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ABSTRACT
An intricate machinery protects cells from the accumulation of misfolded, non-functional proteins
and protein aggregates. Protein quality control pathways have been best described in the
cytoplasm and the endoplasmic reticulum, however, recent findings indicate that the nucleus is also
an important compartment for protein quality control. Several nuclear ubiquitinylation pathways
target soluble and membrane proteins in the nucleus and mediate their degradation through
nuclear proteasomes. In addition, emerging data suggest that nuclear envelope components are
also degraded by autophagy, although the mechanisms by which cytoplasmic autophagy
machineries get access to nuclear targets remain unclear. In this minireview we summarize the
nuclear ubiquitin-proteasome pathways in yeast, focusing on pathways involved in the protein
degradation at the inner nuclear membrane. In addition, we discuss potential mechanisms how
nuclear targets at the nuclear envelope may be delivered to the cytoplasmic autophagy pathways
in yeast and mammals.

Introduction

Misfolded and damaged proteins can be harmful for
the cell. To eliminate these proteins and to maintain
protein homeostasis, cells have developed an intricate
protein quality control (PQC) system by which they
assess the quality of proteins and take proper meas-
ures to either repair or eliminate the damaged compo-
nents.1 Proteins can be targeted for proteasomal
degradation by poly-ubiquitinylation, which is medi-
ated by ubiquitin-activating enzyme (E1), ubiquitin
conjugating enzyme (E2) and ubiquitin protein ligase
(E3), the latter defining substrate specificity.2 E3
ligases recognize targets either directly or with the
help of chaperones.3 While the proteasomes target
predominantly soluble misfolded proteins, large insol-
uble protein aggregates are primarily degraded by
autophagy.4 In macroautophagy, the cargo is seques-
tered within double membrane vesicles called auto-
phagosomes, which fuse with the lysosome.5

Autophagosome formation requires yeast ubiquitin-
like protein Atg8 or its mammalian homologues of the
LC3 and GABARAP families, which become lipidated
with phosphatidyl ethanolamine (PE) through

ubiquitinylation-like reactions involving E1-like
enzyme Atg7 and E2-like protein Atg3.6 In microau-
tophagy, cargo is sequestered by invaginations of the
lysosomal membrane, which then pinches off as small
vesicles into the lysosome lumen7.

Degradation-mediated mechanisms in protein
homeostasis have been best described in the cytoplasm
and the endoplasmic reticulum (ER),8 but a number of
recent studies identified PQC pathways also in the
nucleus (Fig. 1).9 While proteasomes are long known
to localize in the cytoplasm and the nucleus,10 PQC
pathways and their targets in the nucleus have only
been identified more recently.11 In particular, mecha-
nisms mediating degradation of integral membrane
proteins of the inner nuclear membrane (INM) have
long remained elusive. In the cytoplasm, ER-associ-
ated degradation (ERAD) is the main pathway for the
degradation-mediated PQC of membrane proteins.
ERAD targets misfolded proteins, but also some cor-
rectly folded wild-type proteins to the proteasome.12

In yeast, 2 integral membrane proteins of the ER,
Hrd1 and Doa10 are the core E3 ubiquitin ligases tar-
geting ERAD substrates.13 While Hrd1 primarily
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targets proteins with lesions in domains oriented
toward the ER lumen, Doa10 targets mainly proteins
with lesions in their cytoplasmic or membrane
regions.13 Hrd1 localizes exclusively to the ER, but
Doa10 was also found in the INM14 and targets
nuclear and INM proteins.14-16 In addition, novel E3
ligases were recently identified that enrich at the
INM,17,18 suggesting that several proteasomal PQC
pathways exist in the nucleus and target specific sets
of proteins. Furthermore, increasing evidence suggests
that nuclear proteins can also be degraded by autoph-
agy, although the mechanisms remain largely
unclear.19 In this minireview we summarize the
recently identified protein degradation pathways at
the INM and we discuss potential mechanisms how
nuclear envelope (NE) proteins may be targeted by
autophagic pathways.

