
RESEARCH ARTICLE

Kinetics of antibody responses to PfRH5-

complex antigens in Ghanaian children with

Plasmodium falciparum malaria

Frederica D. Partey1,2,3, Filip C. Castberg4, Edem W. Sarbah1¤, Sarah E. Silk5, Gordon

A. Awandare1,6, Simon J. Draper5, Nicholas Opoku7, Margaret Kweku7, Michael F. Ofori1,

Lars Hviid2,3, Lea Barfod6*

1 Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana, 2 Centre for

Medical Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical

Sciences, University of Copenhagen, Copenhagen, Denmark, 3 Department of Infectious Diseases

Copenhagen, University Hospital (Rigshospitalet), Copenhagen, Denmark, 4 Department of Clinical

Microbiology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark, 5 The Jenner

Institute, University of Oxford, Oxford, United Kingdom, 6 West Africa Centre for Medical Biology of Infectious

Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana,

7 Hohoe Municipal Hospital, Hohoe, Ghana

¤ Current address: Ketu South Municipal Hospital, Aflao, Ghana

* lbarfod@sund.ku.dk

Abstract

Plasmodium falciparum PfRH5 protein binds Ripr, CyRPA and Pf113 to form a complex that

is essential for merozoite invasion of erythrocytes. The inter-genomic conservation of the

PfRH5 complex proteins makes them attractive blood stage vaccine candidates. However,

little is known about how antibodies to PfRH5, CyRPA and Pf113 are acquired and main-

tained in naturally exposed populations, and the role of PfRH5 complex proteins in naturally

acquired immunity. To provide such data, we studied 206 Ghanaian children between the

ages of 1–12 years, who were symptomatic, asymptomatic or aparasitemic and healthy.

Plasma levels of antigen-specific IgG and IgG subclasses were measured by ELISA at sev-

eral time points during acute disease and convalescence. On the day of admission with

acute P. falciparum malaria, the prevalence of antibodies to PfRH5-complex proteins was

low compared to other merozoite antigens (EBA175, GLURP-R0 and GLURP-R2). At con-

valescence, the levels of RH5-complex-specific IgG were reduced, with the decay of

PfRH5-specific IgG being slower than the decay of IgG specific for CyRPA and Pf113. No

correlation between IgG levels and protection against P. falciparum malaria was observed

for any of the PfRH5 complex proteins. From this we conclude that specific IgG was induced

against proteins from the PfRH5-complex during acute P. falciparum malaria, but the preva-

lence was low and the IgG levels decayed rapidly after treatment. These data indicate that

the levels of IgG specific for PfRH5-complex proteins in natural infections in Ghanaian chil-

dren were markers of recent exposure only.
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Introduction

P. falciparum malaria is estimated to cost more than half a million lives every year, mainly in

tropical Africa [1]. The disease burden is highly concentrated among young children, because

survivors gradually acquire protective immunity in response to repeated infection [2]. Protec-

tion acquired this way is notoriously sluggish to develop, is incomplete, and has limited dura-

bility. These characteristics have mainly been related to the extensive polymorphism and

antigenic variation in the parasite’s asexual blood-stage antigens that are the key targets of nat-

urally acquired immunity to the disease. Many consider these features as insurmountable

obstacles to the development of vaccines targeting this part of the parasite life cycle, but the

recent discovery of a set of conserved antigens that appear indispensable for completion of the

asexual multiplication cycle has raised new hopes.

The asexual multiplication cycle initiates when a merozoite invades an erythrocyte. Despite

the rapidity of invasion, it is a multi-step process that involves numerous parasite molecules,

most of which are redundant and polymorphic [3]. However, about ten years ago it became

apparent that the reticulocyte-binding protein homolog 5 (PfRH5) is both highly conserved

and indispensable for invasion [4, 5]. Since then, much has been learned about the function of

PfRH5 in invasion, and several additional parasite molecules that play important roles in it

have been identified.

