
Infectious Disease Modelling 6 (2021) 678e692
Contents lists available at ScienceDirect
Infectious Disease Modelling

journal homepage: www.keaipubl ishing.com/idm
Study on the SEIQR model and applying the epidemiological
rates of COVID-19 epidemic spread in Saudi Arabia

Hamdy Youssef a, *, Najat Alghamdi b, Magdy A. Ezzat c, Alaa A. El-Bary d, f,
Ahmed M. Shawky e

a Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah, Saudi Arabia
b Department of Mathematics, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
c College of Science and Arts, Qassim University, Al Bukairiyah, Al Qassim, Saudi Arabia
d Arab Academy for Science, Technology and Maritime Transport, P.O. Box 1029, Alexandria, Egypt
e Science and Technology Unit (STU), Umm Al-Qura University, Makkah, Saudi Arabia
f National Committee for Mathematics, Academy of Scientific Research and Technology, Egypt
a r t i c l e i n f o

Article history:
Received 30 August 2020
Received in revised form 13 April 2021
Accepted 13 April 2021
Available online 18 April 2021
Handling editor: DAIHAI HE

Keywords:
COVID-19
Jacobian matrix
Lyapunov stability
Reproduction number
SEIR model
SEIQR model
* Corresponding author.
E-mail addresses: youssefanne2005@gmail.com,

maezzat2000@yahoo.com, m.ezzat@qu.edu.sa (M.A.
Peer review under responsibility of KeAi Comm

https://doi.org/10.1016/j.idm.2021.04.005
2468-0427/© 2021 The Authors. Publishing services
BY license (http://creativecommons.org/licenses/by/
a b s t r a c t

This article attempts to establish a mathematical epidemic model for the outbreak of the
new COVID-19 coronavirus. A new consideration for evaluating and controlling the COVID-
19 outbreak will be constructed based on the SEIQR Pandemic Model. In this paper, the real
data of COVID-19 spread in Saudi Arabia has been used for the mathematical model and
dynamic analyses. Including the new reproductive number and detailed stability analysis,
the dynamics of the proposed SEIQR model have been applied. The local sensitivity of the
reproduction number has been analyzed. The domain of solution and equilibrium based on
the SEIQR model have been proved using a Jacobian linearization process. The state of
equilibrium and its significance have been proved, and a study of the integrity of the
disease-free equilibrium has been carried out. The Lyapunov stability theorem demon-
strated the global stability of the current model equilibrium. The SEIQR model has been
numerically validated and projected by contrasting the results from the SEIQR model with
the actual COVID-19 spread data in Saudi Arabia. The result of this paper shows that the
SEIQR model is a model that is effective in analyzing epidemic spread, such as COVID-19. At
the end of the study, we have implemented the protocol which helped the Saudi popu-
lation to stop the spread of COVID-19 rapidly.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications
Co. Ltd. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
Introduction

With the continuation of COVID-19 outbreaks, the number of infections is gradually growing, and this is because several
factors increase the severity of COVID-19 infection and build obstacles to the management of diseases. Since scientists and
researchers around the world are trying to set up a vaccine or an epidemic cure for control of such pandemics in the future, an
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infectious disease can bewell identified and understood usingmathematical models from amedical engineering context. This
idea originated in 1927. Afterward, several different mathematical models for various diseases and infections were created.
We refer to some critical studies (Gao et al., 2020; Goyal et al., 2019; Kumar et al., 2019; Martcheva, 2015a; Shah et al., 2020;
Van den Driessche & Watmough, 2002). To define the dynamics of the transmission and to estimate the national and global
spread of this disease, Wu et al. have implemented the Susceptible Exposed Infectious Recovered Model (SEIR) based upon
the data recorded from December 31, 2019, to January 28, 2020. They also found that COVID-19 had a simple reproductive
number of approximately 2.68 (Wu et al., 2020). Read et al. (Read et al., 2020) have reported a value of 3.1 for the basic
reproductive number based on data fitting of the SEIR model, using an assumption of Poisson-distributed daily time in-
crements. Imai et al.(Imai et al., 2020) developed a deterministic compartmental model that involved the disease’s clinical
development, human epidemiological status, and engagement levels. The authors find that the reproductive control number
may be as large as 6.47. That interaction techniques such as simplified touch tracing and quarantine would efficiently
minimize the number of reproductive controls and the risk of transmission (Tang et al., 2020a). To predict the severity of the
disease outbreak, Imai et al. (Imai et al., 2020) carried out a computer simulation of possible infectious tracks in Wuhan with
an emphasis on communications between individuals. Their findings suggest that control measures must block more than
60% of transmission to avoid the outbreak. (Imai et al., 2020).