Protein degradation in the cell nucleus

The NE consists of 2 membrane layers, the inner and
the outer nuclear membrane, connected at the sites
of nuclear pores.20 While the outer nuclear mem-
brane (ONM) is an extension of the ER membrane,

the INM has a protein composition different from
that of the ONM and the ER. In metazoan cells the
nuclear side of the INM is coated with a protein
meshwork consisting of lamin intermediate fila-
ments21,22 and lamin-interacting INM proteins and
termed the nuclear lamina.23,24 Proteasomes are
known to localize inside the nucleus in yeast and
mammalian cells,25-31 but nuclear PQC pathways
have not been described until recently (Fig. 1). A key
pathway of nuclear PQC in yeast is mediated by the
nuclear ubiquitin-protein ligase San1, which targets
misfolded nuclear proteins for proteasomal degrada-
tion11 by recognizing their exposed hydrophobic
regions.32,33 In addition, the ER integral membrane
protein Doa10, which is a ubiquitin protein ligase
involved in ERAD, localizes also to the INM, where
it mediates degradation of transcription factor
Mata214 and of the INM protein Asi2.15 Moreover, a
novel ubiquitinylationmachinery that specifically localizes
at the yeast INM and targets several soluble and INMpro-
teins for degradation has recently been discovered.17,18

Apart from the ubiquitin-proteasome-dependent protein
degradation, portions of the nucleus can also be targeted
by autophagy and be degraded by the vacuole/lysosome in

Figure 1. Ubiquitin-proteasome-dependent protein degradation pathways in the yeast nucleus. San1 is a nuclear E3 protein ubiquitin
ligase that ubiquitinylates misfolded nuclear (NP) and cytoplasmic (CP) proteins. Delivery of CPs to nuclear San1 is assisted by Hsp70
chaperone Ssa1. Unlike the ER-membrane localized E3 ligase Hrd1, E3 ligase Doa10 localizes to both ER and the INM and targets INM
protein Asi2 and transcriptional repressor Mata2 for proteasomal degradation. Asi1-Asi3 is an E3 ligase complex enriched in the INM
that, together with Asi2, ubiquitinylates latent forms of transcription factors Stp1 and Stp2 via their RI degron. Asi1-Asi3 also ubiquitiny-
lates misfolded or mislocalized integral membrane proteins (IMP) in the INM. The nucleus is also the compartment for the proteotoxic
stress-induced deposit of misfolded cytoplasmic proteins and protein aggregates in the intranuclear quality control compartment (INQ).
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both yeast and mammalian cells.34-39 Taken together,
accumulating data show that the nucleus is an important
compartment for protein degradation and quality control.
This is further supported by findings that the stress-
induced protein aggregate deposit in yeast, which has pre-
viously been described as “juxtanuclear quality control
compartment,” surprisingly localizes to the nucleus.40

Asi1 and Asi3 - nuclear ubiquitin protein ligases
involved in INM-associated degradation

INM proteins Asi1, Asi2 and Asi3 function as negative
regulators of the amino acid induced Ssy1-Ptr3-Ssy5
(SPS) signaling pathway in yeast.41-43 In the absence
of amino acids Asi proteins prevent promoter binding
of latent transcription factors Stp1 and Stp2,44,45 how-
ever the molecular mechanism of this repression has
not been clear so far. The first evidence that Asi pro-
teins participate in the degradation of latent Stp1 and
Stp2 in the nucleus came from findings that deletions
in ASI genes stabilize specific forms of Stp1.46 Further
studies showed that Asi1 and Asi3 function as ubiqui-
tin protein ligases that ubiquitinylate latent forms of
Stp1 and Stp2 in the nucleus, thereby targeting them
for proteasomal degradation (Fig. 1).18

The role of Asi proteins is not limited to SPS-sensor
signaling as additional substrates have been identified,
including integral membrane proteins.17,18 For
instance, membrane proteins Erg11 and Nsg1
involved in sterol synthesis were stabilized in asi1D
and asi3Dmutants,17 indicating that they are ubiquiti-
nylation substrates of the Asi-complex. Protein levels
of Erg11 were not affected by the levels of sterol
metabolites,17 indicating that Asi1-mediated degrada-
tion of Erg11 is not involved in a homeostatic feed-
back mechanism. Rather, the purpose of Asi-mediated
degradation of Erg11 is apparently to prevent accumu-
lation of the ER-membrane protein Erg11 at the INM.
The possibility that Asi-ubiquitin protein ligase has
a role in clearance of mislocalized proteins at the
INM is supported by the finding that vacuolar
membrane proteins, which mislocalize to the ER/
NE upon C-terminal epitope tagging, are also tar-
geted by Asi1/3.18 In addition, Asi proteins may
also recognize misfolded protein domains at the
INM (Fig. 1), as the C-terminal epitope tagging of
vacuolar proteins might also impair their proper
folding. In support of this model a sec61-2 mutant
that becomes misfolded at high temperature and is

