for 10 s, and gradual heating to 97◦C with continuous
fluorescence acquisition. (IV) A final cooling step at 37◦C was
included for handling of the samples, because the LightCycler has
no cooling bloc. Analysis of the relative changes was performed
using LightCycler480 Software 1.5.0 SP4 (Version 1.5.0.39,
Roche). All quantifications were normalized to the level of HPRT
gene expression (housekeeping gene). The following primers
were used: HPRT forward TCCTCCTCAGACCGCTTTT
and reverse CATAACCTGGTTCATCATCGC; IFNγ

forward TCAAGTGGCATAGATGTGGAAGAA and reverse
TGGCTCTGCAGGATTTTCATG; TNFα forward CCACCA
CGCTCTTCTGTCTAC and reverse AGGGTCTGGGCCATA
GAACT; IL-10 forward GGTTGCCAAGCCTTATCGGA
and reverse ACCTGCTCCACTGCCTTGCT; IL-6 forward
GAGGATACCACTCCCAACAGACC and reverse AAGTGCA
TCATCGTTGTTCATACA; IL-12B forward CATCATCAAA
CCAGACCCGCCCAA and reverse AACTTGAGGGAGAA
GTAGGAATGG. Primers for iNOS were kindly provided by the
group of Microbial Interface Biology.

Multiplex Cytokine Assay
The concentrations of various cytokines in lung homogenates
were determined by LEGENDplexTM (Mouse T helper cytokine
panel and Mouse Inflammation panel, BioLegend) according to
the manufacturer’s protocol.

Nitric Oxide Assay
Nitric oxide was determined in lung homogenates as NO2

− using
the Griess reagent (Sigma). Samples were mixed in equal volume
with Griess reagent and incubated for 15min. Optical density was
measured at 560 nm with Tecan Sunrise Reader (Magellan).

Isolation of CD11c+ Cells and
M. tuberculosis Infection
C57BL/6 mice were infected with 1 × 105 iRBC i.p. as
described before. Fourteen days p.i. spleens from infected
mice and naïve control mice, respectively, were harvested
and digested in 100 μg/ml DNase I (Roche) and 50 μg/ml
Liberase TL (Roche) in RPMI for 30 min and passed through
a 100 μm pore size cell strainer. Remaining erythrocytes
were lysed (155 mM NH4Cl, 10 mM KHCO3, 0.1 mM
EDTA in H2O) and cells were resuspended in RPMI 1640
supplemented with 2 mM L-glutamine, 1% v/v Hepes, 50 μM
β-mercaptoethanol and 10% v/v heat-inactivated fetal calf serum
(complete RPMI 1640 medium). Dead cells were removed
using the Dead Cell Removal Kit (Miltenyi) according to
the manufacturer’s instruction. Afterwards, CD11c+ cells were
magnetically labeled and isolated using CD11c MicroBeads
(Miltenyi) as recommended by the manufacturer. 2 × 105
CD11c+ cells were infected with M. tuberculosis in a MOI 1

directly from frozen stock. At indicated time points cells were
lysed with 0.5% (v/v) Triton X-100 in PBS and tenfold serial
dilutions of organ homogenates in sterile water/1% v/v Tween
80/1% w/v albumin were plated onto Middlebrook 7H11 agar
plates.

T Cell Proliferation Assay
CD11c+ cells isolated as described above were incubated
with 100 μg/ml Ovalbumin (Sigma–Aldrich) over night or
1 μM OT-II peptide (peptide synthesis, Research Center
Borstel) for 3 h. Spleens of transgenic OT-II mice, which
contain CD4+ T cells specific for chicken ovalbumin 323–
339, were harvested, passed through a 100 μm pore size
cell strainer and erythrocytes were lysed (155 mM NH4Cl,
10 mM KHCO3, 0.1 mM EDTA in H2O). OT-II CD4+ T
cells were isolated using CD4+ T cell isolation kit (Miltenyi;
untouched) according to the manufacturer’s instruction. T cells
were further labeled with CFSE (Invitrogen) and 1 × 105
were co-incubated with 1 × 103 CD11c+ cells for three days
at 37◦C.

Statistical Analysis
Statistical analysis was performed by Mann–Whitney test or by
Kruskal–Wallis test followed by Dunn’s Multiple Comparison
test as described in the figure legends. Correlation between
variables was determined by calculating Pearson’s coefficient
using a 2-tailed analysis. In vitro CFU data were log transformed
and analyzed by unpaired student’s t-test. All data were
analyzed using GraphPad Prism 5 (GraphPad Software,
Inc.).