Guo et al. also developed a deep learning algorithm to evaluate the infectivity of the new coronavirus and to predict its
future hosts. Their findings showed that maybe two animal hosts of this virus are bats and minks (Guo et al., 2020). Most of
these models have highlighted the critical role played by direct, human-to-human transmission in this epidemic. They have
shown that the majority of those infected have no interaction with the market in Wuhan and that the number of infections
has risen steadily, and that the disease has spread to every province in China andmore than 20 people. Many infected persons
have a relatively long incubation period so that they are unaware of their infection for 10e14 days. They can easily spread the
disease to others by direct contact during this period. On the other hand, the models published to date have not taken into
consideration the role of the environment in COVID-19 transmission. Various further modeling research for the COVID-19
outbreak has also been carried out (Benvenuto et al., 2020; Chen et al., 2020; Din et al., 2020; Kucharski et al., 2020;
Mangoni & Pistilli, 2020a; Nadim et al., 2020; Peng et al., 2020a; Rabajante, 2020; Read et al., 2020; Wang et al., 2020; Wu
et al., 2020; Yang & Wang, 2020a).

Mathematical epidemiology is the topic of research at the population level of trends of health and disease. An infectious
disease is characterized by the presence of a pathogenic microbial agent as a clinically obvious disorder. For modeling pur-
poses, we define four different forms of transmission: directly, when the triggering pathogen is a person-to-person trans-
mission of the pathogen; vector if the causative agent is a vector transmitted to a human; environmentally, if a person gets
infected through interaction with an environmental pathogen; and vertically, if the pathogen is transmitted from mother to
child by birth. Airborne and personal diseases are commonly considered to be transmitted directly when transmission takes
place via any interaction between one person and another (Martcheva, 2015b). Mathematical modeling of infectious diseases
is relevant and critical in the emergence of HIV epidemics. Since then, several models have been developed, studied, and
applied to investigate the spread of infectious diseases. Mathematical modeling today makes a significant contribution to
mathematics and public health (Hethcote, 2000; Martcheva, 2015b). The classic SEIR model is commonly used and accepted
in many countries to assess the outbreak of the COVID epidemic. Since the mathematical model can draw simple and
straightforward conclusions on the COVID-19 epidemic, a cascade of the SEIR models has been developed to explain the
mechanisms of its infection source transmission, storage, and hosts for humans. (Chen et al., 2020; Youssef et al., 2020b, c).
Babaei et al.(Babaei et al., 2021) constructed a mathematical model to examine the effect of quarantine on the spread of
coronavirus.

This paper aims to construct a new COVID-19 model that is more applicable to cases in any country through mathematical
analysis of the givenmodel using a background of similar models with different considerations and further outflows between
populations. Another aim is to research and learn the perfect procedures, controls, and techniques that could reduce the
outbreak.

Materials and methods

Formulation of a novel coronavirus disease (SEIQR model)

The population can be divided into five dynamic sub-populations or five groups that are represented in Fig. 1; during the
propagation of COVID-19 in any region, and the following could be described:
Fig. 1. The flowchart of the proposed SEIQR model.
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The primary group SðtÞ is devoted to the susceptible population (individuals who are healthy but are able to contract the
disease). For several diseases, the infected person may not become instantly contagious, but it is also called the latent phase.
The pathogen needs time to spread and settle in the new host. The exposed time (latent) typically follows the sensitive point.

Group EðtÞ is also devoted to the exposed population or persons who are infected but not yet infectious. Group IðtÞ is
intended for the confirmed infected population (individuals who contracted and are now ill, as well as infected persons).

The group QðtÞ is dedicated to the quarantined population (hospitalized or isolated from the general population) (Maier&
Brockmann, 2020).

The group RðtÞ is defined as the recovered population (individuals who have recovered and cannot contract the COVID-19
again), as in Fig. 1(Din et al., 2020; Maier & Brockmann, 2020; Mangoni & Pistilli, 2020b; Martcheva, 2015b; Pal et al., 2020;
Peng et al., 2020b; Yang & Wang, 2020b; Youssef et al., 2020a; Youssef et al., 2020b, c).

The parameter a is defined as the transmission rate from a susceptible population to infected but not detected by the
testing population. We consider the net inflow of the susceptible population at a non-negative rate L>0 per unit value of
time (comprising new births and new residents). For any group, the outflow based on the natural death rate is defined by the
non-negative rate d1.

The total population size is NðtÞ, which is defined as (Maier & Brockmann, 2020; Mangoni & Pistilli, 2020b; Martcheva,
2015b; Pal et al., 2020; Peng et al., 2020b; Yang & Wang, 2020b; Youssef et al., 2020a):

NðtÞ¼ SðtÞ þ EðtÞ þ IðtÞ þ QðtÞ þ RðtÞ (1)
Startingwith the group SðtÞ, we have two outflows; a population flows out to the exposed group EðtÞ by the rate aSðtÞ (each
one in SðtÞ can transfer the infection to aSðtÞ, so the total number of outflow is equal to multiple aSðtÞEðtÞ, and the outflow of
the natural death isd1S. The group of exposed EðtÞ has only one inflow aEðtÞSðtÞ, while it has four outflows. The first outflow is
the population that flows out to the group QðtÞ by the rate of transmission b1. The second outflow is the population that flows
out to the recovery group directly without needing treatment by transmission rate of recovery s3. The third outflow is a
population that flows out to the infected group IðtÞ with the transmission rate of infected r, and the fourth outflow is the
population that experiences natural death by the transmission rate d1 (Din et al., 2020; Maier& Brockmann, 2020;Mangoni&
Pistilli, 2020b; Martcheva, 2015b; Pal et al., 2020; Peng et al., 2020b; Yang & Wang, 2020b; Youssef et al., 2020a).