targeted to the INM when fused to a nuclear locali-
zation signal was degraded in an Asi1-dependent
manner.17 Taken together, in addition to ensuring
latency of transcription factors in the SPS-sensor
signaling, and possibly in other pathways, Asi pro-
teins may also be involved in the removal of mis-
folded and mislocalized integral membrane proteins
from the INM.

Apart from misfolded sec61-2, which appears to be
a common substrate of Hrd1 and Asi1, other sub-
strates of the ERAD ubiquitin ligases Hrd1 and Doa10
were not affected by deletion of ASI1.17 Although the
Asi-ubiquitinylation machinery works with E2
enzymes Ubc618 and Ubc7,17,18 which are also used in
the ERAD pathway, Asi-mediated degradation is
clearly distinct from ERAD, based on its predominant
localization at the INM and its specific substrates and
can thus be referred to as INM-associated degradation
(INMAD).

INM protein Asi2 – a degradation mediator and a
target

Ubiquitin ligases Asi1 and Asi3 form a complex
with Asi2, an integral INM protein with 2 trans-
membrane regions and no apparent functional
domains.17,43 Interestingly, Asi2 was required for
degradation of some substrates of Asi1/Asi3,
such as transcription factors Stp1/Stp2 and inte-
gral membrane proteins Erg11 and Nsg1, but
degradation of misfolded sec61-217 and several
other Asi1/Asi3 substrates18 did not require Asi2.
Why Asi2 is necessary for degradation of some
Asi-substrates, but not others is not clear, but
Asi2 may recognize a specific type of degrada-
tion signal in a specific subset of Asi substrates.
In the case of Stp1, the Asi-dependent degron
has been defined as a 16 amino acids long
sequence in the N-terminal region of Stp1, desig-
nated RI motif,46 but degron sequences in other
substrates mediating Asi-dependent ubiquitinyla-
tion are not known.

Interestingly, we have recently shown that Asi2
itself is a degradation substrate of the ER/INM-
localized ubiquitin ligase Doa10 (Fig. 1) and associ-
ated E2 enzymes Ubc6 and Ubc7.15 Like in most
ubiquitinylated substrates, ubiquitinylation of Asi2
occurs predominantly on lysine residues.47 Ubiqui-
tinylation of degradation substrates at alternative
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acceptor sites has been observed only in rare cases,
such as in metazoan and virus-infected cells.48-55

Intriguingly, we found that a functional mutant of
yeast Asi2 lacking all lysine residues is ubiquitiny-
lated on atypical acceptor sites and targeted for
proteasomal degradation in a Doa10-Ubc6-Ubc7
dependent manner,47 indicating that ubiquitinyla-
tion on alternative residues might be more preva-
lent than previously considered. The degradation
signal that targets Asi2 for Doa10-dependent ubi-
quitinylation may involve an amphipathic helix
present close to the N-terminus of Asi2. Indeed,
amphipathic helices are present in several other
Doa10 substrates where Doa10 seems to recognize
their exposed hydrophobic surfaces either directly
or via chaperones.16,56,57 The degradation signal in
Asi2 might become exposed upon changes in the
molecular environment or upon loss of interaction
partners. For instance, the loss of interaction
between Asi2 and Asi1/Asi3 may uncover a region
of Asi2 and affect Asi2 protein stability. In support
of this possibility, we observed that degradation of
Asi2 was faster in cells lacking Asi1 and Asi3.15

Our data suggest that the majority of Asi2 is ubi-
quitinylation by Doa10 at the INM, although we
could not experimentally exclude the possibility
that Doa10 targets Asi2 also at the ER.15 Notably,
as the inactivation of DOA10 does not completely
abolish Asi2 degradation,15,47 additional pathways
are likely involved in Asi2 degradation, which may
function in parallel with Doa10 or upon inactiva-
tion of Doa10.