RESULTS

P. yoelii Infection Exacerbates Chronic
M. tuberculosis Infection
Due to its immunomodulatory properties we hypothesized that
P. yoelii co-infection would interfere with immune control of
chronic M. tuberculosis infection in C57BL/6 mice. Therefore,
mice were infected via the aerosol route with a low dose of
M. tuberculosis H37Rv. Thirty days later, when the immune
response against M. tuberculosis was fully established and
Tb in a chronic state, mice were infected with 1 × 105
P. yoelii infected red blood cells (iRBCs) i.p. Parasitemia was
monitored every 2–3 days on Giemsa stained thin blood
smears starting 4 days after P. yoelii infection. Furthermore,
anemia was assessed during acute P. yoelii infection by
measuring hemoglobin levels in the blood. As expected, with
rising parasitemia, hemoglobin levels significantly dropped
in P. yoelii infected animals when compared to animals
infected with M. tuberculosis (Figures 1A,B). However, we
did not detect significant differences in parasitemia, anemia,
and weight change between P. yoelii singly and co-infected
animals (Figures 1A–C). Hence, the course of P. yoelii
malaria does not change in mice chronically infected with
M. tuberculosis.
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FIGURE 1 | The course of P. yoelii infection is unchanged. C57BL/6 mice were infected via the aerosol route with M. tuberculosis H37Rv, and 30 days later
with 1 × 105 iRBCs i.p. (A,C) Parasitemia and weight were determined every 2–3 days starting 4 days after P. yoelii infection (groups of 7–8; one experiment
representative out of three). (B) Starting 4 days after P. yoelii infection, hemoglobin levels were determined by collecting blood from tail vain, diluting in Drabkin’s
Solution supplemented with Brij L23 Solution and measured at 540 nm (groups of 13–24). Statistical analysis was performed using the Kruskal–Wallis test with
Dunn’s multiple comparison (data represent mean ± SD). ∗∗p < 0.01; ∗∗∗p < 0.001.

Fifty-one days after M. tuberculosis infection, when P. yoelii
infection was almost cleared, mice were sacrificed and lung,
spleen, and liver were removed to analyze mycobacterial load.
Compared to M. tuberculosis only infected mice, co-infected
mice presented with a slight but statistically significant increase
in M. tuberculosis burden in all three organs (Figures 2A–C).
To further evaluate M. tuberculosis loads in the lung tissue,
superior lung lobes were paraffin-embedded and sections were
acid fast stained to visualizeM. tuberculosis. Notably, while single
bacteria were found across theM. tuberculosis-infected lungs, co-
infected mice frequently harbored large clusters of mycobacteria
(Figures 2D, bottom, arrows), indicating that CFU values were
most likely underestimating actual M. tuberculosis numbers in
co-infected lungs. In conclusion, these data suggest that malaria
limits control ofM. tuberculosis.

Mycobacterial infection leads to cellular infiltrations and
formation of granulomatous lesions in the lung which are
necessary to restrict and control the infection. However, excessive
pathology also results in disease exacerbation (O’Garra et al.,
2013). To investigate histopathological changes in single- and
co-infected lungs, superior lung lobes were paraffin-embedded
and 4 μm sections were H&E stained. Lungs of co-infected
mice displayed increased pulmonary infiltration (Figure 2E) and
increased total lung weight compared with lungs of mice infected
with M. tuberculosis alone (Figure 2G). This was in line with
a significant rise of absolute cell numbers in co-infected lungs
compared to those of control animals (Figure 2H). In depth
microscopic evaluation of lung sections revealed the deposition
of hemozoin (Figure 2F), the malaria pigment which is produced
by the parasite during digestion of red blood cell hemoglobin, in
lungs of co-infected mice. Moreover, histopathological changes
were more pronounced in co-infected lungs as reflected by more
granulomatous lesions compared to M. tuberculosis infected
lungs. Consequently, the total lung area affected was significantly
increased upon P. yoelii co-infection compared toM. tuberculosis
single infection (Figure 2I).

P. yoelii Co-infection Augments Cytokine
Responses in the Lung
The balance of pro- and anti-inflammatory cytokines is
necessary to restrict mycobacterial growth as well as to avoid

immunopathology and maintain tissue function (O’Garra
et al., 2013). To assess the effects of P. yoelii co-infection
on different pro- and anti-inflammatory cytokines, their
expression was determined on RNA and protein level
(Figures 3A,B). Overall cytokine responses were elevated
in co-infected compared to single infected mice. On mRNA
level we found a significant increase in IFNγ and IL-10
expression (Figure 3A), whereas on protein level IFNγ,
TNFα, IL-6, IL-10, and IL-17A were significantly increased
compared to M. tuberculosis infected mice (Figure 3B).
Correlation analysis revealed that increased TNFα levels
positively correlated with increased M. tuberculosis CFU in
lungs of co-infected mice (r = 0.81, Pearson’s correlation;
Figure 3C). In contrast, elevated IL-10 levels did not correlate
with increased CFU in co-infected animals (Figure 3D). IL-
10 is known to exert anti-inflammatory functions including
down-modulation of macrophage effector functions (Gazzinelli
et al., 1992; Murray et al., 1997; Murray and Young, 1999).
Increased IL-10 expression in co-infection mice thus prompted
us to determine inducible nitric oxide synthase (iNOS)
expression and NO levels in lung tissue. Neither the mRNA
expression of iNOS nor the release of NO was decreased in
lungs of co-infected mice suggesting that this host defense
mechanism was not impaired during P. yoelii co-infection
(Figures 3E,F).