For the group of confirmed infected population IðtÞ, we have only one inflow, which comes from the group EðtÞ, with the
transmission rate r, while it has three outflows of population. The first outflow is the population that must go to the quar-
antine area QðtÞ by the transmission rate b2, and the second outflow comes from the population in which treatment has
succeeded; individuals in this population can go out to the recovery group RðtÞ by recovery transmission rates2. The last
outflow from the infected group is the total death, which comes from natural death by transmission rate d1 and death due to
the COVID-19 virus by transmission rate of mortality d2.

For the recovery population RðtÞ, three inflows exist, and only one outflow. The first inflow comes from the quarantine area
QðtÞ by transmission rate of recovery s1, the second inflow is the population that comes out from the infected group by
transmission recovery rate s2, and the third inflow is the population that flows out from the exposed area directly by
transmission recovery rate s3. The only outflow from the recovering group is the death by natural transmission rate of
mortality d1. For the quarantine group QðtÞ, two inflows b1EðtÞ and b2IðtÞ, and two outflows are present. The first outflow is
the population flow out to the recovery group RðtÞ with transmission rate s1, while the second outflow is the total death,
which comes from the natural death by transmission rate of death d1, and by the transmission rate of death due to the COVID-
19 virus d2.

All inflows and outflows have been shown in the flowchart in Fig. 1, and the five groups can be converted into equations to
formulate the following system of first-order ordinary non-linear differential equations (Din et al., 2020; Maier& Brockmann,
2020; Mangoni & Pistilli, 2020b; Martcheva, 2015b; Pal et al., 2020; Peng et al., 2020b; Yang & Wang, 2020b; Youssef et al.,
2020a):

dSðtÞ
dt

¼L� aSðtÞEðtÞ � d1SðtÞ (2)

dEðtÞ

dt

¼aSðtÞEðtÞ � rEðtÞ � b1EðtÞ � s3EðtÞ � d1EðtÞ (3)

dIðtÞ

dt

¼ rEðtÞ � b2IðtÞ � s2IðtÞ � d1IðtÞ � d2IðtÞ (4)

dQðtÞ

dt

¼ b1EðtÞ þ b2IðtÞ � s1QðtÞ � d1QðtÞ � d2QðtÞ (5)

dRðtÞ

dt

¼ s1QðtÞ þ s2IðtÞ þ s3EðtÞ � d1RðtÞ (6)
We can simplify the above equations to be in the forms:
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dSðtÞ
dt

¼L� aSðtÞEðtÞ � d1SðtÞ (7)

dEðtÞ
dt

¼aSðtÞEðtÞ � ε1EðtÞ (8)

dIðtÞ
dt

¼ rEðtÞ � ε2IðtÞ (9)

dQðtÞ
dt

¼ b1EðtÞ þ b2IðtÞ � ε3QðtÞ (10)

dRðtÞ
dt

¼ s3EðtÞ þ s2IðtÞ � d1RðtÞ þ s1QðtÞ (11)

where ε1 ¼ ðr þ b1 þ s3 þ d1Þ, ε2 ¼ ðb2 þs2 þd1 þd2Þ and ε3 ¼ ðs1 þ d1 þ d2Þ.
Theorem 1. (all solutions are definite positive)

Each solution of the SEIQR model with its initial condition is a subset in the interval ½0;∞Þ and fSðtÞ; EðtÞ; IðtÞ;RðtÞ;QðtÞg �
0 for all values 0 � t <∞.

Proof:
All the right-hand sides of the SEIQR model are completely continuous and locally Lipschitzian on ℝ. The solutions fSðtÞ;

EðtÞ; IðtÞ;RðtÞ;QðtÞg with their initial conditions exist and are unique in the interval ½0;∞Þ (Martcheva, 2015a).
It follows from equation (7) that:

dSðtÞ
dt

¼L� ðgþd1Þ SðtÞ (12)

where. gðtÞ ¼ aEðtÞ
It can be re-written in the following form (Khan and Atangana, 2020):

d
dt

�
SðtÞ exp

�
d1tþ

Zt

0

gðtÞdt
��

¼L exp
�
d1tþ

Zt

0

gðtÞdt
�

(13)
Hence, we have

Sðt1Þ exp
�
d1t1 þ

Zt1

0

gðtÞdt
�
� Sð0Þ¼

Zt1

0

L exp
�
d1xþ

Zx

0

gðtÞdt
�
dx (14)
For Sð0Þ>0, it gives:

Sðt1Þ exp
�
d1t1 þ

Zt1

0

gðtÞdt
�

�
Zt1

0

L exp
�
d1xþ

Zx

0

gðtÞdt
�
dx (15)
Thus, we obtain:

Sðt1Þ � exp
�
� d1t1 �

Zt1

0

gðtÞdt
�
�
Zt1

0

L exp
�
d1xþ

Zx

0

gðtÞdt
�
dx > 0 (16)
Then, we get:

Sðt1Þ >0 (17)
Similarly, it can be shown that EðtÞ>0; IðtÞ>0; QðtÞ>0; and RðtÞ>0 (Khan and Atangana, 2020), which complete the
proof.
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Theorem 2. (the domain of solutions)

All the solutions of the model structure that initiate in ℝ5þ are bounded inside the region j defined by. j ¼�
ðS; E; I;Q ;RÞ2ℝ5 : 0 � NðtÞ � L

d1

�
t/∞

Proof:
By differentiating both sides of equation (1), we get

N0ðtÞ¼ S0ðtÞ þ E0ðtÞ þ I0ðtÞ þ R0ðtÞ þ Q 0ðtÞ (18)
Substituting from the model (7)e(11), we obtain

N0ðtÞ¼L� d1NðtÞ � d2ðQðtÞþ IðtÞÞ (19)
From Theorem 1, we have d2ðQðtÞþIðtÞÞ � 0 ; hence, the following inequality is valid:

N0ðtÞþ d1NðtÞ � L (20)
Then, we have

NðtÞ�
�
Nð0Þ� L

d1

�
e�d1t þ L

d1
(21)

� �

Then, when t/∞ we get the solution NðtÞ3 0; Ld1

, which completes the proof.

The equilibrium of the SEIQR model

To determine the equilibrium of this model, we set all the derivatives equal to zero and solve the system as follows
(Martcheva, 2015a):

S0ðtÞ¼ E0ðtÞ¼ I0ðtÞ¼Q 0ðtÞ¼R0ðtÞ¼0/ fS; E; I;Q ;Rg≡constants (22)

which gives
0¼L� aSE � d1S (23)

0¼aSE � ε1E (24)
0¼ rE � ε2I (25)
0¼ s1Q þ s2I þ s3E � d1R (26)
0¼ b1E þ b2I � ε3Q (27)
From equation (25), we have

E¼ ε2

r
I (28)
From equation (24) when Es0, we have

S¼ ε1

a
(29)
Substituting from equations (28) and (29) into equation (23), we get

I¼ rd1
ε2a

�
aL

d1ε1
�1

�
¼ rd1
ε2a

ð<0 �1Þ (30)

where
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<0 ¼
aL

d1ε1
(31)
Substituting from equation (30) into equation (28), we obtain

E¼ d1
a
ð<0 �1Þ (32)
Substituting from equations (30) and (32) into equation (27), we get

Q ¼ðb1ε2 þ b2rÞd1
aε2ε3

ð<0 �1Þ (33)
Substituting from equations (30), (32) and (33) in equation (26), we obtain

R¼
�ðb1ε2 þ b2rÞs1 þ ε3s2r þ ε2ε3s3

aε2ε3

�
ð<0 �1Þ (34)

ε
Thus, at disease-free equilibrium (DFE)<0 ¼ 1 gives E ¼ I ¼ Q ¼ R ¼ 0which leads to 1
a ¼ L

d1
, as in equations (23) and (29),

which agrees with the domain of solution in (21).
The number <0 is called the reproduction number (RBN) (Din et al., 2020; Martcheva, 2015b; Pal et al., 2020; Peng et al.,

2020b; Yang & Wang, 2020b; Youssef et al., 2020a; Youssef et al., 2020b, c).

<0 ¼
aL

d1ε1
¼ ¼ aL

d1ðr þ b1 þ s3 þ d1Þ
(35)
Then, if <0 >1 the system has a unique endemic equilibrium [7]:

E*0 ¼ðS*; E*; I*;R*;Q*Þ (36)

where S* ¼ L
d1
, E* ¼ d1

a ð<0 � 1Þ, I* ¼ d1
a ð<0 � 1Þ, Q* ¼ ðb1ε2þb2rÞd1

aε2ε3
ð<0 � 1Þ, and R* ¼

�
ðb1ε2þb2rÞs1þε3s2rþε2ε3s3

aε2ε3

�
ð<0 � 1Þ.

Thus, the system has a unique disease-free equilibrium E0 when <0 ¼ 1 and has a unique endemic equilibrium E*0 when
<0 >1 (Martcheva, 2015b).

When <0 ¼ 0, there is no transmission, where a ¼ 0:0. It can be interpreted as the number of secondary cases or the new
infection rate (transmission rate at which the susceptible individual converted to an exposed individual) (Martcheva, 2015b).

The current proposed SEIQR model introduces a new and different reproduction number that is more sensitive to more
parameters than other SEIQR models.

Achieving equilibrium by applying a Jacobian matrix

To get the reproduction number <0 by using a Jacobian matrix method, we consider that the disease-free equilibrium
(DFE) of the model SEIQR is acquired by setting E ¼ I ¼ R ¼ Q ¼ 0 in equations (23)-(27). Hence, we obtain DFE in the form

E0 ¼
�

L
d1
;0;0;0;0

�
(Din et al., 2020; Khan & Atangana, 2020; Martcheva, 2015a).

