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Abstract

Clostridium difficile is a gram-positive, spore-forming, obligate anaerobic bacillus that was originally isolated from the stool of
a healthy neonate in 1935. In high-income countries, C. difficile is the most common cause of infectious diarrhoea in
hospitalized patients. The incidence of C. difficile infection in the USA has increased markedly since 2000, with
hospitalizations for C. difficile infections in non-pregnant adults doubling between 2000 and 2010. Between 20% and 35% of
patients with C. difficile infection will fail initial antibiotic treatment and, of these, 40–60% will have a second recurrence.
Recurrence of C. difficile infection after initial treatment causes substantial morbidity and is a major burden on health care
systems. In this article, current treatments for recurrent C. difficile infection are reviewed and future directions explored.
These include the use of antibiotics, probiotics, donor faecal transplants, anion resins, secondary bile acids or anti-toxin
antibodies.
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Introduction

Clostridium difficile is a gram-positive, spore-forming, obligate
anaerobic bacillus that was originally isolated from the stool
of a healthy neonate in 1935 [1]. It was first identified as a
major infectious cause of antibiotic-associated diarrhoea in
1978 [2]. In high-income countries, it is the most common
cause of infectious diarrhoea in hospitalized patients [3,4].
The endospores from C. difficile are similar to those of Bacillus
anthracis and Clostridium perfringens, in that they are imper-
vious to desiccation, temperature fluxes, freezing, irradiation
and many antiseptic solutions including alcohol-based hand
gels and quaternary ammonium-based cleaning agents. C. dif-
ficile spores are spread by the faecal–oral route, hand-to-hand
contact and also by air-borne environmental dispersal in hos-
pital wards [5].

Epidemiology of C. difficile infection (CDI)

The incidence of C. difficile infection (CDI) in the USA has
increased markedly since 2000, with hospitalizations for CDI in
non-pregnant adults doubling between 2000 and 2010 [6]. Based
on data from US death certificates, it is the leading cause of gas-
troenteritis-associated mortality, with estimated deaths of
14 000 in 2007 [7], 29 000 in 2011 [6] and 44 500 in 2014 [8]. Data
from the Center for Disease Control and Prevention for 2011
showed an annual toll in US health care facilities that was esti-
mated to be 453 000 cases, 83 000 recurrences and 15 000 deaths,
with an estimated annual cost of approximately $US40 billion
[9]. Excess health care costs due to CDI have been estimated at
$US4.8 billion dollars for acute care facilities alone [10].

Most CDI cases present during or shortly after antimicrobial
use [11–13], although the risk can persist for up to 90 days
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[14,15]. Clindamycin, other macrolides, third-generation cepha-
losporins, penicillins and fluoroquinolones are the antibiotics
most frequently associated with CDI [16]. Use of such broad-
spectrum antibiotics leads to increased patient susceptibility to
CDI infection and decreased ‘herd immunity’, particularly in
health care facilities such as hospitals and nursing homes.
C. difficile has been found to have a large number of mobile
genetic elements within its genome, inserted during its phylo-
genetic evolution. Conjugative transposons and bacteriophages
allow acquisition of antibiotic resistance through horizontal
transfer from other genetically unrelated bacteria [17].
Antibiotic selection pressure provides antibiotic resistant C. dif-
ficile strains with a competitive advantage over the normal host
intestinal microbiota. The three most common C. difficile North
American Pulsed-field-type (NAP) strains found across 10 geo-
graphic regions in the USA in 2009–11 were NAP1/UK Ribotype
(RT) 027 (28%), NAP4/RT014 (10.2%) and NAP11/RT106 (9.1%) [6].
The three most common strains in the Scottish CDI epidemic of
2007–08 were NAP1/RT027 (12.8%), NAP 11/RT106 (38.7%) and
NAP2/001(24.5%), all three of which showed resistance to cefo-
taxime, clindamycin, erythromycin, moxifloxacin and levoflox-
acin, compared to other less virulent strains [18]. Overall, 3174
CDI cases were recorded between December 2007 and May 2008
at 38 Scottish hospitals, with 285 deaths and a mortality rate of
9% [18].