T Cell Response is Not Impaired in
Co-infected Mice
Histopathological alterations and elevated numbers of total lung
cells together with elevated cytokine levels indicated increased
immune cell recruitment and activity in the lungs of co-infected
mice. Thus, we investigated the cell-mediated immune responses
by flow cytometry. NK cells, defined as CD3−NK1.1+ cells,
were significantly decreased in lungs of co-infected compared
to M. tuberculosis infected mice (Figure 4A). In contrast, the
numbers of both CD8+ and CD4+ T cells were significantly
increased in the presence of P. yoelii (Figure 4B). Further
analysis revealed significantly higher frequencies of CD4+ and
CD8+ effector T cells (CD44+CD62L−) in co-infected lungs
which produced significantly more cytokines upon ex vivo
re-stimulation with αCD3/αCD28 (Figures 4C–E). Moreover,
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FIGURE 2 | P. yoelii co-infection leads to increased lung pathology and M. tuberculosis burden. C57BL/6 mice were infected via the aerosol route with
M. tuberculosis H37Rv, and 30 days later with 1 × 105 iRBCs i.p. Mice were sacrificed 21 days after P. yoelii infection for CFU determination in lung, spleen, and liver
(A–C; lung and spleen groups of 16–23, liver groups of 9–15; data pooled from 2 to 3 independent experiments). Superior lung lobes were paraffin-embedded and
4 μm sections were acid fast and H&E stained to visualize M. tuberculosis (D) and hemozoin distribution (F; dark brown pigment) and to assess pulmonary
inflammation (E). Arrows indicate mycobacterial clusters. One or two representative images per group are shown (n = 7–8). (G) Lung to body weight ratio was
determined in two independent experiments (n = 9–15). (H) Total lung cell numbers (n = 7–8). (I) Total area occupied by inflammatory lesions per lobe was quantified
using cellˆB software (n = 7–8). Data are shown as box and whisker plots with the median and analyzed statistically using the Mann–Whitney test (A–C,G–I).

multifunctional CD4+ T cells, which have been associated
with protection against Tb (Forbes et al., 2008) and secrete
IFNγ, TNFα, and IL-2, were also significantly increased in the
lungs of co-infected mice compared to M. tuberculosis mice
(Figure 4F).

As the spleen plays a pivotal role in the development of
the immune response against Plasmodium infection and in
elimination of iRBC, we studied the cell-mediated immune
response in this organ by flow cytometry. The overall number
of splenocytes was significantly increased during co-infection
(Figure 4G), reflecting splenomegaly associated with P. yoelii
infection. As in the lung, NK cell numbers were significantly
decreased in co-infected compared to M. tuberculosis infected

mice (Figure 4H). There was no difference in the numbers of
both splenic CD8+ and CD4+ T cells between co-infected and
M. tuberculosis infected mice (Figure 4I). Although frequencies
of effector CD8+ and CD4+ T cells (CD44+CD62L−) were
significantly higher in co-infected spleens they did not produce
more cytokines upon ex vivo re-stimulation with αCD3/αCD28
(Figures 4J–L) compared to splenic T cells from M. tuberculosis
infected mice. Solely, the production of IL-10 was significantly
increased.

In conclusion, while NK cell numbers were significantly
decreased in lungs and spleens, T cell frequencies and function
were increased in lungs when P. yoelii was concurrent with
M. tuberculosis.
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FIGURE 3 | P. yoelii co-infection augments cytokine responses in the lung. C57BL/6 mice were infected via the aerosol route with M. tuberculosis H37Rv,
and 30 days later with 1 × 105 iRBCs i.p. Lungs were collected 21 days after P. yoelii infection for analysis of cytokine (A) or iNOS (E) expression by quantitative
RT-PCR (expression relative to housekeeping gene HPRT). (B) Cytokine protein levels were measured in lung lysates in M. tuberculosis and co-infected mice using
LEGENDplex. (F) Nitric oxide production was determined by Griess reagent in lung lysates. Data represent one experiment representative for 2–3 independent ones
and are shown as mean ± SD (n = 5–10; Mann–Whitney test). (C) TNFα and (D) IL-10 protein levels were correlated to lung CFU using Pearson’s correlation.