The Jacobian matrix of the SEIQR model takes the following form:

JE0 ¼

2
66664

�aE � d1 �aS 0 0 0
aE �aS� ε1 0 0 0
0 r �ε2 0 0
0 b1 b2 0 �ε3
0 s3 s2 �d1 s1

3
77775 (37)
First, we will linearize the first two equations by using the Jacobian method. The first two equations have a disease-free
equilibrium (DFE) situation when I ¼ 0/E ¼ 0 and S ¼ L

d1
.

Hence, we consider that [5, 25,26]:

FðS; EÞ¼L�aSðtÞEðtÞ � d1SðtÞ (38)
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GðS; EÞ¼aSðtÞEðtÞ � ε1EðtÞ (39)
Then, we have

�
FðS; EÞ
GðS; EÞ

�
¼

2
664
vF
vS

vF
vE

vG
vS

vG
vE

3
775
�
SðtÞ � Sð0Þ
EðtÞ � Eð0Þ

�
¼
��aEð0Þ � d1 �aSð0Þ
aEð0Þ aSð0Þ � ε1

��
SðtÞ � Sð0Þ
EðtÞ � Eð0Þ

�
(40)
By substituting from the equilibrium position, we obtain

�
S0ðtÞ
E0ðtÞ

�
¼

2
64
�d1 �aL

d1

0
aL

d1
� ε1

3
75
2
4 SðtÞ � L

d1
EðtÞ

3
5 (41)
Hence, the system of non-linear equations (7) and (8) has been converted to the following linear system [5, 25,26]:

dSðtÞ
dt

¼L� d1SðtÞ �
aL

d1
EðtÞ (42)

and
dEðtÞ
dt

¼
�
aL

d1
� ε1

�
EðtÞ (43)
For the complete system at equilibrium, the stability of the disease-free equilibrium (DFE) is given by the Jacobian matrix
[5, 25,26]:

JE0 ¼

2
66666666664

�d1 �aL

d1
0 0 0

0
aL

d1
� ε1 0 0 0

0 r �ε2 0 0

0 b1 b2 0 �ε3

0 s3 s2 �d1 s1

3
77777777775

(44)

� �

By calculating the characteristic equation given by �JE0 � lI5� ¼ 0, where l is the eigenvalues parameter and I5 is the

identity matrix of order 5, then, the eigenvalues of the matrix JE0 take the following values:

2
66664

l1
l2
l3
l4
l5

3
77775¼

2
66666666664

�ε3

�ε2

�d1

�d1
a L� d1ε2

d1

3
77777777775

(45)
Condition of equilibrium (Hartman-Grobman theorem)

The Hartman-Grobman theorem says that the solutions of a square system of non-linear ordinary differential equations
(7)e(10) in a neighbourhood of a steady-state look “qualitatively” similar to the solutions of the linearized system near the

point E0 ¼
�

L
d1
;0;0;0;0

�
. This result holds only when the equilibrium is hyperbolic; that is when none of the eigenvalues of

the matrix JE0 have zero real part (Martcheva, 2015b).
Thus, from equation (45) we obtain the following condition of equilibrium:
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a L� d1ε2s0 (46)
The uniqueness of equilibrium condition

If the matrix JE0 is obtained from the linearization and is the Jacobian evaluated at equilibrium DFEðE0Þ ¼
�

L
d1
;0;0;0;0

�
,

the condition
��JE0 ��s0means that the equilibrium is isolated, whichmeans there is a disk around it that does not contain other

equilibria (Martcheva, 2015b).
Hence, from equation (44), we have

��JE0 ��¼

����������������

�d1 �aL

d1
0 0 0

0
aL

d1
� ε1 0 0 0

0 r �ε2 0 0

0 b1 b2 0 �ε3

0 s3 s2 �d1 s1

����������������

(47)

which gives

��JE0 ��¼ ε1ε2d1ðaL� d1ε1Þs0 (48)
Thus, condition (46) is the only condition of the equilibrium of the SEIQR model.
Therefore, the unique equilibrium condition of the SEIQR model is:

a L

d1ε1
�1s0 (49)
The reproduction number (RBN) <0 ¼ aL
d1ε1

is also unique (Martcheva, 2015b).

Theorem 3. (stability analysis of disease-free equilibrium)

The SEIQR model DFEðE0Þ ¼
�

L
d1
;0;0;0;0

�
is locally asymptotically stable under the condition <0 <1 and unstable when

<0 >1 (Martcheva, 2015b).
Proof:

From the Jacobian matrix of system (44) which is defined at DFEðE0Þ ¼
�

L
d1
;0;0;0;0

�
and the eigenvalues (45), we have

l1 ¼ � ε4 <0; l2 ¼ �ε3 <0; l3 ¼ �ε1 <0; l4 ¼ �d1 <0 (50)
Thus, the system is locally stable when l5 ¼ a L�d1ε1
d1

<0 which gives a L
d1ε1

<1, i.e., the stability condition takes the form:

<0 ¼
a L

d1ε1
<1 (51)

and the instability condition is:
<0 ¼
a L

d1ε1
>1 (52)
Local sensitivity analysis of RBN ð<0Þ

Local sensitivity analysis is that examines the change in the output values that result from a change in one input value
(parameter) (Youssef et al., 2020b, c).