Hypervirulent C. difficile Ribotype 027 strain

The hypervirulent NAP1, PCR ribotype 027 strain is character-
ized by high-level fluoroquinolone resistance, efficient sporula-
tion, enhanced cytotoxicity, markedly high toxin production
[19,20] and a mortality rate three times higher than less virulent
strains (such as the 001 or 014 ribotypes) [21,22]. This is related
to C. difficile NAP1 acquiring binary toxin (CDT) production from
C. perfringens and mutational loss of the toxin repressor gene
tcdC, which is the regulator for C. difficile exotoxin A and B tran-
scription and synthesis. Toxin A (TcdA) causes increased intes-
tinal permeability and fluid secretion, and Toxin B (TcdB) is
cytotoxic, causing colonic inflammation [15]. This occurs
through toxin inactivation of host intestinal G-proteins of the
Rho and ras families via glucosylation. NAP1 strains can syn-
thesize 16 times more Toxin A and 23 times more Toxin B than
less virulent strains, leading to increased cytotoxicity and dis-
ease severity [23]. Patients with NAP1 CDI are more likely to
develop fulminant pseudomembranous colitis, toxic megacolon
and multi-organ failure (MODS) and require emergency colec-
tomy [22,24,25]. Systemic absorption of TcdB appears to be more
important than TcdA in contributing to extra-intestinal dam-
age, host pro-inflammatory responses and systemic toxaemia
in severe CDI [26]. Patients infected with C. difficile strains pro-
ducing binary toxin have a 60% greater mortality than those
infected with binary toxin-deficient strains [23].

Initial CDI treatment

Current recommendations for treatment of initial CDI include
oral metronidazole or vancomycin for 10–14 days for mild or
moderate disease, as well as cessation of antibiotic therapy that
may have predisposed to the infection. For severe infections,
oral vancomycin (6 IV metronidazole) or oral fidaxomicin have
been recommended [16]. In patients with a paralytic ileus,
colonic diversion or dilated colon, rectal vancomycin may be a
useful alternative to oral administration [15].

Recurrent CDI

Between 20% and 35% of patients with CDI will fail initial antibi-
otic treatment [27–30] and, of these, 40–60% will have a second
recurrence [31,32]. The majority of recurrences are due to relap-
ses of CDI with the original strain rather than re-infection with
a different strain [15]. Resistance to vancomycin or metronida-
zole is not considered a factor in recurrent CDI, but such antibi-
otics may contribute to continued intestinal dysbiota. Recurrent
infection is more common in older patients (>65 years),
females, Caucasian patients, those with current antibiotic use,
concomitant use of proton pump inhibitors and more severe
initial disease [6,33]. The presence of comorbidities, anti-neo-
plastic chemotherapy, inadequate IgG antibody response to
Toxin A after initial episode, inflammatory bowel disease, organ
transplantation, chronic kidney disease, hypogammaglobuli-
naemia, immunodeficiency and exposure to an infant carrier or
infected adult have also been recognized as risk factors [34–37].
The contribution of proton pump inhibitors (PPIs) to CDI
remains unclear. C. difficile spores are resistant to gastric acid,
but vegetative forms are susceptible. In community-acquired
CDI patients, PPI exposure was observed in 31% of patients with
CDI, with no exposure to antibiotics [15]. There have been
reports of increased CDI risk with PPIs [38]; however, other stud-
ies have reported no increase in risk following adjustment for
co-existent conditions [39–41].

Health care costs in recurrent CDI

In a recent comprehensive analysis of hospital costs associated
with recurrent CDI, Rodrigues et al. found that each recurrent
CDI patient had an average of 4.4 stool tests for C. difficile toxin
and received an average of 2.5 prescriptions for oral vancomy-
cin. Most patients with recurrent CDI (84%) required hospitaliza-
tion and 6% required urgent total colectomy. The total mean
cost per patient was US$34 104, comprising hospitalization
(68%), surgery (20%) and drug treatment (8%) costs. When
applied to US national costs associated with rCDI, an annual
cost of US$2.8 billion was extrapolated [42].