CD11c+ Cells are Induced by P. yoelii
Co-infection and Promote Survival of
M. tuberculosis In Vitro
We next studied the influence of co-infection on the innate
immune compartment of the lung via flow cytometry.
We could observe a slight but not significant increase in
CD45+CD19−Ly6GhighCD11bhigh cells (Figure 5A) indicating
that neutrophils did not contribute to increased cellular
infiltration in lungs from co-infected mice. In contrast, we
found significantly more CD45+CD19−Ly6G−CD11b−CD11c+
cells in lungs from co-infected compared to M. tuberculosis
infected mice (Figure 5B). This was even more pronounced
in the spleen (Figure 5C). The pulmonary CD11b−CD11c+
compartment could be further divided into CD11chigh and
CD11cint cells (Figure 5D). While the CD11chigh population
remained unchanged during co-infection, the frequency of
CD11cint cells significantly increased in the presence of P. yoelii
(Figure 5E). Analysis of co-stimulatory molecules revealed
reduced surface expression of CD86 on CD11cint cells from
co-infected as compared to M. tuberculosis infected mice
(Figures 5F,G). Likewise, CD11chigh cells, although unchanged
in numbers, exhibited a significant although less prominent
reduction in the expression of CD86 (Figure 5H). When we
evaluated both populations for their forward (FSC-A) and side
scatter (SSC-A) pattern, CD11cint cells were FSC-Alow/SSC-Alow

while CD11chigh cells were FSC-Alow/SSC-Ahigh, indicating
increased granularity of CD11chigh cells compared with
CD11cint cells (Figure 5I). Alterations in leukocyte recruitment
in co-infected mice prompted us to investigate chemokine
protein levels in lung tissue. We found significantly elevated

concentrations of monocyte chemoattractant protein-1 (MCP-1),
one of the key chemokines that regulate migration and
infiltration of monocytes/macrophages and dendritic cells (DCs;
Figure 5J). Together, our data indicate that P. yoelii co-infection
induces the overproduction of MCP-1 and the recruitment of
CD11b−CD11cint cells to the lungs of M. tuberculosis infected
mice.

Plasmodium infection is known to modulate the function
of phagocytic cells (Ocana-Morgner et al., 2003; Orengo
et al., 2008; Hawkes et al., 2010), which is also indicated
by the down-regulation of CD86 expression on CD11c+ cells
from co-infected mice shown herein. To further analyze the
function of malaria-induced CD11c+ cells, we investigated
their ability to stimulate T cell proliferation in vitro. To do
so, C57BL/6 mice were infected with P. yoelii and 14 days
p.i. when parasitemia peaks (Figure 1A), CD11c+ DCs were
isolated from spleens of infected and naïve control mice using
magnetically labeled beads. Subsequently, isolated DCs were
loaded with the model antigen ovalbumin (Ova) or Ova-
derived peptides and co-cultured with CFSE-labeled transgenic
OT-II T cells for 3 days. DCs from naïve and P. yoelii
infected spleens were able to induce T cell proliferation
equally well (Figure 5K), indicating that DCs from malaria-
infected mice are fully functional antigen presenting cells. We
next infected DCs from naïve or malaria infected mice with
M. tuberculosis (MOI 1) and monitored intracellular survival
over time. Noteworthy, while DCs from naïve animals were
able to restrict M. tuberculosis survival CD11c+ DCs from
P. yoelii infected mice supported M. tuberculosis survival and
growth, resulting in a 1.5 log difference in CFU after 6 days
(Figure 5L).
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FIGURE 4 | T cell responses are not impaired in co-infected mice. C57BL/6 mice were infected via the aerosol route with M. tuberculosis H37Rv, and 30 days
later with 1 × 105 iRBCs i.p. Lungs were collected 21 days after P. yoelii infection and single cell suspensions were analyzed for the presence and activation status
of NK cells, CD4+ and CD8+ T cells by flow cytometry. (A) Lung cells were analyzed for CD3−NK1.1+ and (B) gated on CD90.2 to determine the total numbers of
CD4+ and CD8+ T cells as well as (C) the proportion of effector T cells (CD44+CD62L− ). (D–F) Lung cells were restimulated ex vivo with αCD3/αCD28 (5 μg,
respectively) and analyzed by flow cytometry for the presence of IFNγ, TNFα, IL-10, IL-17A, and IFNγ/TNFα/IL-2 producing CD4+ and CD8+ T cells. (G) Total spleen
cell numbers. (H) Spleen cells were analyzed for CD3−NK1.1+ and (I) gated on CD90.2 to determine total numbers of CD4+ and CD8+ T cells as well as (J) the
proportion of effector T cells (CD44+CD62L− ). (K,L) Spleen cells were restimulated ex vivo with αCD3/αCD28 (5 μg, respectively) and analyzed by flow cytometry
for the presence of IFNγ, TNFα, IL-10, and IL-17A. Symbols and bars represent individual mice or means ± SD, respectively (n = 7–8; Mann–Whitney test). For full
gating strategies, see Supplementary Figures S1A–C.

In conclusion, P. yoelii co-infection induces an increase in
CD11c+ cells in lungs and spleens which support the growth of
M. tuberculosis in vitro.