It is now known that the structured domain of PfRH5 (central and C-terminal region)

binds to the erythrocyte receptor basigin, thereby forming the contact point that initiates para-

site entry [6, 7]. Two other conserved parasite molecules, the cysteine-rich protective antigen

(CyRPA) and Pf113 (a.k.a. P113 [8], which also binds to the disordered N-terminus of PfRH5

[9]), are also required for successful invasion [8, 10, 11]. The GPI-anchored Pf113 presumably

tethers the otherwise soluble PfRH5/CyRPA complex to the merozoite surface, while CyRPA

appears to be required to allow the release of the complex from the merozoite surface by bind-

ing yet another parasite antigen, the PfRH5-interacting protein (Ripr), in a way that is incom-

patible with the interaction of PfRH5 and Pf113 [9, 12, 13]. PfRH5-specific antibodies,

including antibodies that target the N-terminus and do not prevent binding of PfRH5 to basi-

gin, as well as antibodies to CyRPA and Ripr, can all prevent successful merozoite invasion [9,

11, 12, 14–16]. These findings point to a crucial role for the PfRH5/CyRPA/Ripr/Pf113 com-

plex in parasite survival and identify them as promising potential vaccine targets [17, 18].

However, only little is known (from a small handful of studies to-date) about the role of these

antigens in clinical protection from malaria that is gradually acquired by individuals naturally

exposed to P. falciparum parasites [19–22]. We therefore set out to obtain such information

regarding PfRH5, CyRPA, and Pf113 in a cohort of Ghanaian children.

Results

Prevalence and levels of IgG specific for PfRH5-complex components and

other merozoite antigens

We first assessed the overall prevalence, levels and subclass composition of IgG specific for

merozoite antigens in the plasma of the 118 children with confirmed P. falciparum malaria

(Fig 1 and Table 1). The age of the children ranged from 1–12 years (Table 1).

Only about one in five of the patients had levels of PfRH5- and CyRPA-specific IgG above

the negative cut-off (Fig 1A). One (PfRH5) or none (CyRPA) had high levels (>5× the negative

cut-off) (Fig 1B). In marked contrast, more than half the study participants had levels of IgG

above the negative cut-off to the well-studied merozoite antigens EBA175 and GLURP-R2 (Fig

1A), including many with high levels (28% and 21%, respectively) (Fig 1B). The prevalence of

PfRH5-complex-specific IgG in Ghanaian children
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IgG specific for Pf113 and GLURP-R0 fell in between these extremes. The antibody responses

to the PfRH5-complex antigens were completely dominated by IgG1 and IgG3 (Fig 1C). The

IgG responses to PfRH5 and EBA175 did not correlate significantly (P>0.05) with the

response to any of the remaining antigens but correlated with each other (P = 0.01) (Table 2),

suggesting that antibody responses to PfRH5 and EBA175 are regulated differently from the

other included merozoite antigens.

Overall, our findings correspond well with the limited published data on PfRH5 and Pf113

[22–26] which indicate that immune recognition of these antigens is poorer than other mero-

zoite antigens such as EBA175 and GLURP (GLURP-R2, in particular) among individuals nat-

urally exposed to P. falciparum [27, 28]. The observed dominance by cytophilic IgG sub-

classes for all the antigens studied here is also in agreement with most previous studies of

humoral immunity to P. falciparum asexual blood-stage antigens following natural exposure

[19, 20, 23].

The association with clinical presentation

The above data confirm that IgG with specificity for each of the studied merozoite antigens are

induced to differing levels following natural exposure. Because IgG responses to several of

them have been associated with protection following vaccination [18, 29] and considering the

observed poor correlation among the IgG responses, we proceeded to sub-divide our study

participants into distinct clinical categories, to assess the impact of recent parasite exposure on

merozoite-specific IgG responses as well as their potential role as determinants of malaria sus-

ceptibility (Fig 2).

The prevalence of positive IgG responses to PfRH5 did not differ significantly among the

donor categories (P(χ2) = 0.24), although the proportion was somewhat higher (34%) among

asymptomatically infected children (AC) than in the other categories (<27%) (Fig 2A). The

median level was significantly lower in uninfected, healthy children (HC) than in AC children

and children with uncomplicated (UM) or severe malaria (SM) (P<0.05, oneway- ANOVA on

Fig 1. Merozoite-specific IgG in acutely ill P. falciparum malaria patients. A: Prevalences (proportions of donors

with specific IgG levels above the negative cut-off) and their 95% confidence intervals (error bars) of merozoite-

specific IgG in plasma of individual children with acute P. falciparum malaria. B: Levels of merozoite antigen-specific

IgG in plasma, expressed as fold arbitrary units (AU) of the negative cut-off AU value for each antigen (indicated by

the shaded area). Medians (center lines), central 50% (boxes), central 80% (bars), and outliers (dots) are indicated. C:

Proportion of IgG-positive donors with detectable IgG subclass response to PfRH5 (left), CyRPA (center), and Pf113

(right). Proportions and corresponding 95% confidence intervals of IgG1 (white), IgG2 (black), IgG3 (gray), and IgG4

(dark gray) are shown. The presented data is from one experiment.

https://doi.org/10.1371/journal.pone.0198371.g001

Table 1. Clinical characteristics of study participants.