Treatment of recurrent CDI
Antibiotic therapy

The management of an initial CDI recurrence includes repeat
administration of either oral metronidazole or vancomycin for
10–14 days. This achieves sustained cure rates in only 50% of
patients [37,43]. The use of metronidazole is not recommended
beyond the first CDI recurrence due to the risk of azole metabo-
lite neurotoxicity [44]. Second recurrences may be treated by
fidaxomicin or by a tapered, pulsed vancomycin regime [16].
Fidaxomicin is a poorly absorbed, orally administered macrolide
antibiotic that is bactericidal towards C. difficile as compared to
metronidazole and vancomycin, which are bacteriostatic [44].
Fidaxomicin has a narrower spectrum of antimicrobial activity
than first-line antibiotic therapy, which results in less disrup-
tion of the normal gut flora. In a randomized–controlled trial
(RCT), it had a similar cure rate but a significantly lower rate of
recurrence than treatment with vancomycin (13% vs 24%),
although this was in non-NAP Type 1 strains [45]. Fidaxomicin
is considerably more expensive than vancomycin, and may
have less activity against NAP1 CDI [44]. Rifaximin, another rifa-
mycin, has also been tested in small case studies [46,47].
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Stool transplant

The human gut has been estimated to harbour over 160 bacte-
rial species and greater than 1014 individual bacteria, the major-
ity of which exist within the colon [48]. Antibiotics diminish
specific commensal species, which usually suppress the growth
of gut pathogens, allowing uninhibited growth of pathogens
such as C. difficile [49,50]. Butyrate-producing bacteria are
depleted in CDI, including Ruminococcaceae and Lachnospiraceae
families. Butyrate is a short-chain fatty acid (SCFA). SCFAs are
important in host energy production, intestinal epithelial cell
homeostasis, immune function and normal gut microbial
growth [51]. Recurrent C. difficile has furthermore been associ-
ated with a reduced number of Bacteroidetes and Firmicutes, both
dominant gut flora [52]. Re-implanting such strains via faecal
transplantation from healthy individuals can restore the nor-
mal gut microbial biodiversity, community structure and
metabolomic functional profiles. Faecal microbiota transplant
(FMT) substantially increases the amounts of secondary bile
acids and restores SCFA production by gut microbiota [51].
Mean cure rates in recurrent CDI of 91–96% can be achieved
with FMT, indicating that donor faecal transplantation is effec-
tive in treating recurrent disease after initial antibiotic therapy
[52–55]. Larger longitudinal studies are required to assess regu-
latory concerns and long-term adverse events in patients after
FMT [56].

A variety of routes of administration of FMT have been
reported. To date, the best mode of treatment is still being
determined [57]. Postigo and Kim reported a pooled analysis
that indicated a marginally improved response, although not
statistically significant, for nasogastric administration of donor
faeces over colonoscopic application (93% vs 85%) [58]. In a 2014
systematic review of different routes of FMT, diarrhoea resolu-
tion rates varied according to the site of infusion: 81% in the
stomach; 86% in the duodenum/jejunum; 93% in the caecum/
ascending colon; and 84% in the distal colon [59].

Case series have reported excellent resolution rates follow-
ing rectal enema [57,60,61] or colonoscopic administration
[62–67]. Colonoscopic administration allows direct application
throughout the colon and also terminal ileum where C. difficile
can be found. However, it involves either inpatient or outpatient
use of endoscopy facilities and must be undertaken with cau-
tion to minimize the risk of perforation in an already diseased
colon. In addition, efficacy of this form of administration may
also depend on the protocol used to cleanse the colon prior to
application. Bowel preparations similar to those used prior to
colonoscopy may reduce the density of C. difficile organisms
including the metabolically inactive spores [65].

Application via a nasogastric or nasojejunal feeding tube
allows delivery to the small bowel, with subsequent passage
downstream to the distal ileum and colon without pre-
preparation of the bowel. van Nood et al., in a landmark RCT,
found a single nasoduodenal infusion of donor faeces was asso-
ciated with a significantly higher rate of resolution of recurrent
CDI compared to a vancomycin regime with or without bowel
lavage (81% vs 23% and 31%) [52].

Oral preparations of frozen faecal microbial transplant cap-
sules have also been studied with excellent results reported.
Youngster et al. reported a sustained cure after a single oral
administration of 30 frozen donor faecal capsules in 147/180
patients with recurrent or refractory CDI [68]. A second adminis-
tration was successful in 17/26 patients who relapsed, resulting
in an overall resolution of CDI diarrhoea in 91% of patients.
Advantages of this method include outpatient administration of

capsules and no requirement for instrumentation of the diges-
tive tract. FMT is also more cost-effective in recurrent CDI than
oral vancomycin or fidaxomicin [69–71].