P. yoelii Induced Exacerbation of Tb
Disease is Transient
Exacerbated lung pathology together with elevated
M. tuberculosis burden in lung, spleen, and liver in co-infected

mice prompted us to analyze the long-term consequences of
P. yoelii co-infection. To do so, mice were sacrificed 200 days
afterM. tuberculosis infection (170 days after P. yoelii infection).
While regression of splenomegaly was observed in mice
infected with P. yoelii alone spleens of co-infected mice were
still enlarged. Likewise, spleens and livers of co-infected mice
showed darker pigmentation resulting from the accumulation
of hemozoin produced by the parasite during digestion of red
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FIGURE 5 | Continued
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FIGURE 5 | Continued

CD11c+ cells are induced by P. yoelii co-infection and promote survival of M. tuberculosis in vitro. C57BL/6 mice were infected via the aerosol route with
M. tuberculosis H37Rv, and 30 days later with 1 × 105 iRBCs i.p. Lungs and spleens were collected 21 days after P. yoelii infection and single cell suspensions were
analyzed for the presence and activation status of Ly6G+ and CD11c+ cells by flow cytometry. (A) Lung cells were gated on CD45+ and further on CD19− cells and
analyzed for the presence of Ly6GhighCD11bhigh neutrophils. Symbols and bars represent individual mice and means, respectively (groups of 7–8). (B) Lung and (C)
spleen cells were gated on CD45+ and further on CD19− and Ly6G− cells and analyzed for the presence of CD11b+ and CD11c+ cells. (D–H) Pulmonary
CD11b−CD11c+ cells were further divided into CD11cint and CD11chigh (D,E). CD80 and CD86 expression was analyzed in both CD11b−CD11c+ populations
(F–H). CD11cint and CD11chigh populations were characterized in size (FSC-A) and granularity (SSC-A) (I). Symbols and bars represent individual mice and means,
respectively (n = 7–8; Mann–Whitney test). For full gating strategy, see Supplementary Figure S1D. (J) MCP-1 protein level was measured in lung lysates in
M. tuberculosis and co-infected mice using LEGENDplex. (K,L) C57BL/6 mice were infected with P. yoelii and 14 days p.i., CD11c+ cells were isolated from spleens
of infected and naïve control mice using magnetically labeled beads. Isolated CD11c+ cells were loaded with the model antigen Ova or Ova-derived peptides and
co-cultured with CFSE-labeled transgenic OT-II T cells for 3 days. Loss of CFSE as indicator for T cell proliferation was measured by flow cytometry (K; performed in
triplicates). In addition, isolated CD11c+ cells from naïve or malaria infected mice were infected with M. tuberculosis (MOI 1) and plated on 7H11 agar plates at
indicated time points (L, one representative experiment out of three). Symbols and bars represent individual mice and means ± SD, respectively. Unpaired student’s
t-test. ∗∗p < 0.01, ∗∗∗p < 0.001.

blood cell hemoglobin while pigmentation was very much
reduced in P. yoelii singly infected mice (data not shown).
These observations indicate that the full resolution of malaria-
related syndromes was delayed in M. tuberculosis infected
mice.

Determination of mycobacterial CFU revealed that
co-infected mice still presented with a statistically significant
but slight increase in M. tuberculosis burden in the lung,
but not in the spleen (Figure 6A). Microscopic evaluation
of lung sections revealed no differences in histopathology
between M. tuberculosis singly and co-infected mice
(Figure 6B). Inflammation had progressed over time,
affecting approximately half of the lung area of mice from
both groups (Figure 6C). In line with the only slightly increased
M. tuberculosis burden and comparable histopathological
changes in the lungs, mice from both groups had survived
until this time-point of analysis without any clinical signs of
disease.

In good agreement with histological observations, we
could no longer observe differences in inflammatory immune
responses in the lungs between both groups. Comparable
numbers of CD8+ and CD4+ T cells were recovered from
M. tuberculosis or co-infected lungs, which produced comparable
amounts of cytokines upon ex vivo re-stimulation with
αCD3/αCD28 (Figures 6D,E). Accordingly, cytokine levels in
lung homogenates were no longer increased in co-infected
mice. In contrast, levels of TNFα, IL-6, IL-10, and IL-17A
were significantly decreased in co-infected lungs (Figure 6F).
Likewise, numbers of CD45+CD19−Ly6G−CD11b−CD11c+
cells were no longer elevated in lungs from co-infected
compared to M. tuberculosis-infected mice (Figure 6G). The
same was true for both CD11chigh and CD11cint populations
(Figure 6H). Moreover, reduced expression of CD86 on both
CD11chigh and CD11cint cells as observed 21 days after co-
infection was no longer apparent at this late time-point
(Figures 6I,J).

In conclusion, while the resolution of splenomegaly and
clearance of hemozoin was delayed in co-infected mice, one
episode of P. yoelii co-infection had no long-term consequences
on disease progression and survival of M. tuberculosis infected
mice.

DISCUSSION

Malaria and Tb are co-endemic in many regions in the world,
however, compared to other co-infections like HIV/Tb or
helminth/Tb, it has been given less attention both in clinical and
immunological studies. Due to the lack of sufficient human data,
the impact of malaria on Tb and vice versa is difficult to estimate
but co-infections are likely to occur very frequently (Bates et al.,
2015).