Category1 SM UM FC AC HC

Sex ratio (F/M) 14/28 33/33 1/9 15/13 31/29

Age (years)2 5(1 to 8) 4 (1 to 12) 5 (2 to 12) 6 (1 to 10) 5 (1 to 10)

Hemoglobin (g/dL)2 7.8

(4.1 to 11.8)

10.0

(5,4 to 14.2)

11.1

(6.3 to 13.0)

11.0

(6.5 to 12.8)

11.6

(4.2 to 15.0)

Parasitemia (/μL)2 52,200

(2,600–1,600,800)

40,200

(2900–649,000)

0 1,370

(300–1,900)

0

1SM (severe P. falciparum malaria), UM (uncomplicated P. falciparum malaria), FC (febrile controls), AC (asymptomatic controls), HC (healthy controls). Please refer to

Materials and Methods for category definitions.
2Median (range)

https://doi.org/10.1371/journal.pone.0198371.t001
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ranks followed by Dunn’s test). Thus, parasite exposure appears to boost PfRH5-specific IgG

responses whether the infection causes symptoms or not. With respect to CyRPA, the propor-

tion of responders did not differ significantly among the different donor categories, (P(χ2) =

0.24). Nonetheless, the proportion of responders in the SM group was higher (28%) than the

other groups (<13%). The median IgG levels were significantly higher in the parasitemic

donors than in the HC and FC donors (Fig 2B). For Pf113, the proportion of responders did

not differ significantly (P(χ2) = 0.22) among the different donor categories. However, the

median IgG levels was markedly higher in the severe malaria (SM) donors in comparison to

the febrile (FC) and afebrile (HC) children without detectable parasitemia (P<0.05) (Fig 2C).

For the control antigens EBA175 and GLURP-R0, proportions and levels did not differ signifi-

cantly among the clinical groups (AC and HC donors were not tested due to lack of reagents)

(Fig 2D and 2E). With GLURP-R2, there was a significant difference in the median IgG levels

and the proportion of responders between the parasitemic donors (SM and UM) and the

febrile donors (P<0.05). We next investigated the correlation between the antibody levels and

parasitemia at enrolment and did not observe any statistically significant relationships between

the level of IgG specific for any of the antigens and the presenting parasitemia of the donor

(Fig 3).

While it is difficult to draw firm conclusions from these results, the data suggest that

responses to each of the tested antigens indicate parasite exposure more than anything else.

Kinetics of merozoite-specific IgG responses

IgG responses to all the antigens except EBA175 tended to be higher in parasitemic children

(donor categories SM, UM, AC) than in children without detectable parasitemia (donor cate-

gories FC and HC) (Fig 2). This suggests that IgG levels reflect recent exposure to P. falciparum
and that the immune responses induced by infection are relatively transient. To obtain more

direct information about the duration of the responses, we also measured IgG levels to the

three PfRH5-complex antigens (PfRH5, PfCyRPA, and Pf113) in samples obtained two (Day

14) and six weeks (Day 42) after the initial diagnosis of P. falciparum malaria (Fig 4). In the

majority of the children, the levels of IgG specific for each of the antigens were below the nega-

tive cut-off at admission and remained there during follow-up. A minority of children had IgG

levels above cut-off on Day 14, but these had generally declined towards baseline by Day 42

(Fig 4A–4C) where the decline nearly followed the half-life of IgG (dotted line). Overall,

responses to PfRH5, PfCyPA and Pf113 appeared to be short-lived (Fig 4D–4F), although

malaria-induced Pf113 responses were most prevalent (Fig 4F).

Assessment of clinically relevant PfRH5-specific IgG levels

Levels of IgG specific for several merozoite-specific antigens have been associated with clinical

protection from P. falciparum malaria [30]. Furthermore, vaccination with PfRH5 constructs

has been correlated with protection in experimental animals [18]. In the present study, we

Table 2. Correlations (Spearman’s ρ [associated P-values] of IgG responses.