In addition to FMT, research is continuing on a defined
Microbial Ecosystem Therapeutic (MET-1). This uses a defined
microbial population of 33 different bacterial species, prepared
under laboratory conditions, which is then administered. MET
has emerged due, in part, to the safety concerns in FMT of
potential transfer of unidentified pathogens to the recipient and
the logistics of screening suitable FMT donors. Petrof et al.
reported that one MET preparation, derived from the faeces of a
healthy human volunteer, was successfully used to cure
patients with recurrent CDI [72]. Further research into MET-1
has suggested it may be effective as a mode of recurrent CDI
prevention. MET-1 decreased both local and systemic inflam-
mation and the overall amount of detectable intestinal TcdA in
a mouse model. This occurred despite there being no decrease
in the intestinal C. difficile burden in the mouse stool [73].

Probiotics

The altered composition of gut microbiota in the setting of
C. difficile infection has raised interest in the potential role of
probiotics. Treatment aims to re-colonize and restore the diver-
sity of flora following the disruption due to antibiotic treatment
and C. difficile overgrowth [74].

Probiotics may act through a number of mechanisms. These
include temporary colonization, production of bactericidal acids
and peptides, and competition with C. difficile for nutrients and
epithelial adhesion. Lactobacilli have been shown to suppress
growth of C. difficile in hamsters [75]. Probiotic bacteria produce
lactic acid, which lowers digestive tract pH, as well as bacterio-
cins, both of which can inhibit growth of C. difficile [76]. They
may disrupt the binding of C. difficile Toxins A and B to intestinal
epithelial cells and stimulate host IgA anti-toxin production
[15,77]. Bifidobacterium longum and breve have been shown to
reduce the cytotoxic effect of C. difficile on the human intestinal
epithelial cell line HT29 [78]. This was related to the specific
reduction of TcdB levels, particularly by B. longum.

Some studies have suggested a benefit from probiotics in the
treatment or prevention of C. difficile infection [79–81]. A three-
strain combination of Lactobacillus acidophilus, L. casei and L.
rhamnosus (Bio-Kþ) was used to prevent primary CDI in 45 000
adult patients given any antibiotic. Patients were monitored for
over 10 years and a 39% decrease in the rate of CDI cases was
found [56]. Currently, the most promising agents appear to be a
combination of L. acidophilus and L. casei, other mixed species,
Saccharomyces boulardii or L. rhamnosus [82].

The tropical yeast S. boulardii produces a specific protease
which cleaves TcdA and may also inactivate TcdA receptors
[77,83]. A RCT of recurrent CDI treatments showed S. boulardii
(1 g/day for 28 days) in combination with high-dose oral vanco-
mycin (2 g/day for 10 days) was effective in reducing the CDI
recurrence rate to 16.7% as compared to high-dose vancomycin/
placebo (50%, p ¼ 0.05). It was not effective in combination with
low-dose vancomycin or metronidazole, as C. difficile was not
completely cleared in these patients [28,44].

Allen et al., in a large RCT from 2013, showed that probiotics
did not prevent C. difficile recurrence [84]. The 2016 Australasian
Society of Infectious Diseases (ASID) [85] and the Society for
Healthcare Epidemiology of America (SHEA) 2010 Guidelines
[86] do not recommend probiotics be used as a preventative or
adjunctive treatment in any C. difficile management algorithm.
A recent meta-analysis, however, demonstrated its efficacy in
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primary CDI prophylaxis in patients receiving systemic antibi-
otic treatment [87]. Hence, probiotics may be considered for this
indication by future Infectious Diseases Society guidelines.