Autophagy of nuclear envelope proteins

In yeast, selective autophagy of nuclear material, also
called nucleophagy, has been observed in a process
called piecemeal microautophagy of the nucleus
(PMN).34 In this process, which is induced by starva-
tion, portions of the nuclear envelope form a direct
physical interaction with the vacuolar membrane and
form blebs that pinch off into the vacuole.34 A similar
process that occurs after prolonged periods of nitro-
gen starvation was named late nucleophagy.35 A pro-
cess similar to PMN has not been described in
complex eukaryotes so far. However, an autophagy-
mediated degradation of nuclear envelope proteins
has recently been described in mammalian cells. Large
perinuclear autophagosomes were observed in cells

expressing muscular dystrophy-linked mutants of
lamin A at the nuclear envelope or mutants of the
INM protein emerin.58 Moreover, the lamin A mutant
protein progerin, which is permanently farnesylated
and thus tightly associated with the INM59-61 and
causes premature aging Hutchinson-Gilford progeria
syndrome (HGPS), was found to be degraded by the
lysosomes in 2 recent studies (Fig. 2).37,38 Progerin-
expressing cells exhibit abnormal nuclear shape,
changes in heterochromatic marks, increased DNA
damage and premature senescence,62 and treatment of
HGPS cells with rapamycin, which is known to induce
autophagy,63,64 ameliorated these phenotypes.37,38

These effects of rapamycin were linked to the
increased rate of progerin degradation37 and reduced
progerin levels in treated cells.37,38

The molecular details of the rapamycin-induced
progerin degradation are not well understood. How-
ever, observations that inhibition of autophagosome
formation by treatment of cells with 3-methyladenine
or by knock-down of Atg 765,66 results in impaired
progerin degradation37 suggested that progerin is
degraded by macroautophagy. Since the autophago-
somes and lysosomes are present in the cytoplasm, it
is unclear how progerin at the nuclear envelope is
delivered to the cytoplasm (Fig. 2). Potential routes
could involve nuclear export through the nuclear pore
complexes (NPC) or vesicle-mediated budding of
larger progerin aggregates through the NE (nuclear
egress, Fig. 2-A),67 similar to the transport of large
ribonuclear particles in Drosophila68 or nuclear egress
of herpesvirus.69 Alternatively, progerin might be
degraded in a process similar to piecemeal microau-
tophagy of the nucleus, in which blebs at the nuclear
envelope are surrounded by invaginations of the lyso-
somal membrane and pinch off into the lysosmal
lumen (Fig. 2-B), although this pathway has so far
been described only in yeast.34

Interestingly, a recent study in yeast found that in
response to rapamycin treatment portions of the NE
are degraded by selective autophagy via budding of
double membrane vesicles from the NE and their sub-
sequent engulfment in autophagosomes (Fig. 2-C).36

Degradation of specific targets in the process of selec-
tive autophagy is achieved by receptor proteins that
bind to degradation targets and to Atg8/LC3 on form-
ing autophagosomal membranes, thereby facilitating
cargo sequestration into the autophagosomes.70 Atg39
was identified as a novel Atg8-interacting autophagy
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receptor at the NE in yeast.36 Atg39 protein levels
markedly increase upon rapamycin treatment and
mediate the loading of NE-derived double-mem-
brane vesicles into the autophagosomes.36 Atg39-
mediated nucleophagy seems to be important for
yeast cell survival under prolonged nutrient-limit-
ing conditions but it is unclear which nuclear com-
ponents are targeted. In view of these recent
findings on Atg39-dependent nucleophagy in yeast,
the rapamycin-induced degradation of progerin in
mammalian cells may occur via a similar process,
including formation of micronuclei encompassing
nuclear material and their subsequent engulfment
by autophagosomes (Fig. 2-C). Atg39-homologues
were not found in complex eukaryotes yet, however
other proteins may have similar functions in
mammals.

In support of a vesicle-mediated delivery of
nuclear material to cytoplasmic autophagosomes in
mammals, a recent study found that lamin B1, a
farnesylated and INM-associated protein, is targeted
by macroautophagy via blebbing of the nuclear
envelope, followed by sequestration of nuclear
derived vesicles into autophagosomes.39 In contrast
to degradation of progerin and Atg39-dependent
nucleophagy in yeast, which were induced by rapa-
mycin, lamin B1 autophagy was induced in
response to oncogenic insult, such as activated
RAS.39 Oncogene-induced autophagy selectively tar-
gets lamin B1, possibly because lamin B1, unlike
other lamins, directly binds to LC3.39 Interaction of
lamin B1 with LC3 is important for lamin B1 deliv-
ery to the cytoplasmic autophagosomes,39 although
mechanistic details of this process remain unclear.