The sensitivity or elasticity of quantity G concerning the parameter p is given by (Martcheva, 2015b):
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§H
G ¼ vG

vH

	
G
H

¼ ±
%DG
%DH

(53)
The sensitivity of G concern H is positive if G is increasing concerning H and negative if G is decreasing concerning H.
Applying formula (53) into the reproduction number <0 which takes the form:

<0 ¼
a L

d1ε1
¼ aL

d1ðr þ b1 þ s3 þ d1Þ
(54)
Then,

§a
<0

¼ v<0

va

	
<0

a

�
¼ 1>0 (55)

b1
v<0

	�<0
�

b1
§<0
¼

vb1 b1
¼ �

ε1
<0 (56)

s3
v<0

	�<0
�

s3
§<0
¼

vs3 s3
¼ �

ε1
<0 (57)

r v<0
	
<0

� r

§<0

¼
vr r

¼ �
ε2

<0 (58)

d1
v<0

	�<0
�

d1 þ ε1
§<0
¼

vd1 d1
¼ �

ε1
<0 (59)
The fact that §b1
<0

¼ � b1
ε1
, §s3

<0
¼ � s3

ε1
, §r

<0
¼ � r

ε1
, and §d1

<0
¼ � d1þε1

ε1
means that a 1% increase in each one of ðb1; s3; r;

d1Þ will produce
�

b1
ε1
; s3
ε1
; r
ε1
; d1þε1

ε1

�
% a decrease in <0, respectively. From relation (55), §a

<0
¼ 1 it implies that a 1% increase a

will produce a rise of 1% in <0 (Martcheva, 2015a).

Global stability of equilibria of the SEIQR model (Lyapunov stability theorem)

One of the most used is the Lyapunov function. Lyapunov functions are scalar functions that may be used to prove the
global stability of equilibrium. Lyapunov states that if a function VðxÞ is globally positively definite and radially unbounded,
and its time derivative is globally negative, VðxÞ<0 for all xsx* then the equilibrium x* is globally stable for the autonomous
system x0 ¼ f ðxÞ, and VðxÞ is called a Lyapunov function (Martcheva, 2015b).

Theorem 5. (global stability)

The SEIQR model DFEðE0Þ ¼
�

L
d1
;0;0;0;0

�
is globally stable of the disease-free equilibrium under the condition <0 < 1.

Proof:
We will consider the SEIQR model on the space of the first three variables only ðS;E; IÞ. If the disease-free equilibrium for

the first three equations is globally stable, then ðQ ;RÞ/0, and the disease-free equilibrium for the full SEIQRmodel is globally
stable.

We construct the Lyapunov function on ℝ3þ in the following form (Martcheva, 2015b):

V ¼g

�
S� S* � S* ln

�
S
S*

��
þ E
ε1

þ I
r

(60)

where g is a parameter will be determined later, and S* ¼ L
d1
.

equation (60) shows that, at the disease-free equilibrium
�
S* ¼ L

d1
;0;0

�
, V ¼ 0.

Now, we have to show that V >0 for all ðS;E; IÞ �
�

L
d1
;0;0

�
.

equation (60) can be re-written as follows:
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V ¼gS*
�
S
S*

�1� ln
�
S
S*

��
þ E
ε1

þ I
r

(61)
The first term is positive for any value of S=S*, and the other two terms are also non-negative, so. V >0
Now, we take the derivative of equation (60), we obtain:

V 0 ¼g

�
1� S*

S

�
S0 þ E0

ε1
þ I0

r
(62)
Substituting from the first three equations of the SEIQR model and using equation (29), we obtain

V 0 ¼2Lg� gaε3
r

SI � d1gS�
L2g

Sd1
þ gaLε3

d1r
I þ aε3

ε1r
SI � ε3

r
I (63)
We choose g ¼ 1
ε1
, then we have:

V 0 ¼ � L

ε1

�
d1S
L

þ L

Sd1
�2

�
þ ε3

r
Ið<0 �1Þ (64)
Since <0 <1 then, the last term is non-positive.

For the first term, consider d1S
L

¼ y, then the term inside the brackets takes the form
�
y þ 1

y � 2
�

¼ ðy�1Þ2
y > 0, and nowwe

have two possibilities. The first one is at the equilibrium point, where we have S ¼ S* ¼ L
d1

, and it gives y ¼ 1, then the first

term completely vanishes, then we have the last term only, which is already non-negative. Thus, V 0 <0.
The second possibility is ys1, then the two terms are non-positive. Thus V 0 <0.

Hence, we have V 0 <0 for every ðSðtÞ;EðtÞ; IðtÞÞ �
�

L
d1
;0;0

�
.