The use of probiotics for CDI prevention and FMT for recur-
rent CDI treatment has led to interest in intestinal small mole-
cule inhibitors and bacteriocins. These are produced by
commensal intestinal microbiota and can inhibit toxigenic C.
difficile. Ebselen and methyl cholate are two small molecule
inhibitors of TcdB [88]. Examples of bacteriocins include thuri-
cin CD, nisin, lacticin 3147, actagardine, mutacin and diffocins
[89]. Nisin and Lacticin 3147 are produced by Lactococcus lactis
and have efficacy against C. difficile that is comparable or supe-
rior to vancomycin or metronidazole. Their application is lim-
ited by their undesirable effects on the commensal gut
microbiome. Studies are proceeding of bioengineered bacterio-
cins, which have enhanced activity against C. difficile RT027 and
fewer effects on normal gut flora [89].

Re-colonization with non-toxigenic C. difficile strains

Not all strains of C. difficile produce toxins, and thus re-coloniza-
tion with non-toxigenic strains has been investigated as a
potential treatment. Gerding et al. reported the results of a
phase II randomized, double-blind, placebo-controlled trial that
involved 168 patients [90]. They found a preparation containing
the non-toxigenic C. difficile strain M3 (VP20621; NTCD-M3) was
effective, well tolerated and appeared to be safe, with few
adverse events reported. CDI recurrence occurred in only 11% of
patients receiving the preparation compared to 30% taking the
placebo. Furthermore, only 2% of patients who were success-
fully colonized with the NTCD-M3 strain suffered recurrence,
compared to 31% receiving the placebo.

There are, however, potential areas of concern with this line
of treatment—specifically, the occurrences of horizontal trans-
fer of the pathogenicity locus (PaLoc) containing the genes
encoding TcdA and TcdB between remnant toxigenic strains
and introduced non-toxigenic strains. This has been proven
experimentally by Brouwer et al. [91] and has also occurred in
circulating C. difficile populations from a single geographic loca-
tion [92]. Further research is therefore required into the circum-
stances whereby transfer of the PaLoc occurs before re-
colonization with non-toxigenic C. difficile spores could be used
as a viable treatment modality.

Primary bile acids and anion-binding resins

The use of anion-binding resins has not been shown to be supe-
rior to standard antibiotic treatment in CDI, but may have a role
as an adjunctive therapy. Up to 80% of primary bile salts (e.g.
taurocholate, glycocholate and cholate) excreted in the bile are
converted to secondary bile salts (e.g. deoxycholate) by normal
intestinal flora. For example, bacterial 7a-dehydroxylase con-
verts taurocholate to deoxycholate. Taurocholate can also be
converted to chenodeoxycholate by Bacteroides species with 12a-
dehydroxylase activity [93]. Some primary bile salts such as
cholate stimulate C. difficile spores to germinate in the small
intestine and caecum, whilst the primary bile salt chenodeoxy-
cholate inhibits spore germination and outgrowth of vegetative
cells in the colon. Deoxycholate still allows spores to germinate
but vegetative cells cannot grow. In broad-spectrum antibiotic-
treated hosts, the reduction in normal bacterial flora results in
lower levels of commensal 7a-dehydroxylase and higher con-
centrations of primary bile salts. This allows C. difficile spores to

rapidly germinate and the resulting vegetative cells to grow and
subsequently produce exotoxins [94].

Giel et al. compared the effects of intestinal and caecal extracts
from untreated and antibiotic-treated mice and related this to
cholestyramine administration. Caecal contents from the antibi-
otic-treated mice stimulated colony formation of C. difficile spores
and exotoxin B levels by 10 000-fold after 24 hours [94].
Cholestyramine decreased the ability of taurocholate to germinate
C. difficile spores by 200-fold. When treated with cholestyramine,
there was a decrease in the ability of the intestinal extracts from
the clindamycin-treated mice to stimulate colony formation [94].
Whilst cholestyramine resin is not effective as a primary therapy
[95], potential exists for its adjunctive use as a primary bile acid
sequestrant in human CDI [96]. One disadvantage of anion resins
is that they also bind luminal vancomycin [95].

Tolevamer is an anionic, soluble polystyrene compound
shown to sequester CDI Toxins A and B. It was associated with a
lower CDI recurrence rate compared to oral vancomycin [97].
Oral vancomycin 500 mg/day was superior to 6 g/day and
3 g/day of oral Tolevamer in time for resolution of diarrhoea in
moderate to severe CDI (2.0, 2.5 and 4.0 days, respectively) and
in efficacy (91%, 83% and 67% respective resolution). A more
recent study showed that Tolevamer was inferior to both metro-
nidazole and vancomycin in analyses of both primary and
recurrent CDI, concomitant use of antibiotics, CDI severity and
infection with hypervirulent NAP1 CDI strain. However, in the
small cohort of patients who did respond to Tolevamer, the CDI
recurrence rate was 4.5%, which was significantly better than
recurrence rates for metronidazole (23.0%) or vancomycin
(20.6%) [98].