Both autophagy of lamin B1 in mammalian cells
and Atg39-dependent nucleophagy in yeast involve
the generation of vesicles from the NE and their
engulfment by autophagosomes. Alternatively the
autophagosomal membrane could also be derived
from the nuclear envelope itself as described in
macrophages and other cells infected with herpes
simplex virus-1.72,73 In these studies 4-membrane
layered autophagosome-like structures were found
to emerge from the NE by coiling of the INM and
ONM.72,73 This process was named NE-derived
autophagy (NEDA).73 Taken together, although the
molecular details of progerin and lamin B1 autoph-
agy are not completely understood, available data

Figure 2. Potential mechanisms for lysosomal degradation of progerin
by autophagy. Progerin (depicted by orange rectangles) is a lamin A
mutant that associates with the INM. Progerin may become accessible
for degradation by the cytoplasmic lysosomes in the following ways.
(A) Progerin aggregates translocate to the cytoplasm through nuclear
pores (NPCs) or vesicle-mediated transport through the double mem-
brane of the NE (nuclear egress). Progerin aggregates are engulfed by
the autophagosomal membrane in the cytoplasm and fuse with the
lysosome.67 (B) Similar to piecemeal microautophagy of the nucleus in
yeast, blebs of the nuclear envelope are engulfed by invaginations of
the lysosomal membrane and then pinch off into the lysosomal lumen.
(C) Vesicles or micronuclei bud off from the nuclear envelope, are
engulfed by the growing isolation membrane producing autophago-
somes, which fuse with lysosomes and deliver nuclear components to
the lysosomal lumen.
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clearly show that nuclear envelope components might
be subject to autophagic degradation also in mamma-
lian cells.

Concluding remarks

The nucleus is emerging as an important cellular com-
partment for protein degradation and PQC. Although
PQC pathways in the nucleus have long been over-
looked, recent discoveries revealed ubiquitin protein
ligases that target PQC substrates in the nucleus and at
the INM.11,14,17,18 Initially assumed that degradation of
nuclear proteins relies entirely on the ubiquitin-protea-
some system,10 recent findings show that nuclear mate-
rial can also be subject to autophagic degradation both
in yeast 34-36 and complex eukaryotic cells.37-39

Remarkably, nuclear pathways appear to be respon-
sible for the quality control of not only nuclear, but
also cytoplasmic proteins. Besides misfolded nuclear
proteins, the nuclear ubiquitin protein ligase San1 also
mediates degradation of misfolded cytoplasmic pro-
teins (Fig. 1).74-76 Furthermore, it has recently been
shown that a stress-induced protein aggregate deposit
in yeast known as JUNQ (“juxtanuclear quality control
compartment”) localizes inside the cell nucleus, and
has accordingly been redefined as “intranuclear qual-
ity control compartment” (INQ, Fig. 1).40 Intriguingly,
INQ serves as a deposit for both cytosolic and nuclear
misfolded proteins.

Nuclear degradation-dependent PQC mecha-
nisms are particularly important for proper func-
tion and survival of long-lived postmitotic cells,
such as neurons. Unlike dividing cells, postmitotic
cells cannot eliminate accumulated damage by
asymmetric segregation or by dilution in cell divi-
sions. Moreover, while in dividing cells the barrier
between the nucleus and cytoplasm, the NE, breaks
down during each cell division and consequently
damaged proteins from the nucleus gain access to
the cytoplasmic PQC pathways, postmitotic nuclei
lack this possibility. Accordingly, several neurode-
generative diseases are associated with misfolding
and aggregation of nuclear proteins, underscoring
the importance of nuclear PQC.77-79

Abbreviations
ER endoplasmic reticulum
ERAD ER-associated degradation
HGPS Hutchinson Gilford Progeria syndrome

INQ intranuclear quality control compartment
INM inner nuclear membrane
INMAD INM-associated degradation
JUNQ juxtanuclear quality control compartment
NE nuclear envelope
NPC nuclear pore complex
ONM outer nuclear membrane
PQC protein quality control
PMN piecemeal microautophagy of the nucleus
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