In this study, we demonstrate that co-infection with the
self-resolving parasite P. yoelii can transiently exacerbate Tb
disease severity although the effect onM. tuberculosis control was
minimal as reflected by a moderate but nevertheless statistically
significant increase in CFU recovered from lung, spleen, and
liver of co-infected mice. It should, however, be noted that
acid fast staining of tissue sections revealed mycobacterial
aggregates in co-infected but rarely in singly infected lungs.
Such aggregates were most likely incompletely resolved during
organ homogenization and plating, indicating that CFU values
were probably underestimating actual M. tuberculosis numbers
in co-infected lungs (Lewin et al., 2003).

P. yoelii infection during chronic Tb mediated increased
recruitment of immune cells to the lungs which coincided with
enhanced production of pro- and anti-inflammatory cytokines. T
cell responses were not impaired by co-infection but augmented.
Upon ex vivo re-stimulation, CD4+ and CD8+ T cells from
co-infected lungs produced more IFNγ and IL-10. IL-10 is a
negative regulator of Th1 responses and of central importance
in immunity to malaria, where it ameliorates immunopathology
at the expense of parasite elimination (Couper et al., 2008a,b;
Freitas do Rosario et al., 2012). Likewise, IL-10 antagonizes
pro-inflammatory responses essential for protective immunity to
M. tuberculosis (Murray et al., 1997; Murray and Young, 1999;
Boussiotis et al., 2000; Schreiber et al., 2009; Redford et al.,
2010) including IFNγ induced production of reactive nitrogen
intermediates (RNI; Gazzinelli et al., 1992) which mediate the
killing of M. tuberculosis (Chan et al., 1992; MacMicking et al.,
1997; Herbst et al., 2011). However, iNOS expression and
NO levels in lungs were not altered by P. yoelii co-infection,
which might be one reason why M. tuberculosis control was
only slightly impaired in co-infected mice. The importance of
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iNOS goes beyond direct killing of M. tuberculosis by RNI.
During persistent infection, it is indispensable for modulating
destructive inflammatory responses and its absence results in
increased neutrophil recruitment and tissue necrosis at the site
of M. tuberculosis infection (Chan et al., 1995; Cooper et al.,
2000; Beisiegel et al., 2009; Mishra et al., 2013). In line with
unchanged iNOS expression and despite an increase in IL-17A
protein, which is known to induce neutrophil recruitment, we
did not observe more neutrophils in co-infected lungs. Our
data thus indicate that exacerbated immunopathology in the
presence of P. yoelii was not neutrophil driven. The significant
increase in IFNγ in co-infected lungs most likely contributes

to the inhibition of pathogenic neutrophil accumulation (Nandi
and Behar, 2011). IFNγ not only regulates the production of IL-
17-induced chemokines, such as KC or MIP-2 but it suppresses
expression of E- and P-selectin on endothelial cells which are
important for neutrophil trafficking into inflamed tissue (Melrose
et al., 1998; Desvignes and Ernst, 2009). Moreover, IFNγ can
act on neutrophils directly by accelerating neutrophil death
in vitro (Nandi and Behar, 2011). The source for IFNγ were most
likely T cells, since NK cells, which contribute to early IFNγ

production during M. tuberculosis infection (Korbel et al., 2008),
were significantly decreased in numbers during co-infection.
Depletion of NK cells prior to and during infection has no

FIGURE 6 | P. yoelii induced exacerbation of Tb disease is transient. C57BL/6 mice were infected via the aerosol route with M. tuberculosis H37Rv, and
30 days later with 1 × 105 iRBCs i.p. Lungs and spleens were collected 170 days after P. yoelii infection. (A) Lung and spleen CFU was determined. Data are shown
as box and whisker plots with the median and analyzed statistically using Mann–Whitney test (n = 8). (B,C) Superior lung lobes were paraffin-embedded, and 4 μm
sections were H&E-stained (one representative image per group is shown). Pulmonary inflammation was quantified using cellˆB software (n = 8; box and whisker
plots with the median; Mann–Whitney test). Lung single cell suspensions were analyzed for the presence (D) and function (E) of CD4+ and CD8+ T cells by flow
cytometry (restimulated ex vivo with αCD3/αCD28). (F) Cytokine protein levels were measured in lung lysates in M. tuberculosis and co-infected mice using
LEGENDplex. (G–J) Lung cells were gated on CD45+ and further on CD19− and Ly6G− cells and analyzed for the presence of CD11b+ and CD11c+ cells.
CD11b−CD11c+ cells were further divided into CD11cint and CD11chigh (H). CD80 and CD86 expression was analyzed in both CD11b−CD11c+ populations (I,J).
For full gating strategy, see Supplementary Figures S1A,B,D. Data are shown as means ± SD and were analyzed using the Mann–Whitney test (n = 8).
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impact on control of mycobacterial growth (Junqueira-Kipnis
et al., 2003). Only when T cells are lacking, NK cells can provide
protection against M. tuberculosis infection to a certain extent
and are crucial for the limitation of pathology (Feng et al.,
2006). Because IFNγ levels were increased and T cell responses
not impaired during P. yoelii co-infection, we reasoned that the
reduction in NK cell numbers had no consequences on disease
outcome.