Synthetic bile salt analogues

Given the ability of taurocholate to bind and activate C. difficile
spores, it has been possible to test taurocholate agonists and
antagonists of C. difficile spore germination [99]. One of the ana-
logues, CAmSA, was found to be a strong competitive inhibitor
of taurocholate-mediated C. difficile spore germination. It was
active at concentrations approximately 275-fold lower than
taurocholate and was four times more active than the natural
inhibitor chenodeoxycholate [99]. When tested in a mouse
model, CAmSA was able to prophylactically prevent murine CDI
caused by two different CD strains and could be titrated to
ameliorate CDI signs in a dose-dependent manner [100]. This
raises the possibility of its use in prophylaxis against CDI.

Secondary bile acid

Recent research has highlighted the importance of secondary
bile acids in the pathogenesis and potential treatment of CDI. A
loss in microbially derived intestinal secondary bile acids can
lead to increased susceptibility for CDI, particularly in hypervir-
ulent strains [101]. Weingarden et al. reported that there were
no secondary bile acids (lithocholate, deoxycholate) and an
abundance of primary bile acids (taurocholate, cholate, cheno-
deoxycholate) in the faeces of recurrent CDI patients prior to
FMT [102]. After successful FMT, there were no faecal primary
bile salts and the levels of secondary bile salts were restored to
those of healthy persons.

It was shown that germination of spores was variable
amongst C. difficile strains in response to primary bile acids, and
was possibly related to expression of the spore germinant CspC.
This is a C. difficile serine protease bile acid receptor that was
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most distinct in the NAP7/RT078 hypervirulent livestock-
derived CDI strain [102].

Weingarden et al. subsequently reported that ursodeoxy-
cholic acid (UDCA) inhibited both spore germination and vegeta-
tive growth of all C. difficile strains they tested [103]. UDCA is
produced by microbial conversion of lithocholate in the colon.
They suggested that oral UDCA may be useful in patients who
were not suitable for FMT (e.g. recurrent CDI pouch ileitis) or
were refractory to antibiotic and FMT treatment.

Monoclonal antibodies

The use of systemic monoclonal antibodies has been reported
to decrease the rate of C. difficile recurrence [30,104].
Bezlotoxumab has been shown by X-ray crystallography to
block the binding of Toxin B to host cells, thereby negating its
action [105]. The initial double-blind RCT using IV antibodies
against both Toxins A and B found the overall rate of recurrence
of C. difficile infection was lower amongst patients treated with
monoclonal antibodies versus placebo (7% vs 25%; p < 0.001).
The recurrence rate among patients with the epidemic BI/NAP1/
027 strain was 8% for the antibody group and 32% for the pla-
cebo group (p ¼ 0.06). In the patients with more than one pre-
vious episode of CDI, respective recurrence rates after
monoclonal antibody treatment versus placebo were 7% and
38% (p ¼ 0.006) [30].

The subsequent MODIFY I and II trials showed that single-
dose intravenous Bezlotoxumab in conjunction with standard
oral antibiotic treatment resulted in a significantly lower (38%)
rate of recurrent CDI infection than with placebo and standard
antibiotic treatment alone [104]. The rate of recurrent CDI was
even lower with Bezlotoxumab (51%) in patients >65 years of
age. The initial CDI cure rates of the Bezlotoxumab/antibiotic
and placebo/antibiotic-treated groups were similar in pooled
data (80%). This is related to the rapid effect of standard antibi-
otic treatment-lowering Toxin B levels in the initial CDI episode.
The protective effect of Bezlotoxumab against recurrent CDI
was sustained for 12 weeks after administration. A single dose
of monoclonal antibody was used due to the long half life (19
days). There was no benefit found with Actoxumab (a monoclo-
nal antibody directed against Toxin A) alone, nor did its combi-
nation with Bezlotoxumab increase the efficacy of treatment
[104]. This is despite previous epidemiological evidence that
showed generation of endogenous anti-Toxin A IgG antibodies
was protective against recurrent CDI [34]. The relative protective
effect of host IgG antitoxins against Toxins A or B may also be
species-specific [104].