Therefore, by the Lyapunov theorem, the disease-free equilibrium is globally asymptotically stable for the system of the
SEIQR model in all (Martcheva, 2015b).

Solutions for the system of the SEIQR model

After linearization of the system of the SEIQR model, the system takes the form:

dSðtÞ
dt

¼L� d1SðtÞ �
aL

d1
EðtÞ (65)

dEðtÞ �
aL� d1ε1

�

dt

¼
d1

EðtÞ (66)

dIðtÞ

dt

¼ rEðtÞ � ε3IðtÞ (67)

dRðtÞ

dt

¼ s3EðtÞ þ s2IðtÞ � d1RðtÞ þ s1QðtÞ (68)

dQðtÞ

dt

¼ b1EðtÞ þ b2IðtÞ � ε3QðtÞ (69)
We assume the initial conditions of the above system take the form:

fSðtÞ; EðtÞ; IðtÞ;QðtÞ;RðtÞgjt¼0 ¼fSð0Þ; Eð0Þ; Ið0Þ;Qð0Þ;Rð0Þg (70)
To solve the above system, we start to solve equation (66) as follows:

EðtÞ¼ Eð0Þeg1t (71)

where g1 ¼ aL�d1ε1
d1

.

Then, by substituting from equation (71) into equation (67), we get
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dIðtÞ
dt

þ ε3IðtÞ ¼ rEð0Þeg1t (72)
By solving the above equation, we get the infection function in the form:

IðtÞ¼ ðIð0Þ�g2Þe�ε3t þ g2e
g1t (73)

where g2 ¼ rEð0Þ
g1þε3

.

We can solve the first equation of the system by using equation (71)

dSðtÞ
dt

� d1SðtÞ ¼ L� aLEð0Þ
d1

eg1t (74)
After solving the above equation, we get

SðtÞ¼
�
Sð0Þþg3 �

L

d1

�
e�d1t þ

�
L

d1
�g3e

g1t
�

(75)

where g3 ¼ L
d1

�
aEð0Þ
d1þg1

� 1
�
.

By inserting equations (71), (73) and (75) into equations (68) and (69), we obtain a system of two ordinary differential
equations on RðtÞ and QðtÞ, which has been solved by using MAPLE software. We could not write the final forms of the two
functions RðtÞ and QðtÞ because it contains many long terms.

Results

To verify the model SEIQR, wewill apply it to the real data regarding the COVID-19 outbreak in Saudi Arabia. COVID-19 has
been in Saudi Arabia sinceMarch 3, 2020. Cases continued to be discovered in small numbers until the beginning of April, and
then the number of detected cases increased. Therefore, we decided in this study to consider April 1, 2020, as the real
beginning of the spread of the COVID-19 epidemic in Saudi Arabia.

We used tables of statistics issued from the Saudi Ministry of Health (Health, 2020) and the daily official statement issued
by the ministry as well as Wikipedia (Saudi_Arabia, 2020), which also depends on the ministry’s website and other websites
that would announce these statistics.

Another source of these data is the “Saudi Centre for Disease Prevention and Control (Control, 2020)." We used the official
website of the General Statistics Authority of Saudi Arabia for more information about the kingdom’s population, mortality
rate, and population growth rate.

To study the spread of COVID-19 in Saudi Arabia, wewill represent the curve of the number of daily infections and the time
series curve of the total number of infections, as shown in Figs. 2 and 3.

Fig. 2 shows that the number of daily cases on April 1, 2020, was 157 infections, and it reached 4919 infections on June 15,
2020, and between the two numbers, the curve passed through many up and down variations. After June 15, 2020, the
number of daily infections has taken a decreasing curve with some changes up and down until February 17, 2021.

Fig. 3 shows that the total number of infections at the same interval started with 157 infections and reaches an accu-
mulated amount of 139,506 infections on June 15, 2020, and an accumulated amount 372,200 number of infections on
February 17, 2021. Therefore, we will use these data through the present model SEIQR to discern whether there is a
convergence between the model results and the real data.

Applying the SEIQR model to Saudi Arabia data of the spread of Covid-19

According to the official data of Saudi Arabia, we have the initial data, which is considered the initial conditions of the
system based on the SEIQR model, as in Table 1(Control, 2020; Health, 2020; Saudi_Arabia, 2020):

The total number of new births of Saudi children and new residents Lz2300 person/day and the rate of natural deaths is
approximately 1030 people/day, which results in d1z3� 10�5. Some of the other parameters have been calculated, esti-
mated, or assumed, as in Table 2.

By using MAPLE software, we get the results that indicate the number of daily infections as outcomes of the SEIQR model
in the interval from April 1, 2020, to June 15, 2020. The value of the parameter a in that interval (the rate of transmission from
susceptible population to infected in Saudi Arabia) was a ¼ 2:64� 10�9, and the reproduction number RBN ð<0Þ was <0 ¼
1:262>1. In other words, the transmission rate at which the susceptible individual converted to an exposed individual was
higher than one, which means the spread of COVID-19 was unstable within the studied interval from April 1, 2020, to June 15,
2020.
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Fig. 2. The real number of daily infections in Saudi Arabia between 4/1/2020 and 2/17/2021.