Resolution of acute infections such as malaria relies on the
stimulation of myelopoiesis in order to meet the need for an
efficient innate immune response (Belyaev et al., 2013). During
blood-stage malaria infection, innate cells such as monocytes,
macrophages, and DCs are required in high numbers for the
removal of parasitized red blood cells and T cell priming
which takes place in the spleen (Langhorne et al., 2004, 2008;
Voisine et al., 2010). Of these innate cells, CD11c+ DCs are
involved in both the priming of T cells and the control of
parasitemia (deWalick et al., 2007; Wykes et al., 2007; Voisine
et al., 2010). Consequently, it was reported that numbers of
CD11c+ DCs in the spleen rise considerably during infection
with P. yoelii and other rodent malaria parasites (Langhorne
et al., 2004; Wykes et al., 2007; Voisine et al., 2010). We
found increased numbers of CD11b−CD11c+ cells in lungs
and spleens of co-infected mice compared to mice infected
with M. tuberculosis alone. While most CD11c+ cells represent
conventional DCs (cDCs) in the spleen, the classification is
more complicated in the lungs were alveolar macrophages also
express CD11c (Lancelin and Guerrero-Plata, 2011; Kopf et al.,
2015). Of the pulmonary CD11b−CD11c+ cells, only CD11cint
cells were significantly increased during co-infection while
numbers of CD11chigh cells remained unchanged. According
to their FSC–SSC pattern, we reasoned these cells are of
DC-like nature as reflected by low granularity compared to
the CD11chi population which most likely represents alveolar
macrophages. Both CD11chigh and CD11int cells displayed
a significant reduction in CD86 surface expression in co-
infected compared to those from M. tuberculosis infected
mice, indicating that P. yoelii co-infection interfered with cell
activation. This has been described before (Ocana-Morgner
et al., 2003; Urban and Todryk, 2006; Orengo et al., 2008).
Regardless, T cell responses were not impaired in co-infected
animals. M. tuberculosis specific immune responses are primed
by DCs in the lung-draining lymph node in the first 2 weeks
of M. tuberculosis infection (Wolf et al., 2008). Thus, by the
time of P. yoelii co-infection (30 days after M. tuberculosis
infection), M. tuberculosis specific immune responses were
already established.

Beside their role in T cell priming, DCs along with other
phagocytes serve as host cell for M. tuberculosis in lungs of
infected mice (Wolf et al., 2007). While activated macrophages
are able to kill mycobacteria, DCs fail to eliminate them
but rather promote their survival (Bodnar et al., 2001). In
fact, when DC numbers were increased by treatment with
polyethylene glycol-conjugated GM-CSF or Flt3-L in mice
infected with M. tuberculosis the overall control of infection was
impaired and mice had greater bacterial burden and mortality
than controls (Alaniz et al., 2004). In the same study, the

control of Listeria was also impaired by the induction of
DCs which were shown to harbor viable bacteria. Likewise,
Salmonella preferentially infect DCs which are unable to kill
them (Marriott et al., 1999). The fact that DCs are less efficient
killers than macrophages and more resistant to cytotoxic T
cell lysis (Medema et al., 2001) makes them an attractive
cellular niche for intracellular bacteria such as M. tuberculosis.
Importantly, DCs from P. yoelii infected mice were much more
permissive to M. tuberculosis survival and replication in vitro
than DCs from naïve mice. These results suggest that P. yoelii
induced DCs provide an environment in which intracellular
M. tuberculosis thrive. The induction of an M. tuberculosis-
permissive monocyte population has been recently reported in
a study investigating the consequences of intranasal Poly-IC
treatment ofM. tuberculosis infected mice (Antonelli et al., 2010).
Poly-IC, a synthetic analog of dsRNA, is a potent inducer of type
I IFN responses and currently used in clinical trials due to its
efficacy in viral infections and malignancies (Borden et al., 2007).
Poly-IC treatment triggered the IFN-dependent pulmonary
recruitment of a CD11b+F4/80+Gr1int population that displayed
enhanced mycobacterial levels. The authors suggest that Poly-IC
treatment can detrimentally affect the outcome ofM. tuberculosis
infection by promoting the accumulation of a permissive myeloid
population in the lung.

In addition to promoting M. tuberculosis survival, infected
DCs can shape tissue pathology. Recently M. tuberculosis
infected inflammatory DCs were shown to spread granulomatous
inflammation in infected tissue. CD11c+ DCs left mycobacterial
granulomas with bacteria and formed contact with
M. tuberculosis specific T cells, thereby inducing new multi-
focal lesions in the lungs (Harding et al., 2015). In our model,
P. yoelii co-infection induced the recruitment of CD11c+ cells
to M. tuberculosis infected lungs and the formation of more
granulomatous lesions as compared to animals infected with
M. tuberculosis alone. Thus, increased numbers of CD11c+
cells in co-infected lungs could promote dissemination of
mycobacteria across the lungs and the formation of new
lesions, thereby contributing to the exacerbated tissue pathology
observed herein.