The results of MODIFY I and II prompted the US Food and
Drug Administration (FDA) to approve Bezlotoxumab in 2016 for
use as secondary prevention for patients at a high risk of CDI
recurrence (prior history of CDI and >65 years) [9,104]. Further
research is still required at this stage to identify which patients
will benefit most from Bezlotoxumab. Additional cost analyses
will also need to be undertaken before such treatment becomes
more widely used. The efficacy of a tetravalent vaccine with
antibodies to CDI binary toxin in addition to Toxins A and B is
still being evaluated [106].

Hyperimmune bovine colostrum (HBC)

Colostrum is the initial milk produced by a lactating mammal
following parturition. Bovine colostrum is known to be rich in
immunoglobulins (particularly IgG), which are stable in the gas-
trointestinal tract. This can provide passive protection to the

infant calf from environmentally acquired enteric pathogens
such as rotavirus, Salmonella enterica, enterotoxigenic Escherichia
coli, Clostridium difficile, C. perfringens and Cryptospridium parvum.
By repeatedly inoculating a gestating cow with specific anti-
gens, it is possible to stimulate the production of colostrum con-
taining high concentrations of antigen-specific antibodies
known as HBC. Recent research has investigated the potential
of HBC to prevent or treat C. difficile. In 2015, Sponseller et al.
demonstrated that HBC produced following inoculation of cows
with recombinant mutants of Toxins A and B had the potential
to be used in primary CDI treatment [107]. They developed a
model of gnotobiotic piglets transplanted with normal human
gut microbiota and then exposed to C. difficile. The piglets
treated with non-immune colostrum developed symptoms of
C. difficile colitis whereas those treated with HBC only suffered
mild disease. More recently, a TcdB-specific HBC has been
developed and investigated by Hutton et al. [108]. They demon-
strated that administration of TcdB HBC alone or in combina-
tion with spore or vegetative cell-targeted colostrum prevented
and treated CDI in mice and reduced recurrence by 67%. The
production cost of colostrum IgG antibodies is less than intrave-
nous monoclonal antibodies. This suggests that HBC may be a
cost-effective future treatment for human enteric infections
such as C. difficile colitis.

Bacteriophage therapy

C. difficile is known to produce biofilms, which consist of aggre-
gates of cells embedded in a matrix of self-produced extracelllar
polymetric substance (EPS) [109–111]. The matrix binds spores
and vegetative cells and protects them from oxidative stress
whilst enhancing their adhesion to abiotic surfaces [111]. This
allows persistence and proliferation of C. difficile. Recent studies
have investigated the therapeutic potential of bacteriophages
(viruses that specifically infect bacteria). Nale et al., in 2016,
studied the application of a four-phage cocktail on C. difficile
ribotype 014/020 biofilms [112]. They found the phages pre-
vented biofilm formation and penetrated established biofilms
leading to lysis, plaque formation and a reduction in bacterial
viability and biomass in vitro. They also reported an enhanced
effect when used as an adjunct to vancomycin. This was under-
taken in an animal model, but the results are promising for bac-
teriophage administration to become a future prophylactic and
therapeutic intervention in human CDI and recurrent CDI.

Conclusion

Recurrence of CDI after initial treatment causes substantial
morbidity and is a major burden on health care systems. There
is good evidence that FMT for recurrent CDI is both clinically
and cost-effective in achieving a permanent cure. Probiotics are
readily available and may assist in prevention of relapse of
infection, but further research is required in their role in recur-
rent CDI. Whilst anion-binding resins may not be first-line
treatment, they may be of use in an adjunctive setting.
Monoclonal antibodies have proven preventative effect in CDI
relapse, and have thus been approved by the FDA. Ongoing
research is currently underway into secondary bile acid treat-
ments (UDCA) and development of multivalent toxin vaccines.
The emergence of treatments that re-establish intestinal micro-
biota homeostasis and enhance host immunocompetence is
therefore of great importance in the future prevention and
treatment of recurrent CDI.
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