CyRPA Pf113 EBA175 GLURP-R0 GLURP-R2

PfRH5 0.16 [0.1] 0.08 [0.4] 0.24 [0.01] 0.10 [0.3] 0.12 [0.2]

CyRPA 0.62 [<0.001] 0.03 [0.8] 0.32 [0.001] 0.36 [<0.001]

Pf113 0.18 [0.06] 0.28 [0.004] 0.39 [<0.001]

EBA175 0.003 [1.0] 0.16 [0.1]

GLURP-R0 0.29 [0.002]

https://doi.org/10.1371/journal.pone.0198371.t002
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generally found low levels of such antibodies (Fig 1) and little evidence of an association with a

better clinical outcome (Fig 2 and Fig 3). However, a few of the AC and HC donors examined

had high levels of PfRH5-specific IgG (Fig 2A). We therefore tested a subset of our plasma

samples in an additional PfRH5-specific standardized ELISA to be able to compare with values

shown to be associated with effective merozoite invasion inhibition in an in vitro growth inhi-

bition assay (GIA) and converting the AU into concentration of PfRH5 specific IgG [31].

Results from the two ELISA assays were very well correlated (P<0.0001; r = 0.92; N = 76) and

converted values ranged from 5.5 ng/mL to 1.5μg/mL. The Rh5 specific IgG titres among our

Fig 2. Merozoite-specific IgG according to clinical category. Levels (AU) of IgG specific for PfRH5 (A), CyRPA (B),

Pf113 (C), EBA175 (D), GLURP-R0 (E) and GLURP-R2 (F) in plasma of individual children according to clinical

category: SM (severe P. falciparum malaria), UM (uncomplicated P. falciparum malaria), FC (non-parasitemic febrile

controls), AC (asymptomatic controls), HC (non-parasitemic healthy controls). Please refer to Materials and Methods

for category definitions. The number of individuals with IgG above cut-off and the total number of individuals in each

clinical category are given along the top of each panel. Horizontal lines along the top of the panels indicate statistically

significant (P<0.05) differences between groups. Data presentation otherwise as in Fig 1B. The presented data is from

one experiment.

https://doi.org/10.1371/journal.pone.0198371.g002

Fig 3. Relation between asexual P. falciparum parasitemia and merozoite-specific IgG. Correlations between

parasitemia (parasites/μL) and plasma levels (AU) of IgG specific for PfRH5 (A), CyRPA (B), Pf113 (C), EBA175 (D),

GLURP-R0 (E) and GLURP-R2 (F) in children with P. falciparum malaria. Data points for individual children, linear

regression lines (and their 95% confidence intervals) for all the data, and negative cut-offs (shaded areas) are shown.

The presented data is from one experiment.

https://doi.org/10.1371/journal.pone.0198371.g003
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cohort were all below the 50% GIA cut-off (8.2μg/mL) observed in PfRH5 vaccinated volun-

teers [31] and therefore not sufficiently high to suggest ability to inhibit merozoite invasion by

anti-PfRH5 antibodies only.

Discussion

In this study, we analyze antibodies specific for three potential blood stage malaria vaccine

candidates. It is the first longitudinal study comparing the acquisition and kinetics of naturally

acquired antibodies towards PfRH5, Pf113 and CyRPA in the same cohort of children. Fur-

thermore, it is the first study reporting on detectable levels of naturally acquired CyRPA

Fig 4. Kinetics of merozoite-specific IgG levels following episodes of P. falciparummalaria. Plasma levels of IgG

specific for PfRH5 (A, D), CyRPA (B, E), and Pf113 (C, F) in children with P. falciparum malaria (Day 0), and in the

same children two weeks (Day 14) and six weeks (Day 42) later. Temporal changes in levels of IgG in individual

children (A-C) and in the cohort mean IgG level (D-F). Data from individual children are connected by lines (A-C).

Cohort running means (heavy lines) and their 95% confidence intervals (thin lines), calculated as described previously

[34], as well as calculated catabolic decay from Day 14 (dashed lines) are shown (D-F). Negative cut-offs (shaded areas)

are shown (all panels). The presented data is from one experiment.

https://doi.org/10.1371/journal.pone.0198371.g004
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antibodies. Several reports do exist on naturally acquired PfRH5-reactive antibodies [19–21, 32],

including one longitudinal [22]. In the longitudinal study, PfRH5 specific antibody levels in Ken-

yan children were measured before and after the rainy season. By doing so, it was clear, that

malaria exposure did boost the level of PfRH5 antibodies, but there was no follow up sample to

determine the decay or maintenance of the antibody titres. Our results support their findings,

since children admitted to hospital with malaria had higher levels of PfRH5 specific antibodies

than the malaria negative controls. What is less clear in most reports on PfRH5 specific antibody

levels is the association with protection against clinical malaria. Some studies have associated

PfRH5 specific antibody levels with protection from malaria [20, 22]. In one study, only specific

antibodies for both PfRH5 and Pf113 were analyzed [24], with a focus on differences in a rural

and an urban area of Gabon. Their data from rural Gabon are comparable with our data from

Hohoe, supporting a correlation between endemicity and PfRH5 and Pf113 antibody prevalence.