We believe that in our co-infection model, the stimulation
of myelopoiesis together with the enhanced recruitment of
myeloid progenitors from the bone marrow in the course of
P. yoelii co-infection results in the enhanced recruitment of
immune cells to the site of M. tuberculosis infection in the
lung, most likely attracted by chemokines which are produced
in response to M. tuberculosis infection. It has been shown
that systemic IFNγ responses triggered the secretion of CCL2
(MCP-1) and CCL7 which led to the egress of early myeloid
progenitors from the bone marrow during malaria infection
(Belyaev et al., 2013). Significantly elevated levels of IFNγ and
MCP-1 in lungs of co-infected mice could be responsible for
enhanced pulmonary recruitment of myeloid cells. In addition,
TNFα directly effects immune cell recruitment by upregulation of
endothelial adhesion molecules (Zhou et al., 2007) and induction
of chemokine production which further recruit leukocytes
to the site of infection (Roach et al., 2002; Algood et al.,
2005).
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The deposition of hemozoin, the malaria pigment which is
produced by the parasite during digestion of red blood cell
hemoglobin, might also augment inflammatory responses in
the lung of co-infected mice (Parroche et al., 2007; Deroost
et al., 2013). During malaria infection, circulating and resident
phagocytes take up and accumulate hemozoin, which is released
into the circulation during erythrocyte lysis. This leads to
accumulation of malaria pigment in different organs with
potential immune modulating consequences. Moreover, some
parasites including P. falciparum and the rodent strains P. berghei
and P. chabaudi are known to sequester in host tissue with the
lung being a major site of parasite sequestration while spleen and
liver function in digestion of infected erythrocytes. Infection with
the lethal strain P. berghei NK65 (PbNK65) induces severe lung
pathology and was described as a model for malaria-associated
acute respiratory distress syndrome in mice (MA-ARDS; Van
den Steen et al., 2010). Recently, an association has been found
between increased levels of hemozoin in pulmonary tissue of
PbNK65 infected mice andMA-ARDS (Deroost et al., 2013). This
severe lung pathology could be one reason why inM. tuberculosis
infected mice, the consequences of PbNK65 co-infection are
much more severe as compared to P. yoelii co-infection (Mueller
et al., 2012).

While we observed alterations in immune cell recruitment
and immunopathology in M. tuberculosis infected mice shortly
after acute P. yoelii co-infection, differences in immunopathology
and cellular immune responses between M. tuberculosis and
co-infected mice were no longer apparent 150 days later. This
indicates that P. yoelii co-infection had only a transient effect on
Tb disease severity, which is supported by the fact that mice from
both groups did not show clinical signs of disease or premature
death throughout the entire observation period. The reason for
this is most likely the transient nature of the P. yoelii infection.
Parasitemia is resolved within 3–4 weeks and consequently,
P. yoelii induced immune responses decline over time. Moreover,
hemozoin, which probably contributes to increased inflammation
in the co-infected lungs, is known to be redistributed to liver and
spleen over time (Levesque et al., 1999; Frita et al., 2012; Deroost
et al., 2013).

Mice in our model only experienced one episode of
Plasmodium infection. In contrast, people living in malaria-
endemic settings are constantly reinfected with malaria parasites.
Hence, these people potentially suffer from continuous immune
modulation, which might increase their susceptibility to Tb.
Studying malaria reinfections in our mouse model is complicated
by the fact that C57BL/6 mice after recovering from parasitemia,
become resistant to reinfection with P. yoelii (Lucas et al., 1993).

This does not reflect the situation in humans where immunity
to malaria develops relatively slowly and sterile immunity is
probably never achieved (Langhorne et al., 2008). However, the
fact that one single episode of P. yoelii co-infection is able to
modulate immune responses and inflammation in the lungs of
M. tuberculosis infected mice indicates that constant exposure to
malaria could be a risk factor for Tb patients.

Importantly, our observations indicate that the full resolution
of malaria-related syndromes was delayed in M. tuberculosis
infected mice. The fact that co-infected mice, although able to
clear parasitemia equally well, showed a delay in the resolution
of splenomegaly and clearance of hemozoin from spleen and
liver indicates that immune cell function in the spleen is
modulated long-term. Since the spleen is the central organ
for immunity in malaria, the question arises as to whether
immunity to P. yoelii reinfection is established and/ormaintained
in M. tuberculosis infected mice. This important question will
be addressed in our lab in future studies. These studies shall
also reveal if recurrent P. yoelii infections will cause permanent
immune modulation and ultimate loss of control of chronic
M. tuberculosis infection.

In conclusion, one episode of P. yoelii co-infection
transiently exacerbated Tb disease severity but had no long-
term consequences on disease progression and survival of
M. tuberculosis infected mice.
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