Fig. 3. The total number of infections in Saudi Arabia between 4/1/2020 and 2/17/2021.

Table 1
The initial conditions of the model SEIQR.

Time (day) Sð0Þ Eð0Þ Ið0Þ
April 1, 2020 34,218,169 1:0� 104 157
June 16, 2020 34,297,479 1:0� 105 4757
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Table 2
The values of parameters in SEIQR (Control, 2020; Din et al., 2020; Gerberry&Milner, 2009; Health, 2020; Jumpen et al., 2009; Khan and Atangana, 2020; Pal
et al., 2020; Peng et al., 2020b; Saudi_Arabia, 2020; Tang et al., 2020b).

Parameter Value
1/4/2020e15/6/2020

Value
16/6/2020e17/2/2021

Background

L 2300 2300 Calculated
b1 0:15 0:2 Assumed
b2 1:0� 10�5 1:0� 10�5 Assumed
s1 1:0� 10�5 0:02 Calculated
s2 1:0� 10�5 1:0� 10�5 Estimated
s3 1:0� 10�3 0:05 Estimated
r 0:00325 0:05 Calculated
d1 3:0� 10�5 3:0� 10�5 Calculated
d2 3:423� 10�7 3:423� 10�7 Calculated
a 2:64� 10�9 1:18� 10�9 Estimated
<0 1:262>1 0:42<1 Calculated
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After June 15, 2020, the value of the parameter a in that interval was a ¼ 1:18� 10�9, and the reproduction number RBN
ð<0Þ was <0 ¼ 0:42<1. In other words, the transmission rate at which the susceptible individual converted to an exposed
individual was smaller than one, which means the spread of COVID-19 was stable within the studied interval.

Fig. 4 shows the number of daily infections based on the SEIQR model against the real data in Saudi Arabia between 4/1/
2020 and 6/15/2020 with the value of the rate of transmission from susceptible populations to infected in Saudi Arabia a ¼
2:64� 10�9 which gives the value of RBN <0 ¼ 1:262 and between 6/16/2020 and 2/17/2021 with the value of the rate of
transmission from susceptible populations to infected in Saudi Arabia a ¼ 1:18� 10�9 which gives the value of RBN <0 ¼
0:42. It is noted that the curve which comes as results from the SEIQR model work as trends to the curve that belong to the
real data. It makes the results due to applying the SEIQR model are close to the real data.

To illustrate the convergence between the results of the proposed model SEIQR and the real results, we displayed Fig. 5 in
which the cumulatively infected numbers within the same interval 4/1/2020 and 2/17/2021. This figure proves the success of
the proposed SEIQR model.

Discussions

According to the SEIQR model results and the real situation, we can conclude what happened and what makes us could
halt the spread of COVID-19 in Saudi Arabia:
Fig. 4. The number of daily infections based on the SEIQR model against the real data in Saudi Arabia between 4/1/2020 and 2/17/2021.
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Fig. 5. The total number of infections based on the SEIQR model against the real data in Saudi Arabia between 4/1/2020 and 2/17/2021.
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1. Decrease the value of the transmission rate from the susceptible population to infected but not detected by testing the
population to be in the following interval a � 1:18� 10�9.

2. Increase the value of the transmission coefficient from infected but not detected by testing population to a quarantine
population b1 to be b1 � 0:2, which means expanding the detection work and the need to isolate infected people in
compulsory quarantine areas as an example.

3. Increase the value of the transmission rate from the quarantine population to the recovery population s1 to be s1 � 0:02,
which means that we must apply the successful treatment on the quarantine population and help them to recover.

4. Increase the value of the transmission rate from infected and not detected individuals by testing the population to re-
covery s3 to be s3 � 0:05 by using a successful treatment.

5. Increase the value of infected but not detected individuals by checking the population to infected population for treatment
r to be r1 � 0:05, which means we have to offer the more effective and accurate methods of diagnosis to find out the
confirmed infections.
Conclusion

In this work, we developed a newmathematical epidemic SEIQRmodel for the outbreak of the new COVID-19 coronavirus.
This pandemicmodel offers a newmethod for evaluating and handling the COVID-19 epidemic. In Saudi Arabia, actual COVID-
19 data have been used to validate the findings of this newmodel. The results show that the SEIQRmodel is a useful model for
studying the spread of epidemics in Saudi and other countries, such as COVID-19.

The current model introduced a new and different reproduction number which is more sensitive to more parameters than
the past SEIQR models.

Five steps were the perfect procedure, and thorough advice was implemented to help the population of Saudi Arabia slow
the spread of COVID-19. Prevention is one of the key targets of this procedure rather than treatment.

The other main problem that helps to delay COVID-19 spread is to remain at home and to keep sick people in an isolated
area or a protected location.

Finally, we need a safe and effective treatment of people with infections and vitamins, tonics, and supplements to protect
non-infected people.
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