The prevalence of anti-Pf113 antibodies found in this study was slightly lower but compara-

ble to levels observed in studies from Kenya and Gabon (50 and 51% respectively). This slight

difference probably reflects differences in endemicity in the different areas or the age range of

the children. In Imboumy-Limoukou et al, 2016 the most prevalent subclass for the Pf113 spe-

cific antibodies were IgG4, whereas we found IgG1 and IgG3 to be most abundant similarly to

all other antigens tested here. That fact that IgG1 and IgG3 were the most abundant subclasses

in our cohort points to a possibility of an antibody-mediated protection not only via blocking

invasion, but also by compliment deposition and opsonization for phagocytosis.

The invasion complex antigens PfRH5 and CyRPA appeared to be less immunogenic than

all the other studied merozoite surface antigens in this cohort of naturally exposed children

with P. falciparum malaria. In other studies comparing the prevalence and levels of PfRH5 spe-

cific antibodies to other merozoite antigens such as Apical Membrane Antigen 1(AMA1) and

Merozoite Surface Protein 1 (MSP1), the same pattern was seen [16, 19], but until now, not

much has been reported for CyRPA specific antibodies. Whether the lower immunogenicity

reflects direct properties of the proteins or the very short exposure time of the two complex

antigens cannot be determined by these kinds of serological studies. In Aotus monkeys, vacci-

nations with both PfRH5 protein as well as viral vectored PfRH5 induced protective antibod-

ies, supporting PfRH5 as a good immunogen [18]. A respectable antibody response was also

seen after viral vectored administration of PfRH5 in humans (at much higher levels than those

reported here), again favoring PfRH5 as an immunogenic protein following vaccination [31].

The discrepancy to natural infection could then be due to either competition with other

immunogens during the infection, too short exposure time or a combination of the two.

In general, we observed a rapid reduction in antibody levels to the three studied antigens

after malaria exposure. The malaria induced antibodies to PfRH5-complex proteins appears to

be secreted by short lived plasma cells. But it is clear from our data, as well as the results of oth-

ers [31], that the levels of PfRH5 found in naturally immune individuals are far too low to

induce any real pronounced protection; moreover the same seems likely also to be the case

with Pf113 and PfCyRPA antibodies, although these remain to be formally quantified. In con-

trast, vaccine induced antibodies against at least PfRH5 looks more promising in regards to

the ability to reach protective levels and it would now be relevant to investigate vaccines com-

bining PfRH5 proteins with other P. falciparum antigens.

Materials and methods

Study site and participants

The study was conducted in Hohoe, a town located about 220 km northeast of Accra, in an

area of tropical semi-deciduous forest vegetation. Malaria transmission intensity in the area is

PfRH5-complex-specific IgG in Ghanaian children
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high and has two seasonal peaks: a major one in April-July and a minor one in September-

November. The dominant malaria species is P. falciparum, although cases of P. ovale and P.

malariae infection are occasionally seen [33].

A total of 118 febrile (>37.5˚C, present or within the last 24 h) children aged 1–12 years

reporting to Hohoe Municipal Hospital on clinical suspicion of P. falciparum malaria were

recruited to the study after informed consent had been obtained from a parent or legal guard-

ian. Malaria patients (N = 108) were those where presence of P. falciparum infection was con-

firmed by a positive rapid diagnostic test (RDT) and by light microscopy with a parasite

density > 2,500 parasites/μL. These malaria patients were subdivided into those with severe

malaria (SM, N = 48) or uncomplicated malaria (UM, N = 60), respectively. SM was defined

by the presence of one or more of the following without any other obvious unrelated cause: (i)

impaired consciousness (Blantyre coma score�3) lasting longer than 30 minutes, (ii) acidosis,

defined as respiratory distress (rapid, deep, and labored breathing), (iii) hypoglycemia (blood

glucose <2.2 mM), (iv) hemoglobin concentration <5 g/dL, (v) >2 convulsions within the last

24 h, (vi) shock, and/or (vii) hyperparasitemia (>500,000/μL). Malaria patients without any of

these SM criteria were classified as UM. Febrile patients without detectable parasitemia were

grouped as febrile controls (FC, N = 10). All children were treated according to country guide-

lines. SM and UM children were seen again 14 (Day 14) and 42 days (Day 42) after the day of

diagnosis (Day 0). In addition, 88 clinically healthy and age-matched children from within the

Hohoe community were recruited in a similar manner, and grouped as either asymptomatic

(AC, N = 28) or uninfected (HC, N = 60) controls. AC children were RDT-positive, and some

had low parasitemia (<2,000/μL), whereas UC children were negative by microscopy and

RDT. The main clinical characteristics of all the study participants are summarized in Table 1.

Blood sample collection and research ethics clearance

One (in groups FC, AC, UC) or one to three venous blood samples (in groups SM, UM; on

Day 0, Day 14, and Day 42) were collected in EDTA Vacutainers from each participant, in

addition to the clinical parameters summarized in Table 1. Plasma was separated by centrifu-

gation and stored at -20˚C until use. The study was approved by the Ethics Committee of the

Noguchi Memorial Institute for Medical Research, University of Ghana and by Ghana Health

Service (GHS-ERC 08/05/14). Plasma samples from 10 non-exposed, anonymous Danish

adults were used to establish the negative cut-off and to normalize ELISA data. The collection

and use of those samples were approved by the Regional Research Ethics Committees for the

Capital Region of Denmark (Protocol H-4-2013-083).

P. falciparum merozoite antigens

Recombinant PfRH5 was expressed using Drosophila melanogaster Schneider 2 stable cell line

system as described in detail previously [34] and used in a recent clinical trial ELISA [31].

CyRPA and full length ectodomain of Pf113 [9] were expressed by transient transfection of

HEK293 cells as described in [35]. Recombinant GLURP antigens, representing the non-repet-

itive, amino-terminal domain R0 (amino acids 24–489) and the carboxy-terminal repeat

region R2 (amino acids 705–1178), respectively, were expressed in Escherichia coli as described

previously [36]. The receptor-binding domain of EBA175 was expressed as a recombinant pro-

tein in baculovirus-infected insect cells as described previously [37].

Measurements of antigen-specific antibody levels in plasma

Plasma levels of IgG specific for PfRH5, GLURP-R0, GLURP-R2, and EBA175 were deter-

mined by ELISA as described for other malaria antigens in [38]. In summary, 96-well flat-

PfRH5-complex-specific IgG in Ghanaian children

PLOS ONE | https://doi.org/10.1371/journal.pone.0198371 June 8, 2018 10 / 14

https://doi.org/10.1371/journal.pone.0198371


bottomed plates were coated with recombinant antigen (2 μg/mL). After BSA-blocking and

washing, plasma samples (1:100) were added in duplicate and incubated (1 h, room temp.).

Unbound antibody was washed off and antigen-specific IgG detected by horseradish peroxi-

dase-conjugated rabbit anti-human IgG (1:3,000) followed by O-phenylene diamine, and read-

ing the optical density (OD) at 490 nm. Plasma samples from 10 Danish non-exposed

individuals were used to establish the negative cut-off (mean+3 S.D.), while a plasma pool

from semi-immune adults was used as a positive control and to normalize plate-to-plate varia-

tion. Plasma levels of IgG specific for CyRPA and Pf113 were measured by ELISA as described

previously [17] and essentially as above, except for the blocking (casein, 1% w/v in PBS), and

the detection system (alkaline phosphatase-conjugated goat anti-human IgG followed by p-

nitrophenylphosphate and OD reading at 405 nm). A plasma pool from semi-immune adults

was used as positive control and to normalize plate-to-plate variation. IgG Isotype ELISA was

determined following standardized methodology described previously (Biswas et al, 2014). To

convert the ELISA O.D values to ng/mL in predicting the GIA activity of the sera samples,

standardized ELISA was performed as described in [31].

In all cases, antibody levels are presented as arbitrary units calculated as (ODsample−ODblank)/

(ODpositive control−ODblank). The cutoff for seropositivity was defined as normalized ELISA OD +

(3 x mean standard deviations) of the non-exposed sera samples.

Data analysis

One-way ANOVA and Dunn’s post-hoc test were used to evaluate differences in antibody lev-

els among donor groups, while Mann-Whitney’s test was used to assess malaria severity-

related differences in antibody levels. Pairwise associations between D0 antibody levels to dif-

ferent antigens, and between D0 antibody levels and log-transformed parasitemias were

assessed by Spearman’s rank correlation test. Temporal changes in antibody levels were evalu-

ated using the running means method described elsewhere [39].
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